
1

Crystal Reports: Runtime

Trapping Keystrokes over the Preview Window

The information in this article applies to Crystal Reports versions 6 and 7.

On occasion, developers using Crystal Reports' runtime with their applications find that they have a need to
handle keystrokes that occur while the Crystal Reports Preview Window has focus. Some reasons for
doing this are:

• The application is used on a machine that has a custom keyboard without the common cursor/paging
keys.

• The Preview Window is part of the application's form and the user needs to be able to tab in and out of
the Preview Window without having to use the mouse.

• The developer would like to set up a Pop-up Menu over the Preview Window without having to use
relatively complicated Call-back Events that are available in the Print Engine function declarations.

It is possible to trap keystrokes using the Windows API call, SetWindowLong.

LONG SetWindowLong(
 HWND hwnd, // handle of window
 int nIndex, // offset of value to set
 LONG lNewLong // new value
);

The first parameter in the SetWindowLong procedure, "hwnd" is set to window handle of the window
whose messages we want to trap. The second parameter, "nIndex" specifies which property of the window
we are going to affect. In this case, the constant "GWL_WNDPROC" is used, since it specifies that we
want to trap the window procedure, which is the internal procedure used by a window class that handles the
messages going to that window. The third parameter, "lNewLong" specifies the address of the new
procedure to which all window messages will be diverted. This will be a procedure that we create, and
hence we will be able to watch for specific messages and set up our own actions in response to those
messages.

However, there is one slight difficulty with this method. The window handle that is obtained using the
Crystal Reports Print Engine function call: PEGetWindowHandle (or it's equivalent in any of the custom
controls such as VBX, OCX, or VCL) only returns us the handle of the outer frame of the Preview
Window. The Crystal Preview Window is actually made up of a series of child windows, nested within
each other. Unless we obtain the handle of the innermost child, the one that the actual Report is drawn on,
the SetWindowLong procedure will not work.

Fortunately, there is a way to obtain the child windows from the outer window. To do this, another
Windows API call is used: GetWindow.

HWND GetWindow(
 HWND hWnd, // handle of original window
 UINT uCmd // relationship flag
);

The first parameter in this call is the handle of an outer or sibling window. The second parameter
determines the relationship of the window we are trying to get. The return result will be the handle of the
window we are trying to get to, provided it exists.

The basic structure of the Crystal Preview Window and it's children can be illustrated as in the following
diagram:

2

Note: The three windows that are called "Optional"and that have dashed lines around them may or may not
appear depending on the setting of certain of the WindowOptions, which are set using
PESetWindowOptions. Options such as "HasGroupTree" and "CanDrillDown" will determine whether
these windows appear.

Outer Window Frame

Afx:10000000:b:14c6:6:394f

The numbers after "Afx:" will differ
with each new window.

First Child Window

SCR 7: AfxWnd42
SCR 6: AfxWnd42s

ToolBar Window

ToolbarWindow32

The button bar panel on the
Preview Window. There are other

children below this one.

Second Level Child Window

Afx:10000000:3:14c6:10:0

The numbers after "Afx:" can
change. Optional (see note).

Second Level Child Window

SCR 7: AfxWnd42
SCR 6: AfxWnd42s

A sibling of the Window to the left,
if that window is created.

Third Level Child Window

SCR 7: AfxMDIFrame42
SCR 6: AfxMDIFrame42s

Optional (see note).

Fourth Level Child Window

SysTreeView32

Optional (see note).

Report Window

SCR 7: AfxFrameOrView42
SCR 6: AfxFrameOrView42s

This is the Report Window which
receives the keystroke messages.

3

However, this problem can be worked around by obtaining the window class name at each level, which can
be used to determine where we are in the Tree.

