
www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal Introduction

October 1, 1999: Book is on Delphi 5 Companion CD.
Source Code available. Examples list added.

Book Cover. Apollo, the god worshipped at Delphi,
in an Italian 17th century fresco.

The first few editions of Mastering Delphi, the best selling Delphi book I've written, provided an introduction to the Pascal
language in Delphi. Due to space constraints and because many Delphi programmers look for more advanced
information, in the latest edition this material was completely omitted. To overcome the absence of this information, I've
started putting together this online book, titled Essential Pascal.

This is a detailed book on Pascal, which for the moment will be available for free on my web site (I really don't know what
will happen next, I might even find a publisher). This is a work in progress, and any feedback is welcome. The first
complete version of this book, dated July '99, has been published on the Delphi 5 Companion CD.

Copyright
The text and the source code of this book is copyrighted by Marco Cantù. Of course you can use the programs and adapt
them to your own needs, only you are not allowed to use them in books, training material, and other copyrighted formats.
Feel free to link your site with this one, but please do not duplicate the material as it is very subject to frequent changes
and updates.

Essential Pascal

http://localhost/epascal/english/default.htm (1 di 3) [07/05/2001 17.31.29]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

The Book Structure
The following is the current structure of the book:

Chapter 1: Pascal History●

Chapter 2: Coding in Pascal●

Chapter 3: Types, Variables, and Constants●

Chapter 4: User-Defined Data Types●

Chapter 5: Statements●

Chapter 6: Procedures and Functions●

Chapter 7: Handling Strings●

Chapter 8: Memory (and Dynamic Arrays)●

Chapter 9: Windows Programming●

Chapter 10: Variants●

Chapter 11: Programs and Units●

Chapter 12: Files in the Pascal Language●

Appendix A: Glossary of terms●

Appendix B: Examples●

Source Code
The source code of all the examples mentioned in the book is available. The code has the same Copyright as the book:
Feel free to use it at will but don't publish it on other documents or site. Links back to this site are welcome.

Download the source code in a single zip file, EPasCode.zip (only 26 KB in size) and check out the list of the examples.

Feedback
Please let me know of any errors you find, but also of topics not clear enough for a beginner. I'll be able to devote time to
the project depending also on the feedback I receive. Let me know also which other topics (not covered in Mastering
Delphi 4) you'd like to see here. Again, hook onto the newsgroup, listed on my web site, and look for the books section, or
mail to marco@marcocantu.com (putting Essential Pascal in the subject (and your request or comment in the text).

Acknowledgements
If I'm publishing a book on the web for free, I think this is mainly due to Bruce Eckel's experience with Thinking in Java.
I'm a friend of Bruce and think he really did a great job with that book and few others.

As I mentioned the project to people at Borland I got a lot of positive feedback as well. And of course I must thank the
company for making first the Turbo Pascal series of compilers and now the Delphi series of visual IDEs.

I'm starting to get some precious feedback. The first readers who helped improving this material quite a lot are Charles
Wood and Wyatt Wong. Mark Greenhaw helped with some editing the text. Rafael Barranco-Droege offered a lot of
technical corrections and language editing. Thanks.

Essential Pascal

http://localhost/epascal/english/default.htm (2 di 3) [07/05/2001 17.31.29]

http://localhost/epascal/EPasCode.zip
mailto:marco@marcocantu.com

Author
Marco Cantù lives in Piacenza, Italy. After writing C++ and Object Windows Library books and articles, he delved into
Delphi programming. He is the author of the Mastering Delphi book series, published by Sybex, as well as the advanced
Delphi Developers Handbook. He writes articles for many magazines, including The Delphi Magazine, speaks at Delphi
and Borland conferences around the world, and teaches Delphi classes at basic and advanced levels.

You can find more details about Marco and his work on his web site, www.marcocantu.com.

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/default.htm (3 di 3) [07/05/2001 17.31.29]

http://www.marcocantu.com/

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Appendix B:
Examples

This is a list of the examples which are part of Essential Pascal and available for download:

Chapter 3

ResStr: resource strings
Range: ordinal types ranges
TimeNow: time manipulation

Chapter 4

GPF: general protection faults with null pointers

Chapter 5

IfTest: if statements
Loops: for and while statements

Chapter 6

OpenArr: open array parameters
DoubleH: simple procedures
ProcType: procedural types
OverDef: overloading and default parameters

Chapter 7

StrRef: strings reference counting
LongStr: using long strings
FmtTest: formatting examples

Chapter 8

DynArr: dynamic arrays
WHandle: Windows handles
Callback: Windows callback functions
StrParam: command line parameters

Essential Pascal

http://localhost/epascal/english/examples.htm (1 di 2) [07/05/2001 17.31.30]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Chapter 10

VariTest: simple variant operations
VariSpeed: the speed of variants

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/examples.htm (2 di 2) [07/05/2001 17.31.30]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 1
Pascal History

The Object Pascal programming language we use in Delphi wasn't invented in 1995 along with the Borland visual
development environment. It was simply extended from the Object Pascal language already in use in the Borland Pascal
products. But Borland didn't invent Pascal, it only helped make it very popular and extended it a little...

This chapter will contain some historical background on the Pascal language and its evolution. For the moment it contains
only very short summaries.

Wirth's Pascal
The Pascal language was originally designed in 1971 by Niklaus Wirth, professor at the Polytechnic of Zurich,
Switzerland. Pascal was designed as a simplified version for educational purposes of the language Algol, which dates
from 1960.

When Pascal was designed, many programming languages existed, but few were in widespread use: FORTRAN, C,
Assembler, COBOL. The key idea of the new language was order, managed through a strong concept of data type, and
requiring declarations and structured program controls. The language was also designed to be a teaching tool for
students of programming classes.

Turbo Pascal
Borland's world-famous Pascal compiler, called Turbo Pascal, was introduced in 1983, implementing "Pascal User
Manual and Report" by Jensen and Wirth. The Turbo Pascal compiler has been one of the best-selling series of
compilers of all time, and made the language particularly popular on the PC platform, thanks to its balance of simplicity
and power.

Turbo Pascal introduced an Integrated Development Environment (IDE) where you could edit the code (in a WordStar
compatible editor), run the compiler, see the errors, and jump back to the lines containing those errors. It sounds trivial
now, but previously you had to quit the editor, return to DOS; run the command-line compiler, write down the error lines,
open the editor and jump there.

Moreover Borland sold Turbo Pascal for 49 dollars, where Microsoft's Pascal compiler was sold for a few hundred. Turbo
Pascal's many years of success contributed to Microsoft's eventual cancellation of its Pascal compiler product.

Essential Pascal

http://localhost/epascal/english/ch01hist.htm (1 di 2) [07/05/2001 17.31.30]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Delphi's Pascal
After 9 versions of Turbo and Borland Pascal compilers, which gradually extended the language, Borland released Delphi
in 1995, turning Pascal into a visual programming language.

Delphi extends the Pascal language in a number of ways, including many object-oriented extensions which are different
from other flavors of Object Pascal, including those in the Borland Pascal with Objects compiler.

Next Chapter: Coding in Pascal

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch01hist.htm (2 di 2) [07/05/2001 17.31.30]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 2
Coding in Pascal

Before we move on to the subject of writing Pascal language statements, it is important to highlight a couple of elements
of Pascal coding style. The question I'm addressing here is this: Besides the syntax rules, how should you write code?
There isn't a single answer to this question, since personal taste can dictate different styles. However, there are some
principles you need to know regarding comments, uppercase, spaces, and the so-called pretty-printing. In general, the
goal of any coding style is clarity. The style and formatting decisions you make are a form of shorthand, indicating the
purpose of a given piece of code. An essential tool for clarity is consistency-whatever style you choose, be sure to follow
it throughout a project.

Comments
In Pascal, comments are enclosed in either braces or parentheses followed by a star. Delphi also accepts the C++ style
comments, which can span to the end of the line:

{this is a comment}
(* this is another comment *)
// this is a comment up to the end of the line

The first form is shorter and more commonly used. The second form was often preferred in Europe because many
European keyboards lack the brace symbol. The third form of comments has been borrowed from C++ and is available
only in the 32-bit versions of Delphi. Comments up to the end of the line are very helpful for short comments and for
commenting out a line of code.

In the listings of the book I'll try to mark comments as italic (and keywords in bold), to be consistent with the default Delphi
syntax highlighting.

Having three different forms of comments can be helpful for making nested comments. If you want to comment out
several lines of source code to disable them, and these lines contain some real comments, you cannot use the same
comment identifier:

{ ... code
{comment, creating problems}
... code }

With a second comment identifier, you can write the following code, which is correct:

{ ... code
//this comment is OK
... code }

Note that if the open brace or parenthesis-star is followed by the dollar sign ($), it becomes a compiler directive, as in
{$X+}.

Actually, compiler directives are still comments. For example, {$X+ This is a comment} is legal. It's both a valid directive

Essential Pascal

http://localhost/epascal/english/ch02code.htm (1 di 9) [07/05/2001 17.31.31]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

and a comment, although sane programmers will probably tend to separate directives and comments.

Use of Uppercase
The Pascal compiler (unlike those in other languages) ignores the case (capitalization) of characters. Therefore, the
identifiers Myname, MyName, myname, myName, and MYNAME are all exactly equivalent. On the whole, this is definitely
a positive, since in case-sensitive languages, many syntax errors are caused by incorrect capitalization.

Note: There is only one exception to the case-insensitive rule of Pascal: the Register procedure of a components'
package must start with the uppercase R, because of a C++Builder compatibility issue.

There are a couple of subtle drawbacks, however. First, you must be aware that these identifiers really are the same, so
you must avoid using them as different elements. Second, you should try to be consistent in the use of uppercase letters,
to improve the readability of the code.

A consistent use of case isn't enforced by the compiler, but it is a good habit to get into. A common approach is to
capitalize only the first letter of each identifier. When an identifier is made up of several consecutive words (you cannot
insert a space in an identifier), every first letter of a word should be capitalized:

MyLongIdentifier
MyVeryLongAndAlmostStupidIdentifier

Other elements completely ignored by the compiler are the spaces, new lines, and tabs you add to the source code. All
these elements are collectively known as white space. White space is used only to improve code readability; it does not
affect the compilation.

Unlike BASIC, Pascal allows you to write a statement on several lines of code, splitting a long instruction on two or more
lines. The drawback (at least for many BASIC programmers) of allowing statements on more than one line is that you
have to remember to add a semicolon to indicate the end of a statement, or more precisely, to separate a statement from
the next one. Notice that the only restriction in splitting programming statements on different lines is that a string literal
may not span several lines.

Again, there are no fixed rules on the use of spaces and multiple-line statements, just some rules of thumb:

The Delphi editor has a vertical line you can place after 60 or 70 characters. If you use this line and try to avoid
surpassing this limit, your source code will look better when you print it on paper. Otherwise long lines may get
broken at any position, even in the middle of a word, when you print them.

●

When a function or procedure has several parameters, it is common practice to place the parameters on different
lines.

●

You can leave a line completely white (blank) before a comment or to divide a long piece of code in smaller
portions. Even this simple idea can improve the readability of the code, both on screen and when you print it.

●

Use spaces to separate the parameters of a function call, and maybe even a space before the initial open
parenthesis. Also keep operands of an expression separated. I know that some programmers will disagree with
these ideas, but I insist: Spaces are free; you don't pay for them. (OK, I know that they use up disk space and
modem connection time when you upload or download a file, but this is less and less relevant, nowadays.)

●

Pretty-Printing
The last suggestion on the use of white spaces relates to the typical Pascal language-formatting style, known as
pretty-printing. This rule is simple: Each time you need to write a compound statement, indent it two spaces to the right of
the rest of the current statement. A compound statement inside another compound statement is indented four spaces,
and so on:

if ... then
 statement;

if ... then
begin

Essential Pascal

http://localhost/epascal/english/ch02code.htm (2 di 9) [07/05/2001 17.31.31]

 statement1;
 statement2;
end;

if ... then
begin
 if ... then
 statement1;
 statement2;
end;

The above formatting is based on pretty-printing, but programmers have different interpretations of this general rule.
Some programmers indent the begin and end statements to the level of the inner code, some of them indent begin and
end and then indent the internal code once more, other programmers put the begin in the line of the if condition. This is
mostly a matter of personal taste.

A similar indented format is often used for lists of variables or data types, and to continue a statement from the previous
line:

type
 Letters = set of Char;
var
 Name: string;
begin
 { long comment and long statement, going on in the
 following line and indented two spaces }
 MessageDlg ('This is a message',
 mtInformation, [mbOk], 0);

Of course, any such convention is just a suggestion to make the code more readable to other programmers, and it is
completely ignored by the compiler. I've tried to use this rule consistently in all of the samples and code fragments in this
book. Delphi source code, manuals, and Help examples use a similar formatting style.

Syntax Highlighting
To make it easier to read and write Pascal code, the Delphi editor has a feature called color syntax highlighting.
Depending on the meaning in Pascal of the words you type in the editor, they are displayed using different colors. By
default, keywords are in bold, strings and comments are in color (and often in italic), and so on.

Reserved words, comments, and strings are probably the three elements that benefit most from this feature. You can see
at a glance a misspelled keyword, a string not properly terminated, and the length of a multiple-line comment.

You can easily customize the syntax highlight settings using the Editor Colors page of the Environment Options dialog
box (see Figure 2.1). If you work by yourself, choose the colors you like. If you work closely with other programmers, you
should all agree on a standard color scheme. I find that working on a computer with a different syntax coloring than the
one I am used to is really difficult.

FIGURE 2.1: The dialog box used to set the color syntax highlighting.

Essential Pascal

http://localhost/epascal/english/ch02code.htm (3 di 9) [07/05/2001 17.31.31]

Note: In this book I've tried to apply a sort of syntax highlighting to the source code listings. I hope this actually makes
them more readable.

Using Code Templates
Delphi 3 introduced a new feature related to source code editing. Because when writing Pascal language statements you
often repeat the same sequence of keywords, Borland has provided a new feature called Code Templates. A code
template is simply a piece of code related with a shorthand. You type the shorthand, then press Ctrl+J, and the full piece
of code appears. For example, if you type arrayd, and then press Ctrl+J, the Delphi editor will expand your text into:

array [0..] of ;

Since the predefined code templates usually include several versions of the same construct, the shortcut generally
terminates with a letter indicating which of the versions you are interested in. However, you can also type only the initial
part of the shortcut. For example, if you type ar and then press Ctrl+J, the editor will display a local menu with a list of the
available choices with a short description, as you can see in Figure 2.2.

Figure 2.2: Code Templates selection

Essential Pascal

http://localhost/epascal/english/ch02code.htm (4 di 9) [07/05/2001 17.31.31]

You can fully customize the code templates by modifying the existing ones or adding your own common code pieces. If
you do this, keep in mind that the text of a code template generally includes the '|' character to indicate where the cursor
should jump to after the operation, that is, where you start typing to complete the template with custom code.

Language Statements
Once you have defined some identifiers, you can use them in statements and in the expressions that are part of some
statements. Pascal offers several statements and expressions. Let's look at keywords, expressions, and operators first.

Keywords
Keywords are all the Object Pascal reserved identifiers, which have a role in the language. Delphi's help distinguishes
between reserved words and directives: Reserved words cannot be used as identifiers, while directives should not be
used as such, even if the compiler will accept them. In practice, you should not use any keywords as an identifier.

In Table 2.1 you can see a complete list of the identifiers having a specific role in the Object Pascal language (in Delphi
4), including keywords and other reserved words.

Table 2.1: Keywords and other reserved words in the Object Pascal language

Keyword Role
absolute directive (variables)

abstract directive (method)

and operator (boolean)

array type

as operator (RTTI)

asm statement

assembler backward compatibility (asm)

at statement (exceptions)

automated access specifier (class)

begin block marker

Essential Pascal

http://localhost/epascal/english/ch02code.htm (5 di 9) [07/05/2001 17.31.31]

case statement

cdecl function calling convention

class type

const declaration or directive (parameters)

constructor special method

contains operator (set)

default directive (property)

destructor special method

dispid dispinterface specifier

dispinterface type

div operator

do statement

downto statement (for)

dynamic directive (method)

else statement (if or case)

end block marker

except statement (exceptions)

export backward compatibility (class)

exports declaration

external directive (functions)

far backward compatibility (class)

file type

finalization unit structure

finally statement (exceptions)

for statement

forward function directive

function declaration

goto statement

if statement

implementation unit structure

implements directive (property)

in operator (set) - project structure

index directive (dipinterface)

inherited statement

initialization unit structure

inline backward compatibility (see asm)

interface type

is operator (RTTI)

label declaration

library program structure

message directive (method)

mod operator (math)

name directive (function)

near backward compatibility (class)

nil value

nodefault directive (property)

Essential Pascal

http://localhost/epascal/english/ch02code.htm (6 di 9) [07/05/2001 17.31.31]

not operator (boolean)

object backward compatibility (class)

of statement (case)

on statement (exceptions)

or operator (boolean)

out directive (parameters)

overload function directive

override function directive

package program structure (package)

packed directive (record)

pascal function calling convention

private access specifier (class)

procedure declaration

program program structure

property declaration

protected access specifier (class)

public access specifier (class)

published access specifier (class)

raise statement (exceptions)

read property specifier

readonly dispatch interface specifier

record type

register function calling convention

reintroduce function directive

repeat statement

requires program structure (package)

resident directive (functions)

resourcestring type

safecall function calling convention

set type

shl operator (math)

shr operator (math)

stdcall function calling convention

stored directive (property)

string type

then statement (if)

threadvar declaration

to statement (for)

try statement (exceptions)

type declaration

unit unit structure

until statement

uses unit structure

var declaration

virtual directive (method)

Essential Pascal

http://localhost/epascal/english/ch02code.htm (7 di 9) [07/05/2001 17.31.31]

while statement

with statement

write property specifier

writeonly dispatch interface specifier

xor operator (boolean)

Expressions and Operators
There isn't a general rule for building expressions, since they mainly depend on the operators being used, and Pascal has
a number of operators. There are logical, arithmetic, Boolean, relational, and set operators, plus some others.
Expressions can be used to determine the value to assign to a variable, to compute the parameter of a function or
procedure, or to test for a condition. Expressions can include function calls, too. Every time you are performing an
operation on the value of an identifier, rather than using an identifier by itself, that is an expression.

Expressions are common to most programming languages. An expression is any valid combination of constants,
variables, literal values, operators, and function results. Expressions can also be passed to value parameters of
procedures and functions, but not always to reference parameters (which require a value you can assign to).

Operators and Precedence

If you have ever written a program in your life, you already know what an expression is. Here, I'll highlight specific
elements of Pascal operators. You can see a list of the operators of the language, grouped by precedence, in Table 2.1.

Contrary to most other programming languages, the and and or operators have precedence compared to the relational
one. So if you write a < b and c < d, the compiler will try to do the and operation first, resulting in a compiler error. For this
reason you should enclose each of the < expression in parentheses: (a < b) and (c < d).

Some of the common operators have different meanings with different data types. For example, the + operator can be
used to add two numbers, concatenate two strings, make the union of two sets, and even add an offset to a PChar
pointer. However, you cannot add two characters, as is possible in C.

Another strange operator is div. In Pascal, you can divide any two numbers (real or integers) with the / operator, and
you'll invariably get a real-number result. If you need to divide two integers and want an integer result, use the div
operator instead.

Table 2.2: Pascal Language Operators, Grouped by Precedence

Unary Operators (Highest Precedence)

@ Address of the variable or function (returns a pointer)

not Boolean or bitwise not

Multiplicative and Bitwise Operators

* Arithmetic multiplication or set intersection

/ Floating-point division

div Integer division

mod Modulus (the remainder of integer division)

as Allows a type-checked type conversion among at runtime (part of the RTTI support)

and Boolean or bitwise and

shl Bitwise left shift

shr Bitwise right shift

Essential Pascal

http://localhost/epascal/english/ch02code.htm (8 di 9) [07/05/2001 17.31.31]

Additive Operators

+ Arithmetic addition, set union, string concatenation, pointer offset addition

- Arithmetic subtraction, set difference, pointer offset subtraction

or Boolean or bitwise or

xor Boolean or bitwise exclusive or

Relational and Comparison Operators (Lowest Precedence)

= Test whether equal

<> Test whether not equal

< Test whether less than

> Test whether greater than

<= Test whether less than or equal to, or a subset of a set

>= Test whether greater than or equal to, or a superset of a set

in Test whether the item is a member of the set

is Test whether object is type-compatible (another RTTI operator)

Set Operators

The set operators include union (+), difference (-), intersection (*),membership test (in), plus some relational operators.
To add an element to a set, you can make the union of the set with another one that has only the element you need.
Here's a Delphi example related to font styles:

Style := Style + [fsBold];
Style := Style + [fsBold, fsItalic] - [fsUnderline];

As an alternative, you can use the standard Include and Exclude procedures, which are much more efficient (but cannot
be used with component properties of the set type, because they require an l-value parameter):

Include (Style, fsBold);

Conclusion
Now that we know the basic layout of a Pascal program we are ready to start understanding its meaning in detail. We'll
start by exploring the definition of predefined and user defined data types, then we'll move along to the use of the
keywords to form programming statements.

Next Chapter: Types, Variables, and Constants

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch02code.htm (9 di 9) [07/05/2001 17.31.31]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 3
Types, Variables,
and Constants

The original Pascal language was based on some simple notions, which have now become quite common in
programming languages. The first is the notion of data type. The type determines the values a variable can have, and the
operations that can be performed on it. The concept of type is stronger in Pascal than in C, where the arithmetic data
types are almost interchangeable, and much stronger than in the original versions of BASIC, which had no similar
concept.

Variables
Pascal requires all variables to be declared before they are used. Every time you declare a variable, you must specify a
data type. Here are some sample variable declarations:

var
 Value: Integer;
 IsCorrect: Boolean;
 A, B: Char;

The var keyword can be used in several places in the code, such as at the beginning of the code of a function or
procedure, to declare variables local to the routine, or inside a unit to declare global variables. After the var keyword
comes a list of variable names, followed by a colon and the name of the data type. You can write more than one variable
name on a single line, as in the last statement above.

Once you have defined a variable of a given type, you can perform on it only the operations supported by its data type.
For example, you can use the Boolean value in a test and the integer value in a numerical expression. You cannot mix
Booleans and integers (as you can with the C language).

Using simple assignments, we can write the following code:

Value := 10;
IsCorrect := True;

But the next statement is not correct, because the two variables have different data types:

Value := IsCorrect; // error

If you try to compile this code, Delphi issues a compiler error with this description: Incompatible types: 'Integer' and
'Boolean'. Usually, errors like this are programming errors, because it does not make sense to assign a True or False
value to a variable of the Integer data type. You should not blame Delphi for these errors. It only warns you that there is

Essential Pascal

http://localhost/epascal/english/ch03data.htm (1 di 11) [07/05/2001 17.31.33]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

something wrong in the code.

Of course, it is often possible to convert the value of a variable from one type into a different type. In some cases, this
conversion is automatic, but usually you need to call a specific system function that changes the internal representation of
the data.

In Delphi you can assign an initial value to a global variable while you declare it. For example, you can write:

var
 Value: Integer = 10;
 Correct: Boolean = True;

This initialization technique works only for global variables, not for variables declared inside the scope of a procedure or
method.

Constants
Pascal also allows the declaration of constants to name values that do not change during program execution. To declare
a constant you don't need to specify a data type, but only assign an initial value. The compiler will look at the value and
automatically use its proper data type. Here are some sample declarations:

const
 Thousand = 1000;
 Pi = 3.14;
 AuthorName = 'Marco Cantù';

Delphi determines the constant's data type based on its value. In the example above, the Thousand constant is assumed
to be of type SmallInt, the smallest integral type which can hold it. If you want to tell Delphi to use a specific type you can
simply add the type name in the declaration, as in:

const
 Thousand: Integer = 1000;

When you declare a constant, the compiler can choose whether to assign a memory location to the constant, and save its
value there, or to duplicate the actual value each time the constant is used. This second approach makes sense
particularly for simple constants.

Note: The 16-bit version of Delphi allows you to change the value of a typed constant at run-time, as if it was a variable.
The 32-bit version still permits this behavior for backward compatibility when you enable the $J compiler directive, or use
the corresponding Assignable typed constants check box of the Compiler page of the Project Options dialog box.
Although this is the default, you are strongly advised not to use this trick as a general programming technique. Assigning
a new value to a constant disables all the compiler optimizations on constants. In such a case, simply declare a variable,
instead.

Resource String Constants
When you define a string constant, instead of writing:

const
 AuthorName = 'Marco Cantù';

starting with Delphi 3 you can write the following:

resourcestring
 AuthorName = 'Marco Cantù';

Essential Pascal

http://localhost/epascal/english/ch03data.htm (2 di 11) [07/05/2001 17.31.33]

In both cases you are defining a constant; that is, a value you don't change during program execution. The difference is
only in the implementation. A string constant defined with the resourcestring directive is stored in the resources of the
program, in a string table.

To see this capability in action, you can look at the ResStr example, which has a button with the following code:

resourcestring
 AuthorName = 'Marco Cantù';
 BookName = 'Essential Pascal';

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage (BookName + #13 + AuthorName);
end;

The output of the two strings appears on separate lines because the strings are separated by the newline character
(indicated by its numerical value in the #13 character-type constant).

The interesting aspect of this program is that if you examine it with a resource explorer (there is one available among the
examples that ship with Delphi) you'll see the new strings in the resources. This means that the strings are not part of the
compiled code but stored in a separate area of the executable file (the EXE file).

Note: In short, the advantage of resources is in an efficient memory handling performed by Windows and in the possibility
of localizing a program (translating the strings to a different language) without having to modify its source code.

Data Types
In Pascal there are several predefined data types, which can be divided into three groups: ordinal types, real types, and
strings. We'll discuss ordinal and real types in the following sections, while strings are covered later in this chapter. In this
section I'll also introduce some types defined by the Delphi libraries (not predefined by the compiler), which can be
considered predefined types.

Delphi also includes a non-typed data type, called variant, and discussed in Chapter 10 of this book. Strangely enough a
variant is a type without proper type-checking. It was introduced in Delphi 2 to handle OLE Automation.

Ordinal Types
Ordinal types are based on the concept of order or sequence. Not only can you compare two values to see which is
higher, but you can also ask for the value following or preceding a given value or compute the lowest or highest possible
value.

The three most important predefined ordinal types are Integer, Boolean, and Char (character). However, there are a
number of other related types that have the same meaning but a different internal representation and range of values.
The following Table 3.1 lists the ordinal data types used for representing numbers.