Using Print Engine function calls to CRPE(32).DLL, the series of steps required to locate the internal
Report Window would be as follows(the examples are in Delphi code):

Assumptions:
A. There is already an open PrintJob.
B. StartPrintJob has been called (or Crpe1.Execute if using the Delphi VCL).
C. Output is going to Window.

var
 xWnd : HWnd;
 OldWindowProc : Pointer
 a1 : array[0..255] of char;
 s1 : string;
 sWinName1 : string;
 sWinName2 : string;

1. Check the version of CRPE. The window naming convention is not quite the same between
Crystal Reports 6 and 7. If you are using the Delphi VCL, this can be done via the
Crpe1.Version.Major property; if you are using Print Engine calls, the version can be obtained via
PEGetVersion.

{If CRPE version is 7, then the window names are…}
 sWinName1 := 'AfxWnd42';
 sWinName2 := 'AfxFrameOrView42';

{If CRPE version is 6, then the window names are…}
 sWinName1 := 'AfxWnd42s';
 sWinName2 := 'AfxFrameOrView42s';

2. Afx:n1 - The outer window frame; n1 is a large number, not always the same.

xWnd := PEGetWindowHandle(PrintJob);
{ If you are using the Delphi VCL component, the code would be like this: }
{ xWnd := Crpe1.ReportWindowHandle; }

3. AfxWnd42s - The first child frame.

xWnd := GetWindow(xWnd, GW_CHILD);

4. Afx:n2 or AfxWnd42 - could be either depending on PESetWindowOptions. We want AfxWnd42, so
if this is not it, we need one more step.

xWnd := GetWindow(xWnd, GW_CHILD);
GetClassName(xWnd, a1, 256);
s1 := StrPas (a1);
if s1 <> sWinName1 then
 xWnd := GetWindow(xWnd, GW_HWNDNEXT);

5. AfxMDIFrame42 or AfxFrameOrView42 - could be either depending on PESetWindowOptions. We
want AfxFrameOrView42, so if this is not it, we need to take two more steps.

xWnd := GetWindow(xWnd, GW_CHILD);
GetClassName(xWnd, a1, 256);
s1 := StrPas(a1);
if s1 <> sWinName2 then
begin
 xWnd := GetWindow(xWnd, GW_CHILD);
 GetClassName(xWnd, a1, 256);
 s1 := StrPas(a1);

4

 if s1 <> sWinName2 then
 xWnd := GetWindow(xWnd, GW_HWNDNEXT);
end;

6. Finally, set the Window Procedure.

OldWindowProc := Pointer(SetWindowLong(xWnd, GWL_WNDPROC,
 LongInt(@NewWindowProc)));

7. The NewWindowProc needs to be defined as a function with the expected parameters. The second
parameter gives the basic type of message returned and the third and fourth parameters contain specific
details.

function NewWindowProc(WindowHandle: hWnd; TheMessage: WParameter;
 ParamW: WParam; ParamL: LParam): LongInt stdcall;
 begin

 { Process the message of your choice here }
 case TheMessage of
 {Scroll keys}
 WM_VSCROLL: ShowMessage('Vertical Scroll');
 WM_HSCROLL: ShowMessage('Horizontal Scroll');
 {Any keys}
 WM_CHAR:
 begin
 {If not a Tab key press, handle it...}
 if ParamW <> 9 then
 ShowMessage('Decimal: ' + IntToStr(ParamW) +
 ' / ' + 'Ascii: ' + CHR(ParamW);
 {Could do something like this in response to certain keypresses:
 SendMessage(WindowHandle, WM_VSCROLL, 1, 0);}
 end;
 end;

 {Process the details of the Message here}
 case ParamW of
 {Tab key pressed}
 VK_TAB :
 begin
 {Is Shift key held down?}
 if GetKeyState(VK_SHIFT) < 0 then
 ShowMessage('Shift-Tab key pressed')
 {No Shift key}
 else
 ShowMessage('Tab key pressed');
 end;
 end;

 { Exit here and return zero if you want }
 { to stop further processing of the message }

 { Call the old Window procedure to }
 { allow default processing of the message. }
 NewWindowProc := CallWindowProc(OldWindowProc, WindowHandle,
 TheMessage, ParamW, ParamL);
 end;

One thing to remember is that within the NewWindowProc function, only global variables will be visible,
so any references to a component that is on the Main Form of the application will need to be done via the
global variables.

May 1999
Frank Zimmerman