Table 3.1: Ordinal data types for numbers

Size Signed
Range

Unsigned
Range

8 bits ShortInt
-128 to 127

Byte
0 to 255

16 bits SmallInt
-32768 to 32767

Word
0 to 65,535

Essential Pascal

http://localhost/epascal/english/ch03data.htm (3 di 11) [07/05/2001 17.31.33]

32 bits LongInt
-2,147,483,648 to 2,147,483,647

LongWord (since Delphi 4)
0 to 4,294,967,295

64 bits Int64

16/32 bits Integer Cardinal

As you can see, these types correspond to different representations of numbers, depending on the number of bits used to
express the value, and the presence or absence of a sign bit. Signed values can be positive or negative, but have a
smaller range of values, because one less bit is available for the value itself. You can refer to the Range example,
discussed in the next section, for the actual range of values of each type.

The last group (marked as 16/32) indicates values having a different representation in the 16-bit and 32-bit versions of
Delphi. Integer and Cardinal are frequently used, because they correspond to the native representation of numbers in the
CPU.

Integral Types in Delphi 4

In Delphi 3, the 32-bit unsigned numbers indicated by the Cardinal type were actually 31-bit values, with a range up to 2
gigabytes. Delphi 4 introduced a new unsigned numeric type, LongWord, which uses a truly 32-bit value up to 4
gigabytes. The Cardinal type is now an alias of the new LongWord type. LongWord permits 2GB more data to be
addressed by an unsigned number, as mentioned above. Moreover, it corresponds to the native representation of
numbers in the CPU.

Another new type introduced in Delphi 4 is the Int64 type, which represents integer numbers with up to 18 digits. This new
type is fully supported by some of the ordinal type routines (such as High and Low), numeric routines (such as Inc and
Dec), and string-conversion routines (such as IntToStr). For the opposite conversion, from a string to a number, there are
two new specific functions: StrToInt64 and StrToInt64Def.

Boolean

Boolean values other than the Boolean type are seldom used. Some Boolean values with specific representations are
required by Windows API functions. The types are ByteBool, WordBool, and LongBool.

In Delphi 3 for compatibility with Visual Basic and OLE automation, the data types ByteBool, WordBool, and LongBool
were modified to represent the value True with -1, while the value False is still 0. The Boolean data type remains
unchanged (True is 1, False is 0). If you've used explicit typecasts in your Delphi 2 code, porting the code to later
versions of Delphi might result in errors.

Characters

Finally there are two different representation for characters: ANSIChar and WideChar. The first type represents 8-bit
characters, corresponding to the ANSI character set traditionally used by Windows; the second represents 16-bit
characters, corresponding to the new Unicode characters supported by Windows NT, and only partially by Windows 95
and 98. Most of the time you'll simply use the Char type, which in Delphi 3 corresponds to ANSIChar. Keep in mind,
anyway, that the first 256 Unicode characters correspond exactly to the ANSI characters.

Constant characters can be represented with their symbolic notation, as in 'k', or with a numeric notation, as in #78. The
latter can also be expressed using the Chr function, as in Chr (78). The opposite conversion can be done with the Ord
function.

It is generally better to use the symbolic notation when indicating letters, digits, or symbols. When referring to special
characters, instead, you'll generally use the numeric notation. The following list includes some of the most commonly
used special characters:

#9 tabulator●

#10 newline●

Essential Pascal

http://localhost/epascal/english/ch03data.htm (4 di 11) [07/05/2001 17.31.33]

#13 carriage return (enter key)●

The Range Example

To give you an idea of the different ranges of some of the ordinal types, I've written a simple Delphi program named
Range. Some results are shown in Figure 3.1.

FIGURE 3.1: The Range example displays some information about ordinal data types (Integers in this case).

The Range program is based on a simple form, which has six buttons (each named after an ordinal data type) and some
labels for categories of information, as you can see in Figure 3.1. Some of the labels are used to hold static text, others to
show the information about the type each time one of the buttons is pressed.

Every time you press one of the buttons on the right, the program updates the labels with the output. Different labels
show the data type, number of bytes used, and the maximum and minimum values the data type can store. Each button
has its own OnClick event-response method because the code used to compute the three values is slightly different from
button to button. For example, here is the source code of the OnClick event for the Integer button (BtnInteger):

procedure TFormRange.BtnIntegerClick(Sender: TObject);
begin
 LabelType.Caption := 'Integer';
 LabelSize.Caption := IntToStr (SizeOf (Integer));
 LabelMax.Caption := IntToStr (High (Integer));
 LabelMin.Caption := IntToStr (Low (Integer));
end;

If you have some experience with Delphi programming, you can examine the source code of the program to understand
how it works. For beginners, it's enough to note the use of three functions: SizeOf, High, and Low. The results of the last
two functions are ordinals of the same kind (in this case, integers), and the result of the SizeOf function is always an
integer. The return value of each of these functions is first translated into strings using the IntToStr function, then copied
to the captions of the three labels.

The methods associated with the other buttons are very similar to the one above. The only real difference is in the data
type passed as a parameter to the various functions. Figure 3.2 shows the result of executing this same program under
Windows 95 after it has been recompiled with the 16-bit version of Delphi. Comparing Figure 3.1 with Figure 3.2, you can
see the difference between the 16-bit and 32-bit Integer data types.

FIGURE 3.2: The output of the 16-bit version of the Range example, again showing information about integers.

Essential Pascal

http://localhost/epascal/english/ch03data.htm (5 di 11) [07/05/2001 17.31.33]

The size of the Integer type varies depending on the CPU and operating system you are using. In 16-bit Windows, an
Integer variable is two bytes wide. In 32-bit Windows, an Integer is four bytes wide. For this reason, when you recompile
the Range example, you get a different output.

The two different representations of the Integer type are not a problem, as long as your program doesn't make any
assumptions about the size of integers. If you happen to save an Integer to a file using one version and retrieve it with
another, though, you're going to have some trouble. In this situation, you should choose a platform-independent data type
(such as LongInt or SmallInt). For mathematical computation or generic code, your best bet is to stick with the standard
integral representation for the specific platform--that is, use the Integer type--because this is what the CPU likes best. The
Integer type should be your first choice when handling integer numbers. Use a different representation only when there is
a compelling reason to do so.

Ordinal Types Routines

There are some system routines (routines defined in the Pascal language and in the Delphi system unit) that work on
ordinal types. They are shown in Table 3.2. C++ programmers should notice that the two versions of the Inc procedure,
with one or two parameters, correspond to the ++ and += operators (the same holds for the Dec procedure).

Table 3.2: System Routines for Ordinal Types

Routine Purpose

Dec Decrements the variable passed as parameter, by one or by the value of the optional second parameter.

Inc Increments the variable passed as parameter, by one or by the specified value.

Odd Returns True if the argument is an odd number.

Pred Returns the value before the argument in the order determined by the data type, the predecessor.

Succ Returns the value after the argument, the successor.

Ord Returns a number indicating the order of the argument within the set of values of the data type.

Low Returns the lowest value in the range of the ordinal type passed as its parameter.

High Returns the highest value in the range of the ordinal data type.

Notice that some of these routines, when applied to constants, are automatically evaluated by the compiler and replaced
by their value. For example if you call High(X) where X is defined as an Integer, the compiler can simply replace the
expression with the highest possible value of the Integer data type.

Essential Pascal

http://localhost/epascal/english/ch03data.htm (6 di 11) [07/05/2001 17.31.34]

Real Types
Real types represent floating-point numbers in various formats. The smallest storage size is given by Single numbers,
which are implemented with a 4-byte value. Then there are Double floating-point numbers, implemented with 8 bytes, and
Extended numbers, implemented with 10 bytes. These are all floating-point data types with different precision, which
correspond to the IEEE standard floating-point representations, and are directly supported by the CPU numeric
coprocessor, for maximum speed.

In Delphi 2 and Delphi 3 the Real type had the same definition as in the 16-bit version; it was a 48-bit type. But its usage
was deprecated by Borland, which suggested that you use the Single, Double, and Extended types instead. The reason
for their suggestion is that the old 6-byte format is neither supported by the Intel CPU nor listed among the official IEEE
real types. To completely overcome the problem, Delphi 4 modifies the definition of the Real type to represent a standard
8-byte (64-bit) floating-point number.

In addition to the advantage of using a standard definition, this change allows components to publish properties based on
the Real type, something Delphi 3 did not allow. Among the disadvantages there might be compatibility problems. If
necessary, you can overcome the possibility of incompatibility by sticking to the Delphi 2 and 3 definition of the type; do
this by using the following compiler option:

{$REALCOMPATIBILITY ON}

There are also two strange data types: Comp describes very big integers using 8 bytes (which can hold numbers with 18
decimal digits); and Currency (not available in 16-bit Delphi) indicates a fixed-point decimal value with four decimal digits,
and the same 64-bit representation as the Comp type. As the name implies, the Currency data type has been added to
handle very precise monetary values, with four decimal places.

We cannot build a program similar to the Range example with real data types, because we cannot use the High and Low
functions or the Ord function on real-type variables. Real types represent (in theory) an infinite set of numbers; ordinal
types represent a fixed set of values.

Note: Let me explain this better. when you have the integer 23 you can determine which is the following value. Integers
are finite (they have a determined range and they have an order). Floating point numbers are infinite even within a small
range, and have no order: in fact, how many values are there between 23 and 24? And which number follows 23.46? It is
23.47, 23.461, or 23.4601? That's really hard to know!

For this reason, it makes sense to ask for the ordinal position of the character w in the range of the Char data type, but it
makes no sense at all to ask the same question about 7143.1562 in the range of a floating-point data type. Although you
can indeed know whether one real number has a higher value than another, it makes no sense to ask how many real
numbers exist before a given number (this is the meaning of the Ord function).

Real types have a limited role in the user interface portion of the code (the Windows side), but they are fully supported by
Delphi, including the database side. The support of IEEE standard floating-point types makes the Object Pascal language
completely appropriate for the wide range of programs that require numerical computations. If you are interested in this
aspect, you can look at the arithmetic functions provided by Delphi in the system unit (see the Delphi Help for more
details).

Note: Delphi also has a Math unit that defines advanced mathematical routines, covering trigonometric functions (such as
the ArcCosh function), finance (such as the InterestPayment function), and statistics (such as the MeanAndStdDev
procedure). There are a number of these routines, some of which sound quite strange to me, such as the
MomentSkewKurtosis procedure (I'll let you find out what this is).

Date and Time
Delphi uses real types also to handle date and time information. To be more precise Delphi defines a specific TDateTime
data type. This is a floating-point type, because the type must be wide enough to store years, months, days, hours,
minutes, and seconds, down to millisecond resolution in a single variable. Dates are stored as the number of days since
1899-12-30 (with negative values indicating dates before 1899) in the integer part of the TDateTime value. Times are
stored as fractions of a day in the decimal part of the value.

Essential Pascal

http://localhost/epascal/english/ch03data.htm (7 di 11) [07/05/2001 17.31.34]

TDateTime is not a predefined type the compiler understands, but it is defined in the system unit as:

type
 TDateTime = type Double;

Using the TDateTime type is quite easy, because Delphi includes a number of functions that operate on this type. You
can find a list of these functions in Table 3.3.

Table 3.3: System Routines for the TDateTime Type

Routine Description

Now Returns the current date and time into a single TDateTime value.

Date Returns only the current date.

Time Returns only the current time.

DateTimeToStr Converts a date and time value into a string, using default formatting; to have more control on the
conversion use the FormatDateTime function instead.

DateTimeToString Copies the date and time values into a string buffer, with default formatting.

DateToStr Converts the date portion of a TDateTime value into a string.

TimeToStr Converts the time portion of a TDateTime value into a string.

FormatDateTime Formats a date and time using the specified format; you can specify which values you want to see
and which format to use, providing a complex format string.

StrToDateTime Converts a string with date and time information to a TDateTime value, raising an exception in case
of an error in the format of the string.

StrToDate Converts a string with a date value into the TDateTime format.

StrToTime Converts a string with a time value into the TDateTime format.

DayOfWeek Returns the number corresponding to the day of the week of the TDateTime value passed as
parameter.

DecodeDate Retrieves the year, month, and day values from a date value.

DecodeTime Retrieves out of a time value.

EncodeDate Turns year, month, and day values into a TDateTime value.

EncodeTime Turns hour, minute, second, and millisecond values into a TDateTime value.

To show you how to use this data type and some of its related routines, I've built a simple example, named TimeNow.
The main form of this example has a Button and a ListBox component. When the program starts it automatically
computes and displays the current time and date. Every time the button is pressed, the program shows the time elapsed
since the program started.

Here is the code related to the OnCreate event of the form:

procedure TFormTimeNow.FormCreate(Sender: TObject);
begin
 StartTime := Now;
 ListBox1.Items.Add (TimeToStr (StartTime));
 ListBox1.Items.Add (DateToStr (StartTime));
 ListBox1.Items.Add ('Press button for elapsed time');
end;

The first statement is a call to the Now function, which returns the current date and time. This value is stored in the
StartTime variable, declared as a global variable as follows:

Essential Pascal

http://localhost/epascal/english/ch03data.htm (8 di 11) [07/05/2001 17.31.34]

var
 FormTimeNow: TFormTimeNow;
 StartTime: TDateTime;

I've added only the second declaration, since the first is provided by Delphi. By default, it is the following:

var
 Form1: TForm1;

Changing the name of the form, this declaration is automatically updated. Using global variables is actually not the best
approach: It should be better to use a private field of the form class, a topic related to object-oriented programming and
discussed in Mastering Delphi 4.

The next three statements add three items to the ListBox component on the left of the form, with the result you can see in
Figure 3.3. The first line contains the time portion of the TDateTime value converted into a string, the second the date
portion of the same value. At the end the code adds a simple reminder.

FIGURE 3.3: The output of the TimeNow example at startup.

This third string is replaced by the program when the user clicks on the Elapsed button:

procedure TFormTimeNow.ButtonElapsedClick(Sender: TObject);
var
 StopTime: TDateTime;
begin
 StopTime := Now;
 ListBox1.Items [2] := FormatDateTime ('hh:nn:ss',
 StopTime - StartTime);
end;

This code retrieves the new time and computes the difference from the time value stored when the program started.
Because we need to use a value that we computed in a different event handler, we had to store it in a global variable.
There are actually better alternatives, based on classes.

Note: The code that replaces the current value of the third string uses the index 2. The reason is that the items of a list
box are zero-based: the first item is number 0, the second number 1, and the third number 2. More on this as we cover
arrays.

Besides calling TimeToStr and DateToStr you can use the more powerful FormatDateTime function, as I've done in the
last method above (see the Delphi Help file for details on the formatting parameters). Notice also that time and date
values are transformed into strings depending on Windows international settings. Delphi reads these values from the
system, and copies them to a number of global constants declared in the SysUtils unit. Some of them are:

DateSeparator: Char;
ShortDateFormat: string;

Essential Pascal

http://localhost/epascal/english/ch03data.htm (9 di 11) [07/05/2001 17.31.34]

LongDateFormat: string;
TimeSeparator: Char;
TimeAMString: string;
TimePMString: string;
ShortTimeFormat: string;
LongTimeFormat: string;
ShortMonthNames: array [1..12] of string;
LongMonthNames: array [1..12] of string;
ShortDayNames: array [1..7] of string;
LongDayNames: array [1..7] of string;

More global constants relate to currency and floating-point number formatting. You can find the complete list in the Delphi
Help file under the topic Currency and date/time formatting variables.

Note: Delphi includes a DateTimePicker component, which provides a sophisticated way to input a date, selecting it from
a calendar.

Specific Windows Types
The predefined data types we have seen so far are part of the Pascal language. Delphi also includes other data types
defined by Windows. These data types are not an integral part of the language, but they are part of the Windows libraries.
Windows types include new default types (such as DWORD or UINT), many records (or structures), several pointer types,
and so on.

Among Windows data types, the most important type is represented by handles, discussed in Chapter 9.

Typecasting and Type Conversions
As we have seen, you cannot assign a variable to another one of a different type. In case you need to do this, there are
two choices. The first choice is typecasting, which uses a simple functional notation, with the name of the destination data
type:

var
 N: Integer;
 C: Char;
 B: Boolean;
begin
 N := Integer ('X');
 C := Char (N);
 B := Boolean (0);

You can typecast between data types having the same size. It is usually safe to typecast between ordinal types, or
between real types, but you can also typecast between pointer types (and also objects) as long as you know what you are
doing.

Casting, however, is generally a dangerous programming practice, because it allows you to access a value as if it
represented something else. Since the internal representations of data types generally do not match, you risk
hard-to-track errors. For this reason, you should generally avoid typecasting.

The second choice is to use a type-conversion routine. The routines for the various types of conversions are summarized
in Table 3.4. Some of these routines work on the data types that we'll discuss in the following sections. Notice that the
table doesn't include routines for special types (such as TDateTime or variant) or routines specifically intended for
formatting, like the powerful Format and FormatFloat routines.

Table 3.4: System Routines for Type Conversion

Routine Description

Essential Pascal

http://localhost/epascal/english/ch03data.htm (10 di 11) [07/05/2001 17.31.34]

Chr Converts an ordinal number into an ANSI character.

Ord Converts an ordinal-type value into the number indicating its order.

Round Converts a real-type value into an Integer-type value, rounding its value.

Trunc Converts a real-type value into an Integer-type value, truncating its value.

Int Returns the Integer part of the floating-point value argument.

IntToStr Converts a number into a string.

IntToHex Converts a number into a string with its hexadecimal representation.

StrToInt Converts a string into a number, raising an exception if the string does not represent a valid integer.

StrToIntDef Converts a string into a number, using a default value if the string is not correct.

Val Converts a string into a number (traditional Turbo Pascal routine, available for compatibility).

Str Converts a number into a string, using formatting parameters (traditional Turbo Pascal routine,
available for compatibility).

StrPas Converts a null-terminated string into a Pascal-style string. This conversion is automatically done for
AnsiStrings in 32-bit Delphi. (See the section on strings later in this chapter.)

StrPCopy Copies a Pascal-style string into a null-terminated string. This conversion is done with a simple PChar
cast in 32-bit Delphi. (See the section on strings later in this chapter.)

StrPLCopy Copies a portion of a Pascal-style string into a null-terminated string.

FloatToDecimal Converts a floating-point value to record including its decimal representation (exponent, digits, sign).

FloatToStr Converts the floating-point value to its string representation using default formatting.

FloatToStrF Converts the floating-point value to its string representation using the specified formatting.

FloatToText Copies the floating-point value to a string buffer, using the specified formatting.

FloatToTextFmt As the previous routine, copies the floating-point value to a string buffer, using the specified
formatting.

StrToFloat Converts the given Pascal string to a floating-point value.

TextToFloat Converts the given null-terminated string to a floating-point value.

Note: In recent versions of Delphi's Pascal compiler, the Round function is based on the FPU processor of the
CPU. This processor adopts the so-called "Banker's Rounding", which rounds middle values (as 5.5 or 6.5) up and down
depending whether they follow an odd or an even number.

Conclusion
In this chapter we've explored the basic notion of type in Pascal. But the language has another very important feature: It
allows programmers to define new custom data types, called user-defined data types. This is the topic of the next
chapter.

Next Chapter: User-Defined Data Types

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch03data.htm (11 di 11) [07/05/2001 17.31.34]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 4
User-Defined Data
Types

Along with the notion of type, one of the great ideas introduced by the Pascal language is the ability to define new data
types in a program. Programmers can define their own data types by means of type constructors, such as subrange
types, array types, record types, enumerated types, pointer types, and set types. The most important user-defined data
type is the class, which is part of the object-oriented extensions of Object Pascal, not covered in this book.

If you think that type constructors are common in many programming languages, you are right, but Pascal was the first
language to introduce the idea in a formal and very precise way. There are still few languages with so many mechanisms
to define new types.

Named and Unnamed Types
These types can be given a name for later use or applied to a variable directly. When you give a name to a type, you
must provide a specific section in the code, such as the following:

type
 // subrange definition
 Uppercase = 'A'..'Z';

 // array definition
 Temperatures = array [1..24] of Integer;

 // record definition
 Date = record
 Month: Byte;
 Day: Byte;
 Year: Integer;
 end;

 // enumerated type definition
 Colors = (Red, Yellow, Green, Cyan, Blue, Violet);

 // set definition
 Letters = set of Char;

Similar type-definition constructs can be used directly to define a variable without an explicit type name, as in the
following code:

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (1 di 9) [07/05/2001 17.31.35]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

var
 DecemberTemperature: array [1..31] of Byte;
 ColorCode: array [Red..Violet] of Word;
 Palette: set of Colors;

Note: In general, you should avoid using unnamed types as in the code above, because you cannot pass them as
parameters to routines or declare other variables of the same type. The type compatibility rules of Pascal, in fact, are
based on type names, not on the actual definition of the types. Two variables of two identical types are still not
compatible, unless their types have exactly the same name, and unnamed types are given internal names by the
compiler. Get used to defining a data type each time you need a variable with a complicated structure, and you won’t
regret the time you’ve spent in it.

But what do these type definitions mean? I’ll provide some descriptions for those who are not familiar with Pascal type
constructs. I’ll also try to underline the differences from the same constructs in other programming languages, so you
might be interested in reading the following sections even if you are familiar with kind of type definitions exemplified
above. Finally, I’ll show some Delphi examples and introduce some tools that will allow you to access type information
dynamically.

Subrange Types
A subrange type defines a range of values within the range of another type (hence the name subrange). You can define a
subrange of the Integer type, from 1 to 10 or from 100 to 1000, or you can define a subrange of the Char type, as in:

type
 Ten = 1..10;
 OverHundred = 100..1000;
 Uppercase = 'A'..'Z';

In the definition of a subrange, you don’t need to specify the name of the base type. You just need to supply two
constants of that type. The original type must be an ordinal type, and the resulting type will be another ordinal type.

When you have defined a subrange, you can legally assign it a value within that range. This code is valid:

var
 UppLetter: UpperCase;
begin
 UppLetter := 'F';

But this one is not:

var
 UppLetter: UpperCase;
begin
 UppLetter := 'e'; // compile-time error

Writing the code above results in a compile-time error, "Constant expression violates subrange bounds." If you write the
following code instead:

var
 UppLetter: Uppercase;
 Letter: Char;
begin
 Letter :='e';
 UppLetter := Letter;

Delphi will compile it. At run-time, if you have enabled the Range Checking compiler option (in the Compiler page of the
Project Options dialog box), you’ll get a Range check error message.

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (2 di 9) [07/05/2001 17.31.35]

Note: I suggest that you turn on this compiler option while you are developing a program, so it'll be more robust and
easier to debug, as in case of errors you'll get an explicit message and not an undetermined behavior. You can eventually
disable the option for the final build of the program, to make it a little faster. However, the difference is really small, and
for this reason I suggest you to leave all these run-time checks turned on, even in a shipping program. The same holds
true for other run-time checking options, such as overflow and stack checking.

Enumerated Types
Enumerated types constitute another user-defined ordinal type. Instead of indicating a range of an existing type, in an
enumeration you list all of the possible values for the type. In other words, an enumeration is a list of values. Here are
some examples:

type
 Colors = (Red, Yellow, Green, Cyan, Blue, Violet);
 Suit = (Club, Diamond, Heart, Spade);

Each value in the list has an associated ordinality, starting with zero. When you apply the Ord function to a value of an
enumerated type, you get this zero-based value. For example, Ord (Diamond) returns 1.

Note: Enumerated types can have different internal representations. By default, Delphi uses an 8-bit representation,
unless there are more than 256 different values, in which case it uses the 16-bit representation. There is also a 32-bit
representation, which might be useful for compatibility with C or C++ libraries. You can actually change the default
behavior, asking for a larger representation, by using the $Z compiler directive.

The Delphi VCL (Visual Component Library) uses enumerated types in many places. For example, the style of the border
of a form is defined as follows:

type
 TFormBorderStyle = (bsNone, bsSingle, bsSizeable,
 bsDialog, bsSizeToolWin, bsToolWindow);

When the value of a property is an enumeration, you usually can choose from the list of values displayed in the Object
Inspector, as shown in Figure 4.1.

Figure 4.1: An enumerated type property in the Object Inspector

The Delphi Help file generally lists the possible values of an enumeration. As an alternative you can use the OrdType
program, available on www.marcocantu.com, to see the list of the values of each Delphi enumeration, set, subrange, and
any other ordinal type. You can see an example of the output of this program in Figure 4.2.

Figure 4.2: Detailed information about an enumerated type, as displayed by the OrdType program (available on my web
site).

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (3 di 9) [07/05/2001 17.31.35]

Set Types
Set types indicate a group of values, where the list of available values is indicated by the ordinal type the set is based
onto. These ordinal types are usually limited, and quite often represented by an enumeration or a subrange. If we take the
subrange 1..3, the possible values of the set based on it include only 1, only 2, only 3, both 1 and 2, both 1 and 3, both 2
and 3, all the three values, or none of them.

A variable usually holds one of the possible values of the range of its type. A set-type variable, instead, can contain none,
one, two, three, or more values of the range. It can even include all of the values. Here is an example of a set:

type
 Letters = set of Uppercase;

Now I can define a variable of this type and assign to it some values of the original type. To indicate some values in a set,
you write a comma-separated list, enclosed within square brackets. The following code shows the assignment to a
variable of several values, a single value, and an empty value:

var
 Letters1, Letters2, Letters3: Letters;
begin
 Letters1 := ['A', 'B', 'C'];
 Letters2 := ['K'];
 Letters3 := [];

In Delphi, a set is generally used to indicate nonexclusive flags. For example, the following two lines of code (which are
part of the Delphi library) declare an enumeration of possible icons for the border of a window and the corresponding set
type:

type
 TBorderIcon = (biSystemMenu, biMinimize, biMaximize, biHelp);
 TBorderIcons = set of TBorderIcon;

In fact, a given window might have none of these icons, one of them, or more than one. When working with the Object
Inspector (see Figure 4.3), you can provide the values of a set by expanding the selection (double-click on the property
name or click on the plus sign on its left) and toggling on and off the presence of each value.

Figure 4.3: A set-type property in the Object Inspector

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (4 di 9) [07/05/2001 17.31.35]

Another property based on a set type is the style of a font. Possible values indicate a bold, italic, underline, and
strikethrough font. Of course the same font can be both italic and bold, have no attributes, or have them all. For this
reason it is declared as a set. You can assign values to this set in the code of a program as follows:

Font.Style := []; // no style
Font.Style := [fsBold]; // bold style only
Font.Style := [fsBold, fsItalic]; // two styles

You can also operate on a set in many different ways, including adding two variables of the same set type (or, to be more
precise, computing the union of the two set variables):

Font.Style := OldStyle + [fsUnderline]; // two sets

Again, you can use the OrdType examples included in the TOOLS directory of the book source code to see the list of
possible values of many sets defined by the Delphi component library.

Array Types
Array types define lists of a fixed number of elements of a specific type. You generally use an index within square
brackets to access to one of the elements of the array. The square brackets are used also to specify the possible values
of the index when the array is defined. For example, you can define a group of 24 integers with this code:

type
 DayTemperatures = array [1..24] of Integer;

In the array definition, you need to pass a subrange type within square brackets, or define a new specific subrange type
using two constants of an ordinal type. This subrange specifies the valid indexes of the array. Since you specify both the
upper and the lower index of the array, the indexes don’t need to be zero-based, as is necessary in C, C++, Java, and
other programming languages.

Since the array indexes are based on subranges, Delphi can check for their range as we’ve already seen. An invalid
constant subrange results in a compile-time error; and an out-of-range index used at run-time results in a run-time error if
the corresponding compiler option is enabled.

Using the array definition above, you can set the value of a DayTemp1 variable of the DayTemperatures type as follows:

type
 DayTemperatures = array [1..24] of Integer;

var
 DayTemp1: DayTemperatures;

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (5 di 9) [07/05/2001 17.31.35]

procedure AssignTemp;
begin
 DayTemp1 [1] := 54;
 DayTemp1 [2] := 52;
 ...
 DayTemp1 [24] := 66;
 DayTemp1 [25] := 67; // compile-time error

An array can have more than one dimension, as in the following examples:

type
 MonthTemps = array [1..24, 1..31] of Integer;
 YearTemps = array [1..24, 1..31, Jan..Dec] of Integer;

These two array types are built on the same core types. So you can declare them using the preceding data types, as in
the following code:

type
 MonthTemps = array [1..31] of DayTemperatures;
 YearTemps = array [Jan..Dec] of MonthTemps;

This declaration inverts the order of the indexes as presented above, but it also allows assignment of whole blocks
between variables. For example, the following statement copies January’s temperatures to February:

var
 ThisYear: YearTemps;
begin
 ...
 ThisYear[Feb] := ThisYear[Jan];

You can also define a zero-based array, an array type with the lower bound set to zero. Generally, the use of more logical
bounds is an advantage, since you don’t need to use the index 2 to access the third item, and so on. Windows, however,
uses invariably zero-based arrays (because it is based on the C language), and the Delphi component library tends to do
the same.

If you need to work on an array, you can always test its bounds by using the standard Low and High functions, which
return the lower and upper bounds. Using Low and High when operating on an array is highly recommended, especially in
loops, since it makes the code independent of the range of the array. Later, you can change the declared range of the
array indices, and the code that uses Low and High will still work. If you write a loop hard-coding the range of an array
you’ll have to update the code of the loop when the array size changes. Low and High make your code easier to maintain
and more reliable.

Note: Incidentally, there is no run-time overhead for using Low and High with arrays. They are resolved at compile-time
into constant expressions, not actual function calls. This compile-time resolution of expressions and function calls
happens also for many other simple system functions.

Delphi uses arrays mainly in the form of array properties. We have already seen an example of such a property in the
TimeNow example, to access the Items property of a ListBox component. I’ll show you some more examples of array
properties in the next chapter, when discussing Delphi loops.

Note: Delphi 4 introduced dynamic arrays into Object Pascal , that is arrays that can be resized at runtime allocating the
proper amount of memory. Using dynamic arrays is easy, but in this discussion of Pascal I felt they were not an proper
topic to cover. You can find a description of Delphi's dynamic arrays in Chapter 8.

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (6 di 9) [07/05/2001 17.31.35]

Record Types
Record types define fixed collections of items of different types. Each element, or field, has its own type. The definition of
a record type lists all these fields, giving each a name you’ll use later to access it.

Here is a small listing with the definition of a record type, the declaration of a variable of that type, and few statements
using this variable:

type
 Date = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

var
 BirthDay: Date;

begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

Classes and objects can be considered an extension of the record type. Delphi libraries tend to use class types instead of
record types, but there are many record types defined by the Windows API.

Record types can also have a variant part; that is, multiple fields can be mapped to the same memory area, even if they
have a different data type. (This corresponds to a union in the C language.) Alternatively, you can use these variant fields
or groups of fields to access the same memory location within a record, but considering those values from different
perspectives. The main uses of this type were to store similar but different data and to obtain an effect similar to that of
typecasting (something less useful now that typecasting has been introduced also in Pascal). The use of variant record
types has been largely replaced by object-oriented and other modern techniques, although Delphi uses them in some
peculiar cases.

The use of a variant record type is not type-safe and is not a recommended programming practice, particularly for
beginners. Expert programmers can indeed use variant record types, and the core of the Delphi libraries makes use of
them. You won’t need to tackle them until you are really a Delphi expert, anyway.

Pointers
A pointer type defines a variable that holds the memory address of another variable of a given data type (or an undefined
type). So a pointer variable indirectly refers to a value. The definition of a pointer type is not based on a specific keyword,
but uses a special character instead. This special symbol is the caret (^):

type
 PointerToInt = ^Integer;

Once you have defined a pointer variable, you can assign to it the address of another variable of the same type, using the
@ operator:

var
 P: ^Integer;
 X: Integer;
begin
 P := @X;
 // change the value in two different ways
 X := 10;

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (7 di 9) [07/05/2001 17.31.35]

 P^ := 20;

When you have a pointer P, with the expression P you refer to the address of the memory location the pointer is referring
to, and with the expression P^ you refer to the actual content of that memory location. For this reason in the code
fragment above ^P corresponds to X.

Instead of referring to an existing memory location, a pointer can refer to a new memory block dynamically allocated (on
the heap memory area) with the New procedure. In this case, when you don't need the pointer any more, you’ll also have
to to get rid of the memory you’ve dynamically allocated, by calling the Dispose procedure.

var
 P: ^Integer;
begin
 // initialization
 New (P);
 // operations
 P^ := 20;
 ShowMessage (IntToStr (P^));
 // termination
 Dispose (P);
end;

If a pointer has no value, you can assign the nil value to it. Then you can test whether a pointer is nil to see if it currently
refers to a value. This is often used, because dereferencing an invalid pointer causes an access violation (also known as
a general protection fault, GPF):

procedure TFormGPF.BtnGpfClick(Sender: TObject);
var
 P: ^Integer;
begin
 P := nil;
 ShowMessage (IntToStr (P^));
end;

You can see an example of the effect of this code by running the GPF example (or looking at the corresponding Figure
4.4). The example contains also the code fragments shown above.

Figure 4.4: The system error resulting from the access to a nil pointer, from the GPF example.

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (8 di 9) [07/05/2001 17.31.35]

In the same program you can find an example of safe data access. In this second case the pointer is assigned to an
existing local variable, and can be safely used, but I’ve added a safe-check anyway:

procedure TFormGPF.BtnSafeClick(Sender: TObject);
var
 P: ^Integer;
 X: Integer;
begin
 P := @X;
 X := 100;
 if P <> nil then
 ShowMessage (IntToStr (P^));
end;

Delphi also defines a Pointer data type, which indicates untyped pointers (such as void* in the C language). If you use an
untyped pointer you should use GetMem instead of New. The GetMem procedure is required each time the size of the
memory variable to allocate is not defined.

The fact that pointers are seldom necessary in Delphi is an interesting advantage of this environment. Nonetheless,
understanding pointers is important for advanced programming and for a full understanding of the Delphi object model,
which uses pointers "behind the scenes."

Note: Although you don’t use pointers often in Delphi, you do frequently use a very similar construct—namely, references.
Every object instance is really an implicit pointer or reference to its actual data. However, this is completely transparent to
the programmer, who uses object variables just like any other data type.

File Types
Another Pascal-specific type constructor is the file type. File types represent physical disk files, certainly a peculiarity of
the Pascal language. You can define a new file data type as follows:

type
 IntFile = file of Integer;

Then you can open a physical file associated with this structure and write integer values to it or read the current values
from the file.

Author's Note: Files-based examples were part of older editions of Mastering Delphi and I plan adding them here as
well)

The use of files in Pascal is quite straightforward, but in Delphi there are also some components that are capable of
storing or loading their contents to or from a file. There is some serialization support, in the form of streams, and there is
also database support.

Conclusion
This chapter discussing user-defined data types complete our coverage of Pascal type system. Now we are ready to look
into the statements the language provides to operate on the variables we've defined.

Next Chapter: Statements

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch04udt.htm (9 di 9) [07/05/2001 17.31.35]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 5
Statements

If the data types are one of the foundations of Pascal programming the other are statements. Statements of the
programming language are based on keywords and other elements which allow you to indicate to a program a sequence
of operations to perform. Statements are often enclosed in procedures or functions, as we'll see in the next chapter. Now
we'll just focus on the basic types of commands you can use to create a program.

Simple and Compound Statements
A Pascal statement is simple when it doesn't contain any other statements. Examples of simple statements are
assignment statements and procedure calls. Simple statements are separated by a semicolon:

X := Y + Z; // assignment
Randomize; // procedure call

Usually, statements are part of a compound statement, marked by begin and end brackets. A compound statement can
appear in place of a generic Pascal statement. Here is an example:

begin
 A := B;
 C := A * 2;
end;

The semicolon after the last statement before the end isn't required, as in the following:

begin
 A := B;
 C := A * 2
end;

Both versions are correct. The first version has a useless (but harmless) semicolon. This semicolon is, in fact, a null
statement; that is, a statement with no code. Notice that, at times, null statements can be used inside loops or in other
particular cases.

Note: Although these final semicolons serve no purpose, I tend to use them and suggest you do the same. Sometimes
after you've written a couple of lines you might want to add one more statement. If the last semicolon is missing you
should remember to add it, so it might be better to add it in the first place.

Assignment Statements
Assignments in Pascal use the colon-equal operator, an odd notation for programmers who are used to other languages.
The = operator, which is used for assignments in some other languages, in Pascal is used to test for equality.

Note: By using different symbols for an assignment and an equality test, the Pascal compiler (like the C compiler) can

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (1 di 9) [07/05/2001 17.31.36]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

translate source code faster, because it doesn't need to examine the context in which the operator is used to determine
its meaning. The use of different operators also makes the code easier for people to read.

Conditional Statements
A conditional statement is used to execute either one of the statements it contains or none of them, depending on some
test. There are two basic flavors of conditional statements: if statements and case statements.

If Statements

The if statement can be used to execute a statement only if a certain condition is met (if-then), or to choose between two
different alternatives (if-then-else). The condition is described with a Boolean expression. A simple Delphi example will
demonstrate how to write conditional statements. First create a new application, and put two check boxes and four
buttons in the form. Do not change the names of buttons or check boxes, but double-click on each button to add a
handler for its OnClick event. Here is a simple if statement for the first button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 // simple if statement
 if CheckBox1.Checked then
 ShowMessage ('CheckBox1 is checked')
end;

When you click on the button, if the first check box has a check mark in it, the program will show a simple message (see
Figure 5.1). I've used the ShowMessage function because it is the simplest Delphi function you can use to display a short
message to the user.

Figure 5.1: The message displayed by the IfTest example when you press the first button and the first check box is
checked.

If you click the button and nothing happens, it means the check box was not checked. In a case like this, it would probably
be better to make this more explicit, as with the code for the second button, which uses an if-then-else statement:

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (2 di 9) [07/05/2001 17.31.36]

procedure TForm1.Button2Click(Sender: TObject);
begin
 // if-then-else statement
 if CheckBox2.Checked then
 ShowMessage ('CheckBox2 is checked')
 else
 ShowMessage ('CheckBox2 is NOT checked');
end;

Notice that you cannot have a semicolon after the first statement and before the else keyword, or the compiler will issue a
syntax error. The if-then-else statement, in fact, is a single statement, so you cannot place a semicolon in the middle of it.

An if statement can be quite complex. The condition can be turned into a series of conditions (using the and, or and not
Boolean operators), or the if statement can nest a second if statement. The last two buttons of the IfTest example
demonstrate these cases:

procedure TForm1.Button3Click(Sender: TObject);
begin
 // statement with a double condition
 if CheckBox1.Checked and CheckBox2.Checked then
 ShowMessage ('Both check boxes are checked')
end;

procedure TForm1.Button4Click(Sender: TObject);
begin
 // compound if statement
 if CheckBox1.Checked then
 if CheckBox2.Checked then
 ShowMessage ('CheckBox1 and 2 are checked')
 else
 ShowMessage ('Only CheckBox1 is checked')
 else
 ShowMessage (
 'Checkbox1 is not checked, who cares for Checkbox2?')
end;

Look at the code carefully and run the program to see if you understand everything. When you have doubts about a
programming construct, writing a very simple program such as this can help you learn a lot. You can add more check
boxes and increase the complexity of this small example, making any test you like.

Case Statements

If your if statements become very complex, at times you can replace them with case statements. A case statement
consists in an expression used to select a value, a list of possible values, or a range of values. These values are
constants, and they must be unique and of an ordinal type. Eventually, there can be an else statement that is executed if
none of the labels correspond to the value of the selector. Here are two simple examples:

case Number of
 1: Text := 'One';
 2: Text := 'Two';
 3: Text := 'Three';
end;

case MyChar of
 '+' : Text := 'Plus sign';
 '-' : Text := 'Minus sign';
 '*', '/': Text := 'Multiplication or division';
 '0'..'9': Text := 'Number';
 'a'..'z': Text := 'Lowercase character';
 'A'..'Z': Text := 'Uppercase character';
else

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (3 di 9) [07/05/2001 17.31.36]

 Text := 'Unknown character';
end;

Loops in Pascal
The Pascal language has the typical repetitive statements of most programming languages, including for, while, and
repeat statements. Most of what these loops do will be familiar if you've used other programming languages, so I'll cover
them only briefly.

The For Loop

The for loop in Pascal is strictly based on a counter, which can be either increased or decreased each time the loop is
executed. Here is a simple example of a for loop used to add the first ten numbers.

var
 K, I: Integer;
begin
 K := 0;
 for I := 1 to 10 do
 K := K + I;

This same for statement could have been written using a reverse counter:

var
 K, I: Integer;
begin
 K := 0;
 for I := 10 downto 1 do
 K := K + I;

The for loop in Pascal is less flexible than in other languages (it is not possible to specify an increment different than one),
but it is simple and easy to understand. If you want to test for a more complex condition, or to provide a customized
counter, you need to use a while or repeat statement, instead of a for loop.

Note: The counter of a for loop doesn't need to be a number. It can be a value of any ordinal type, such as a character or
an enumerated type.

While and Repeat Statements

The difference between the while-do loop and the repeat-until loop is that the code of the repeat statement is always
executed at least once. You can easily understand why by looking at a simple example:

while (I <= 100) and (J <= 100) do
begin
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
end;

repeat
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
until (I > 100) or (J > 100);

If the initial value of I or J is greater than 100, the statements inside the repeat-until loop are executed once anyway.

The other key difference between these two loops is that the repeat-until loop has a reversed condition. The loop is
executed as long as the condition is not met. When the condition is met, the loop terminates. This is the opposite from a

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (4 di 9) [07/05/2001 17.31.36]

while-do loop, which is executed while the condition is true. For this reason I had to reverse the condition in the code
above to obtain a similar statement.

An Example of Loops

To explore the details of loops, let's look at a small Delphi example. The Loops program highlights the difference between
a loop with a fixed counter and a loop with an almost random counter. Start with a new blank project, place a list box and
two buttons on the main form, and give the buttons a proper name (BtnFor and BtnWhile) by setting their Name property
in the Object Inspector. You can also remove the word Btn from the Caption property (and eventually even add the &
character to it to activate the following letter as a shortcut key). Here is a summary of the textual description of this form:

object Form1: TForm1
 Caption = 'Loops'
 object ListBox1: TListBox ...
 object BtnFor: TButton
 Caption = '&For'
 OnClick = BtnForClick
 end
 object BtnWhile: TButton
 Caption = '&While'
 OnClick = BtnWhileClick
 end
end

Figure 5.2: Each time you press the For button of the Loops example, the list box is filled with consecutive numbers.

Now we can add some code to the OnClick events of the two buttons. The first button has a simple for loop to display a
list of numbers, as you can see in Figure 5.2. Before executing this loop, which adds a number of strings to the Items
property of the list box, you need to clear the contents of the list box itself:

procedure TForm1.BtnForClick(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Items.Clear;

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (5 di 9) [07/05/2001 17.31.36]

 for I := 1 to 20 do
 Listbox1.Items.Add ('String ' + IntToStr (I));
end;

The code associated with the second button is slightly more complex. In this case, there is a while loop based on a
counter, which is increased randomly. To accomplish this, I've called the Randomize procedure, which resets the random
number generator, and the Random function with a range value of 100. The result of this function is a number between 0
and 99, chosen randomly. The series of random numbers control how many times the while loop is executed.

procedure TForm1.BtnWhileClick(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Items.Clear;
 Randomize;
 I := 0;
 while I < 1000 do
 begin
 I := I + Random (100);
 Listbox1.Items.Add ('Random Number: ' + IntToStr (I));
 end;
end;

Each time you click the While button, the numbers are different, because they depend on the random-number generator.
Figure 5.3 shows the results from two separate button-clicks. Notice that not only are the generated numbers different
each time, but so is the number of items. That is, this while loop is executed a random numbers of times. If you press the
While button several times in a row, you'll see that the list box has a different number of lines.

Figure 5.3: The contents of the list box of the Loops example change each time you press the While button. Because the
loop counter is incremented by a random value, every time you press the button the loop may execute a different number
of times.

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (6 di 9) [07/05/2001 17.31.36]

Note: You can alter the standard flow of a loop's execution using the Break and Continue system procedures. The first
interrupts the loop; the second is used to jump directly to the loop test or counter increment, continuing with the next
iteration of the loop (unless the condition is zero or the counter has reached its highest value). Two more system
procedures, Exit and Halt, let you immediately return from the current function or procedure or terminate the program.

The With Statement
The last kind of Pascal statement I'll focus on is the with statement, which used to be peculiar to this programming
language (although it has been recentrly introduced also in JavaScript and Visual Basic) and can be very useful in Delphi
programming.

The with statement is nothing but shorthand. When you need to refer to a record type variable (or an object), instead of
repeating its name every time, you can use a with statement. For example, while presenting the record type, I wrote this
code:

type
 Date = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (7 di 9) [07/05/2001 17.31.36]

var
 BirthDay: Date;

begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

Using a with statement, I can improve the final part of this code, as follows:

begin
 with BirthDay do
 begin
 Year := 1995;
 Month := 2;
 Day := 14;
 end;

This approach can be used in Delphi programs to refer to components and other class types. For example, we can
rewrite the final part of the last example, Loops, using a with statement to access the items of the list box:

procedure TForm1.WhileButtonClick(Sender: TObject);
var
 I: Integer;
begin
 with ListBox1.Items do
 begin
 Clear; // shortcut
 Randomize;
 I := 0;
 while I < 1000 do
 begin
 I := I + Random (100);
 // shortcut:
 Add ('Random Number: ' + IntToStr (I));
 end;
 end;
end;

When you work with components or classes in general, the with statement allows you to skip writing some code,
particularly for nested fields. For example, suppose that you need to change the Width and the Color of the drawing pen
for a form. You can write the following code:

Form1.Canvas.Pen.Width := 2;
Form1.Canvas.Pen.Color := clRed;

But it is certainly easier to write this code:

with Form1.Canvas.Pen do
begin
 Width := 2;
 Color := clRed;
end;

When you are writing complex code, the with statement can be effective and spares you the declaration of some
temporary variables, but it has a drawback. It can make the code less readable, particularly when you are working with
different objects that have similar or corresponding properties.

A further drawback is that using the with statement can allow subtle logical errors in the code that the compiler will not
detect. For example:

with Button1 do
begin
 Width := 200;

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (8 di 9) [07/05/2001 17.31.36]

 Caption := 'New Caption';
 Color := clRed;
end;

This code changes the Caption and the Width of the button, but it affects the Color property of the form, not that of the
button! The reason is that the TButton components don't have the Color property, and since the code is executed for a
form object (we are writing a method of the form) this object is accessed by default. If we had instead written:

Button1.Width := 200;
Button1.Caption := 'New Caption';
Button1.Color := clRed; // error!

the compiler would have issued an error. In general, we can say that since the with statement introduces new identifiers
in the current scope, we might hide existing identifiers, or wrongfully access another identifier in the same scope (as in
the first version of this code fragment). Even considering this kind of drawback, I suggest you get used to with statements,
because they can be really very handy, and at times even make the code more readable.

You should, however, avoid using multiple with statements, such as:

with ListBox1, Button1 do...

The code following this would probably be highly unreadable, because for each property defined in this block you would
need to think about which component it refers to, depending on the respective properties and the order of the
components in the with statement.

Note: Speaking of readability, Pascal has no endif or endcase statement. If an if statement has a begin-end block, then
the end of the block marks the end of the statement. The case statement, instead, is always terminated by an end. All
these end statements, often found one after the other, can make the code difficult to follow. Only by tracing the
indentations can you see which statement a particular end refers to. A common way to solve this problem and make the
code more readable is to add a comment after the end statement indicating its role, as in:

if ... then
 ...
end; // if

Conclusion
This chapter has described how to code conditional statements and loops. Instead of writing long lists of such statements,
programs are usually split in routines, procedures or functions. This is the topic of the next chapter, which introduces also
some advanced elements of Pascal.

Next Chapter: Procedures

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch05stat.htm (9 di 9) [07/05/2001 17.31.36]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 6
Procedures and
Functions

Another important idea emphasized by Pascal is the concept of the routine, basically a series of statements with a unique name,
which can be activated many times by using their name. This way you avoid repeating the same statements over and over, and
having a single version of the code you can easily modify it all over the program. From this point of view, you can think of routines as
the basic code encapsulation mechanism. I'll get back to this topic with an example after I introduce the Pascal routines syntax.

Pascal Procedures and Functions
In Pascal, a routine can assume two forms: a procedure and a function. In theory, a procedure is an operation you ask the computer
to perform, a function is a computation returning a value. This difference is emphasized by the fact that a function has a result, a
return value, while a procedure doesn't. Both types of routines can have multiple parameters, of given data types.

In practice, however, the difference between functions and procedures is very limited: you can call a function to perform some work
and then skip the result (which might be an optional error code or something like that) or you can call a procedure which passes a
result within its parameters (more on reference parameters later in this chapter).

Here are the definitions of a procedure and two versions of the same function, using a slightly different syntax:

procedure Hello;
begin
 ShowMessage ('Hello world!');
end;

function Double (Value: Integer) : Integer;
begin
 Double := Value * 2;
end;

// or, as an alternative
function Double2 (Value: Integer) : Integer;
begin
 Result := Value * 2;
end;

The use of Result instead of the function name to assign the return value of a function is becoming quite popular, and tends to make
the code more readable, in my opinion.

Once these routines have been defined, you can call them one or more times. You call the procedure to make it perform its task, and
call a function to compute the value:

procedure TForm1.Button1Click (Sender: TObject);
begin
 Hello;
end;

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (1 di 12) [07/05/2001 17.31.38]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

procedure TForm1.Button2Click (Sender: TObject);
var
 X, Y: Integer;
begin
 X := Double (StrToInt (Edit1.Text));
 Y := Double (X);
 ShowMessage (IntToStr (Y));
end;

Note: For the moment don't care about the syntax of the two procedures above, which are actually methods. Simply place two
buttons on a Delphi form, click on them at design time, and the Delphi IDE will generate the proper support code: Now you simply
have to fill in the lines between begin and end. To compile the code above you need to add also an Edit control to the form.

Now we can get back to the encapsulation code concept I've introduced before. When you call the Double function, you don't need to
know the algorithm used to implement it. If you later find out a better way to double numbers, you can easily change the code of the
function, but the calling code will remain unchanged (although executing it will be faster!). The same principle can be applied to the
Hello procedure: We can modify the program output by changing the code of this procedure, and the Button2Click method will
automatically change its effect. Here is how we can change the code:

procedure Hello;
begin
 MessageDlg ('Hello world!', mtInformation, [mbOK]);
end;

Tip: When you call an existing Delphi function or procedure, or any VCL method, you should remember the number and type of the
parameters. Delphi editor helps you by suggesting the parameters list of a function or procedure with a fly-by hint as soon as you type
its name and the open parenthesis. This feature is called Code Parameters and is part of the Code Insight technology.

Reference Parameters
Pascal routines allow parameter passing by value and by reference. Passing parameters by value is the default: the value is copied
on the stack and the routine uses and manipulates the copy, not the original value.

Passing a parameter by reference means that its value is not copied onto the stack in the formal parameter of the routine (avoiding a
copy often means that the program executes faster). Instead, the program refers to the original value, also in the code of the routine.
This allows the procedure or function to change the value of the parameter. Parameter passing by reference is expressed by the var
keyword.

This technique is available in most programming languages. It isn't present in C, but has been introduced in C++, where you use the
& (pass by reference) symbol. In Visual Basic every parameter not specified as ByVal is passed by reference.

Here is an example of passing a parameter by reference using the var keyword:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

In this case, the parameter is used both to pass a value to the procedure and to return a new value to the calling code. When you
write:

var
 X: Integer;
begin
 X := 10;
 DoubleTheValue (X);

the value of the X variable becomes 20, because the function uses a reference to the original memory location of X, affecting its initial
value.

Passing parameters by reference makes sense for ordinal types, for old-fashioned strings, and for large records. Delphi objects, in
fact, are invariably passed by value, because they are references themselves. For this reason passing an object by reference makes
little sense (apart from very special cases), because it corresponds to passing a "reference to a reference."

Delphi long strings have a slightly different behavior: they behave as references, but if you change one of the string variables referring
to the same string in memory, this is copied before updating it. A long string passed as a value parameter behaves as a reference
only in terms of memory usage and speed of the operation. But if you modify the value of the string, the original value is not affected.

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (2 di 12) [07/05/2001 17.31.38]

On the contrary, if you pass the long string by reference, you can alter the original value.

Delphi 3 introduced a new kind of parameter, out. An out parameter has no initial value and is used only to return a value. These
parameters should be used only for COM procedures and functions; in general, it is better to stick with the more efficient var
parameters. Except for not having an initial value, out parameters behave like var parameters.

Constant Parameters
As an alternative to reference parameters, you can use a const parameter. Since you cannot assign a new value to a constant
parameter inside the routine, the compiler can optimize parameter passing. The compiler can choose an approach similar to
reference parameters (or a const reference in C++ terms), but the behavior will remain similar to value parameters, because the
original value won't be affected by the routine.

In fact, if you try to compile the following (silly) code, Delphi will issue an error:

function DoubleTheValue (const Value: Integer): Integer;
begin
 Value := Value * 2; // compiler error
 Result := Value;
end;

Open Array Parameters
Unlike C, a Pascal function or procedure always has a fixed number of parameters. However, there is a way to pass a varying
number of parameters to a routine using an open array.

The basic definition of an open array parameter is that of a typed open array. This means you indicate the type of the parameter but
do not know how many elements of that type the array is going to have. Here is an example of such a definition:

function Sum (const A: array of Integer): Integer;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(A) to High(A) do
 Result := Result + A[I];
end;

Using High(A) we can get the size of the array. Notice also the use of the return value of the function, Result, to store temporary
values. You can call this function by passing to it an array of Integer expressions:

X := Sum ([10, Y, 27*I]);

Given an array of Integers, of any size, you can pass it directly to a routine requiring an open array parameter or, instead, you can call
the Slice function to pass only a portion of the array (as indicated by its second parameter). Here is an example, where the complete
array is passed as parameter:

var
 List: array [1..10] of Integer;
 X, I: Integer;
begin
 // initialize the array
 for I := Low (List) to High (List) do
 List [I] := I * 2;
 // call
 X := Sum (List);

If you want to pass only a portion of the array to the Slice function, simply call it this way:

X := Sum (Slice (List, 5));

You can find all the code fragments presented in this section in the OpenArr example (see Figure 6.1, later on, for the form).

Figure 6.1: The OpenArr example when the Partial Slice button is pressed

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (3 di 12) [07/05/2001 17.31.38]

Typed open arrays in Delphi 4 are fully compatible with dynamic arrays (introduced in Delphi 4 and covered in Chapter 8). Dynamic
arrays use the same syntax as open arrays, with the difference that you can use a notation such as array of Integer to declare a
variable, not just to pass a parameter.

Type-Variant Open Array Parameters

Besides these typed open arrays, Delphi allows you to define type-variant or untyped open arrays. This special kind of array has an
undefined number of values, which can be handy for passing parameters.

Technically, the construct array of const allows you to pass an array with an undefined number of elements of different types to a
routine at once. For example, here is the definition of the Format function (we'll see how to use this function in Chapter 7, covering
strings):

function Format (const Format: string;
 const Args: array of const): string;

The second parameter is an open array, which gets an undefined number of values. In fact, you can call this function in the following
ways:

N := 20;
S := 'Total:';
Label1.Caption := Format ('Total: %d', [N]);
Label2.Caption := Format ('Int: %d, Float: %f', [N, 12.4]);
Label3.Caption := Format ('%s %d', [S, N * 2]);

Notice that you can pass a parameter as either a constant value, the value of a variable, or an expression. Declaring a function of this
kind is simple, but how do you code it? How do you know the types of the parameters? The values of a type-variant open array
parameter are compatible with the TVarRec type elements.

Note: Do not confuse the TVarRec record with the TVarData record used by the Variant type itself. These two structures have a
different aim and are not compatible. Even the list of possible types is different, because TVarRec can hold Delphi data types, while
TVarData can hold OLE data types.

The TVarRec record has the following structure:

type
 TVarRec = record
 case Byte of
 vtInteger: (VInteger: Integer; VType: Byte);
 vtBoolean: (VBoolean: Boolean);
 vtChar: (VChar: Char);
 vtExtended: (VExtended: PExtended);
 vtString: (VString: PShortString);
 vtPointer: (VPointer: Pointer);
 vtPChar: (VPChar: PChar);

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (4 di 12) [07/05/2001 17.31.38]

 vtObject: (VObject: TObject);
 vtClass: (VClass: TClass);
 vtWideChar: (VWideChar: WideChar);
 vtPWideChar: (VPWideChar: PWideChar);
 vtAnsiString: (VAnsiString: Pointer);
 vtCurrency: (VCurrency: PCurrency);
 vtVariant: (VVariant: PVariant);
 vtInterface: (VInterface: Pointer);
 end;

Each possible record has the VType field, although this is not easy to see at first because it is declared only once, along with the
actual Integer-size data (generally a reference or a pointer).

Using this information we can actually write a function capable of operating on different data types. In the SumAll function example, I
want to be able to sum values of different types, transforming strings to integers, characters to the corresponding order value, and
adding 1 for True Boolean values. The code is based on a case statement, and is quite simple, although we have to dereference
pointers quite often:

function SumAll (const Args: array of const): Extended;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(Args) to High (Args) do
 case Args [I].VType of
 vtInteger: Result :=
 Result + Args [I].VInteger;
 vtBoolean:
 if Args [I].VBoolean then
 Result := Result + 1;
 vtChar:
 Result := Result + Ord (Args [I].VChar);
 vtExtended:
 Result := Result + Args [I].VExtended^;
 vtString, vtAnsiString:
 Result := Result + StrToIntDef ((Args [I].VString^), 0);
 vtWideChar:
 Result := Result + Ord (Args [I].VWideChar);
 vtCurrency:
 Result := Result + Args [I].VCurrency^;
 end; // case
end;

I've added this code to the OpenArr example, which calls the SumAll function when a given button is pressed:

procedure TForm1.Button4Click(Sender: TObject);
var
 X: Extended;
 Y: Integer;
begin
 Y := 10;
 X := SumAll ([Y * Y, 'k', True, 10.34, '99999']);
 ShowMessage (Format (
 'SumAll ([Y*Y, ''k'', True, 10.34, ''99999'']) => %n', [X]));
end;

You can see the output of this call, and the form of the OpenArr example, in Figure 6.2.

Figure 6.2: The form of the OpenArr example, with the message box displayed when the Untyped button is pressed.

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (5 di 12) [07/05/2001 17.31.38]

Delphi Calling Conventions
The 32-bit version of Delphi has introduced a new approach to passing parameters, known as fastcall: Whenever possible, up to
three parameters can be passed in CPU registers, making the function call much faster. The fast calling convention (used by default
in Delphi 3) is indicated by the register keyword.

The problem is that this is the default convention, and functions using it are not compatible with Windows: the functions of the Win32
API must be declared using the stdcall calling convention, a mixture of the original Pascal calling convention of the Win16 API and the
cdecl calling convention of the C language.

There is generally no reason not to use the new fast calling convention, unless you are making external Windows calls or defining
Windows callback functions. We'll see an example using the stdcall convention before the end of this chapter. You can find a
summary of Delphi calling conventions in the Calling conventions topic under Delphi help.

What Is a Method?
If you have already worked with Delphi or read the manuals, you have probably heard about the term "method". A method is a special
kind of function or procedure that is related to a data type, a class. In Delphi, every time we handle an event, we need to define a
method, generally a procedure. In general, however, the term method is used to indicate both functions and procedures related to a
class.

We have already seen a number of methods in the examples in this and the previous chapters. Here is an empty method
automatically added by Delphi to the source code of a form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 {here goes your code}
end;

Forward Declarations
When you need to use an identifier (of any kind), the compiler must have already seen some sort of declaration to know what the
identifier refers to. For this reason, you usually provide a full declaration before using any routine. However, there are cases in which
this is not possible. If procedure A calls procedure B, and procedure B calls procedure A, when you start writing the code, you will
need to call a routine for which the compiler still hasn't seen a declaration.

If you want to declare the existence of a procedure or function with a certain name and given parameters, without providing its actual
code, you can write the procedure or function followed by the forward keyword:

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (6 di 12) [07/05/2001 17.31.38]

procedure Hello; forward;

Later on, the code should provide a full definition of the procedure, but this can be called even before it is fully defined. Here is a silly
example, just to give you the idea:

procedure DoubleHello; forward;

procedure Hello;
begin
 if MessageDlg ('Do you want a double message?',
 mtConfirmation, [mbYes, mbNo], 0) = mrYes then
 DoubleHello
 else
 ShowMessage ('Hello');
end;

procedure DoubleHello;
begin
 Hello;
 Hello;
end;

This approach allows you to write mutual recursion: DoubleHello calls Hello, but Hello might call DoubleHello, too. Of course there
must be a condition to terminate the recursion, to avoid a stack overflow. You can find this code, with some slight changes, in the
DoubleH example.

Although a forward procedure declaration is not very common in Delphi, there is a similar case that is much more frequent. When you
declare a procedure or function in the interface portion of a unit (more on units in the next chapter), it is considered a forward
declaration, even if the forward keyword is not present. Actually you cannot write the body of a routine in the interface portion of a
unit. At the same time, you must provide in the same unit the actual implementation of each routine you have declared.

The same holds for the declaration of a method inside a class type that was automatically generated by Delphi (as you added an
event to a form or its components). The event handlers declared inside a TForm class are forward declarations: the code will be
provided in the implementation portion of the unit. Here is an excerpt of the source code of an earlier example, with the declaration of
the Button1Click method:

type
 TForm1 = class(TForm)
 ListBox1: TListBox;
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 end;

Procedural Types
Another unique feature of Object Pascal is the presence of procedural types. These are really an advanced language topic, which
only a few Delphi programmers will use regularly. However, since we will discuss related topics in later chapters (specifically, method
pointers, a technique heavily used by Delphi), it's worth a quick look at them here. If you are a novice programmer, you can skip this
section for now, and come back to it when you feel ready.

In Pascal, there is the concept of procedural type (which is similar to the C language concept of function pointer). The declaration of a
procedural type indicates the list of parameters and, in the case of a function, the return type. For example, you can declare a new
procedural type, with an Integer parameter passed by reference, with this code:

type
 IntProc = procedure (var Num: Integer);

This procedural type is compatible with any routine having exactly the same parameters (or the same function signature, to use C
jargon). Here is an example of a compatible routine:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

Note: In the 16-bit version of Delphi, routines must be declared using the far directive in order to be used as actual values of a
procedural type.

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (7 di 12) [07/05/2001 17.31.38]

Procedural types can be used for two different purposes: you can declare variables of a procedural type or pass a procedural type
(that is, a function pointer) as parameter to another routine. Given the preceding type and procedure declarations, you can write this
code:

var
 IP: IntProc;
 X: Integer;
begin
 IP := DoubleTheValue;
 X := 5;
 IP (X);
end;

This code has the same effect as the following shorter version:

var
 X: Integer;
begin
 X := 5;
 DoubleTheValue (X);
end;

The first version is clearly more complex, so why should we use it? In some cases, being able to decide which function to call and
actually calling it later on can be useful. It is possible to build a complex example showing this approach. However, I prefer to let you
explore a fairly simple one, named ProcType. This example is more complex than those we have seen so far, to make the situation a
little more realistic.

Simply create a blank project and place two radio buttons and a push button, as shown in Figure 6.3. This example is based on two
procedures. One procedure is used to double the value of the parameter. This procedure is similar to the version I've already shown
in this section. A second procedure is used to triple the value of the parameter, and therefore is named TripleTheValue:

Figure 6.3: The form of the ProcType example.

procedure TripleTheValue (var Value: Integer);
begin
 Value := Value * 3;
 ShowMessage ('Value tripled: ' + IntToStr (Value));
end;

Both procedures display what is going on, to let us know that they have been called. This is a simple debugging feature you can use
to test whether or when a certain portion of code is executed, instead of adding a breakpoint in it.

Each time a user presses the Apply button, one of the two procedures is executed, depending on the status of the radio buttons. In
fact, when you have two radio buttons in a form, only one of them can be selected at a time. This code could have been implemented
by testing the value of the radio buttons inside the code for the OnClick event of the Apply button. To demonstrate the use of
procedural types, I've instead used a longer but interesting approach. Each time a user clicks on one of the two radio buttons, one of
the procedures is stored in a variable:

procedure TForm1.DoubleRadioButtonClick(Sender: TObject);
begin
 IP := DoubleTheValue;
end;

When the user clicks on the push button, the procedure we have stored is executed:

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (8 di 12) [07/05/2001 17.31.38]

procedure TForm1.ApplyButtonClick(Sender: TObject);
begin
 IP (X);
end;

To allow three different functions to access the IP and X variables, we need to make them visible to the whole form; they cannot be
declared locally (inside one of the methods). A solution to this problem is to place these variables inside the form declaration:

type
 TForm1 = class(TForm)
 ...
 private
 { Private declarations }
 IP: IntProc;
 X: Integer;
 end;

We will see exactly what this means in the next chapter, but for the moment, you need to modify the code generated by Delphi for the
class type as indicated above, and add the definition of the procedural type I've shown before. To initialize these two variables with
suitable values, we can handle the OnCreate event of the form (select this event in the Object Inspector after you have activated the
form, or simply double-click on the form). I suggest you refer to the listing to study the details of the source code of this example.

You can see a practical example of the use of procedural types in Chapter 9, in the section A Windows Callback Function.

Function Overloading
The idea of overloading is simple: The compiler allows you to define two functions or procedures using the same name, provided that
the parameters are different. By checking the parameters, in fact, the compiler can determine which of the versions of the routine you
want to call.

Consider this series of functions extracted from the Math unit of the VCL:

function Min (A,B: Integer): Integer; overload;
function Min (A,B: Int64): Int64; overload;
function Min (A,B: Single): Single; overload;
function Min (A,B: Double): Double; overload;
function Min (A,B: Extended): Extended; overload;

When you call Min (10, 20), the compiler easily determines that you're calling the first function of the group, so the return value will be
an Integer.

The basic rules are two:

Each version of the routine must be followed by the overload keyword.●

The differences must be in the number or type of the parameters, or both. The return type, instead, cannot be used to
distinguish among two routines.

●

Here are three overloaded versions of a ShowMsg procedure I've added to the OverDef example (an application demonstrating
overloading and default parameters):

procedure ShowMsg (str: string); overload;
begin
 MessageDlg (str, mtInformation, [mbOK], 0);
end;

procedure ShowMsg (FormatStr: string;
 Params: array of const); overload;
begin
 MessageDlg (Format (FormatStr, Params),
 mtInformation, [mbOK], 0);
end;

procedure ShowMsg (I: Integer; Str: string); overload;
begin
 ShowMsg (IntToStr (I) + ' ' + Str);
end;

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (9 di 12) [07/05/2001 17.31.38]

The three functions show a message box with a string, after optionally formatting the string in different ways. Here are the three calls
of the program:

ShowMsg ('Hello');
ShowMsg ('Total = %d.', [100]);
ShowMsg (10, 'MBytes');

What surprised me in a positive way is that Delphi's Code Parameters technology works very nicely with overloaded procedures and
functions. As you type the open parenthesis after the routine name, all the available alternatives are listed. As you enter the
parameters, Delphi uses their type to determine which of the alternatives are still available. In Figure 6.4 you can see that after
starting to type a constant string Delphi shows only the compatible versions (omitting the version of the ShowMsg procedure that has
an integer as first parameter).

Figure 6.4: The multiple alternatives offered by Code Parameters for overloaded routines are filtered according to the parameters
already available.

The fact that each version of an overloaded routine must be properly marked implies that you cannot overload an existing routine of
the same unit that is not marked with the overload keyword. (The error message you get when you try is: "Previous declaration of
'<name>' was not marked with the 'overload' directive.") However, you can overload a routine that was originally declared in a
different unit. This is for compatibility with previous versions of Delphi, which allowed different units to reuse the same routine name.
Notice, anyway, that this special case is not an extra feature of overloading, but an indication of the problems you can face.

For example, you can add to a unit the following code:

procedure MessageDlg (str: string); overload;
begin
 Dialogs.MessageDlg (str, mtInformation, [mbOK], 0);
end;

This code doesn't really overload the original MessageDlg routine. In fact if you write:

MessageDlg ('Hello');

you'll get a nice error message indicating that some of the parameters are missing. The only way to call the local version instead of
the one of the VCL is to refer explicitly to the local unit, something that defeats the idea of overloading:

OverDefF.MessageDlg ('Hello');

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (10 di 12) [07/05/2001 17.31.38]

Default Parameters
A related new feature of Delphi 4 is that you can give a default value for the parameter of a function, and you can call the function
with or without the parameter. Let me show an example. We can define the following encapsulation of the MessageBox method of the
Application global object, which uses PChar instead of strings, providing two default parameters:

procedure MessBox (Msg: string;
 Caption: string = 'Warning';
 Flags: LongInt = mb_OK or mb_IconHand);
begin
 Application.MessageBox (PChar (Msg),
 PChar (Caption), Flags);
end;

With this definition, we can call the procedure in each of the following ways:

MessBox ('Something wrong here!');
MessBox ('Something wrong here!', 'Attention');
MessBox ('Hello', 'Message', mb_OK);

In Figure 6.5 you can see that Delphi's Code Parameters properly use a different style to indicate the parameters that have a default
value, so you can easily determine which parameters can be omitted.

Figure 6.5: Delphi's Code Parameters mark out with square brackets the parameters that have default values; you can omit these in
the call.

Notice that Delphi doesn't generate any special code to support default parameters; nor does it create multiple copies of the routines.
The missing parameters are simply added by the compiler to the calling code.

There is one important restriction affecting the use of default parameters: You cannot "skip" parameters. For example, you can't pass
the third parameter to the function after omitting the second one:

MessBox ('Hello', mb_OK); // error

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (11 di 12) [07/05/2001 17.31.38]

This is the main rule for default parameters: In a call, you can only omit parameters starting from the last one. In other words, if you
omit a parameter you must omit also the following ones.

There are a few other rules for default parameters as well:

Parameters with default values must be at the end of the parameters list.●

Default values must be constants. Obviously, this limits the types you can use with default parameters. For example, a
dynamic array or an interface type cannot have a default parameter other than nil; records cannot be used at all.

●

Default parameters must be passed by value or as const. A reference (var) parameter cannot have a default value.●

Using default parameters and overloading at the same time can cause quite a few problems, as the two features might conflict. For
example, if I add to the previous example the following new version of the ShowMsg procedure:

procedure ShowMsg (Str: string; I: Integer = 0); overload;
begin
 MessageDlg (Str + ': ' + IntToStr (I),
 mtInformation, [mbOK], 0);
end;

then the compiler won't complain-this is a legal definition. However, the call:

ShowMsg ('Hello');

is flagged by the compiler as Ambiguous overloaded call to 'ShowMsg'. Notice that this error shows up in a line of code that compiled
correctly before the new overloaded definition. In practice, we have no way to call the ShowMsg procedure with one string parameter,
as the compiler doesn't know whether we want to call the version with only the string parameter or the one with the string parameter
and the integer parameter with a default value. When it has a similar doubt, the compiler stops and asks the programmer to state his
or her intentions more clearly.

Conclusion
Writing procedure and functions is a key element of programming, although in Delphi you'll tend to write methods -- procedures and
functions connected with classes and objects.

Instead of moving on to object-oriented features, however, the next few chapters give you some details on other Pascal programming
elements, starting with strings.

Next Chapter: Handling Strings

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch06proc.htm (12 di 12) [07/05/2001 17.31.38]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 7
Handling Strings

String handling in Delphi is quite simple, but behind the scenes the situation is quite complex. Pascal has a traditional
way of handling strings, Windows has its own way, borrowed from the C language, and 32-bit versions of Delphi include a
powerful long string data type, which is the default string type in Delphi.

Types of Strings
In Borland's Turbo Pascal and in 16-bit Delphi, the typical string type is a sequence of characters with a length byte at the
beginning, indicating the current size of the string. Because the length is expressed by a single byte, it cannot exceed 255
characters, a very low value that creates many problems for string manipulation. Each string is defined with a fixed size
(which by default is the maximum, 255), although you can declare shorter strings to save memory space.

A string type is similar to an array type. In fact, a string is almost an array of characters. This is demonstrated by the fact
that you can access a specific string character using the [] notation.

To overcome the limits of traditional Pascal strings, the 32-bit versions of Delphi support long strings. There are actually
three string types:

The ShortString type corresponds to the typical Pascal strings, as described before. These strings have a limit of
255 characters and correspond to the strings in the 16-bit version of Delphi. Each element of a short string is of
type ANSIChar (the standard character type).

●

The ANSIString type corresponds to the new variable-length long strings. These strings are allocated dynamically,
are reference counted, and use a copy-on-write technique. The size of these strings is almost unlimited (they can
store up to two billion characters!). They are also based on the ANSIChar type.

●

The WideString type is similar to the ANSIString type but is based on the WideChar type-it stores Unicode
characters.

●

Using Long Strings
If you simply use the string data type, you get either short strings or ANSI strings, depending on the value of the $H
compiler directive. $H+ (the default) stands for long strings (the ANSIString type), which is what is used by the
components of the Delphi library.

Delphi long strings are based on a reference-counting mechanism, which keeps track of how many string variables are
referring to the same string in memory. This reference-counting is used also to free the memory when a string isn't used
anymore-that is, when the reference count reaches zero.

If you want to increase the size of a string in memory but there is something else in the adjacent memory, then the string
cannot grow in the same memory location, and a full copy of the string must therefore be made in another location. When

Essential Pascal

http://localhost/epascal/english/ch07str.htm (1 di 7) [07/05/2001 17.31.39]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

this situation occurs, Delphi's run-time support reallocates the string for you in a completely transparent way. You simply
set the maximum size of the string with the SetLength procedure, effectively allocating the required amount of memory:

SetLength (String1, 200);

The SetLength procedure performs a memory request, not an actual memory allocation. It reserves the required memory
space for future use, without actually using the memory. This technique is based on a feature of the Windows operating
systems and is used by Delphi for all dynamic memory allocations. For example, when you request a very large array, its
memory is reserved but not allocated.

Setting the length of a string is seldom necessary. The only case in which you must allocate memory for the long string
using SetLength is when you have to pass the string as a parameter to an API function (after the proper typecast), as I'll
show you shortly.

Looking at Strings in Memory
To help you better understand the details of memory management for strings, I've written the simple StrRef example. In
this program I declare two global strings: Str1 and Str2. When the first of the two buttons is pressed, the program assigns
a constant string to the first of the two variables and then assigns the second variable to the first:

Str1 := 'Hello';
Str2 := Str1;

Besides working on the strings, the program shows their internal status in a list box, using the following StringStatus
function:

function StringStatus (const Str: string): string;
begin
 Result := 'Address: ' + IntToStr (Integer (Str)) +
 ', Length: ' + IntToStr (Length (Str)) +
 ', References: ' + IntToStr (PInteger (Integer (Str) - 8)^) +
 ', Value: ' + Str;
end;

It is vital in the StringStatus function to pass the string parameter as a const parameter. Passing this parameter by
copying will cause the side effect of having one extra reference to the string while the function is being executed. By
contrast, passing the parameter via a reference (var) or constant (const) parameter doesn't imply a further reference to
the string. In this case I've used a const parameter, as the function is not supposed to modify the string.

To obtain the memory address of the string (useful to determine its actual identity and to see when two different strings
refer to the same memory area), I've simply made a hard-coded typecast from the string type to the Integer type. Strings
are references-in practice, they're pointers: Their value holds the actual memory location of the string.

To extract the reference count, I've based the code on the little-known fact that the length and reference count are
actually stored in the string, before the actual text and before the position the string variable points to. The (negative)
offset is -4 for the length of the string (a value you can extract more easily using the Length function) and -8 for the
reference count.

Keep in mind that this internal information about offsets might change in future versions of Delphi; there is also no
guarantee that similar undocumented features will be maintained in the future.

By running this example, you should get two strings with the same content, the same memory location, and a reference
count of 2, as shown in the upper part of the list box of Figure 2.1. Now if you change the value of one of the two strings
(it doesn't matter which one), the memory location of the updated string will change. This is the effect of the copy-on-write
technique.

Figure 7.1: The StrRef example shows the internal status of two strings, including the current reference count.

Essential Pascal

http://localhost/epascal/english/ch07str.htm (2 di 7) [07/05/2001 17.31.39]

We can actually produce this effect, shown in the second part of the list box of Figure 7.1, by writing the following code for
the OnClick event handler of the second button:

procedure TFormStrRef.BtnChangeClick(Sender: TObject);
begin
 Str1 [2] := 'a';
 ListBox1.Items.Add ('Str1 [2] := ''a''');
 ListBox1.Items.Add ('Str1 - ' + StringStatus (Str1));
 ListBox1.Items.Add ('Str2 - ' + StringStatus (Str2));
end;

Notice that the code of the BtnChangeClick method can be executed only after the BtnAssignClick method. To enforce
this, the program starts with the second button disabled (its Enabled property is set to False); it enables the button at the
end of the first method. You can freely extend this example and use the StringStatus function to explore the behavior of
long strings in many other circumstances.

Delphi Strings and Windows PChars
Another important point in favor of using long strings is that they are null-terminated. This means that they are fully
compatible with the C language null-terminated strings used by Windows. A null-terminated string is a sequence of
characters followed by a byte that is set to zero (or null). This can be expressed in Delphi using a zero-based array of
characters, the data type typically used to implement strings in the C language. This is the reason null-terminated
character arrays are so common in the Windows API functions (which are based on the C language). Since Pascal's long
strings are fully compatible with C null-terminated strings, you can simply use long strings and cast them to PChar when
you need to pass a string to a Windows API function.

For example, to copy the caption of a form into a PChar string (using the API function GetWindowText) and then copy it
into the Caption of the button, you can write the following code:

procedure TForm1.Button1Click (Sender: TObject);
var
 S1: String;
begin
 SetLength (S1, 100);
 GetWindowText (Handle, PChar (S1), Length (S1));
 Button1.Caption := S1;
end;

Essential Pascal

http://localhost/epascal/english/ch07str.htm (3 di 7) [07/05/2001 17.31.39]

You can find this code in the LongStr example. Note that if you write this code but fail to allocate the memory for the string
with SetLength, the program will probably crash. If you are using a PChar to pass a value (and not to receive one as in
the code above), the code is even simpler, because there is no need to define a temporary string and initialize it. The
following line of code passes the Caption property of a label as a parameter to an API function, simply by typecasting it to
PChar:

SetWindowText (Handle, PChar (Label1.Caption));

When you need to cast a WideString to a Windows-compatible type, you have to use PWideChar instead of PChar for the
conversion. Wide strings are often used for OLE and COM programs.

Having presented the nice picture, now I want to focus on the pitfalls. There are some problems that might arise when
you convert a long string into a PChar. Essentially, the underlying problem is that after this conversion, you become
responsible for the string and its contents, and Delphi won't help you anymore. Consider the following limited change to
the first program code fragment above, Button1Click:

procedure TForm1.Button2Click(Sender: TObject);
var
 S1: String;
begin
 SetLength (S1, 100);
 GetWindowText (Handle, PChar (S1), Length (S1));
 S1 := S1 + ' is the title'; // this won't work
 Button1.Caption := S1;
end;

This program compiles, but when you run it, you are in for a surprise: The Caption of the button will have the original text
of the window title, without the text of the constant string you have added to it. The problem is that when Windows writes
to the string (within the GetWindowText API call), it doesn't set the length of the long Pascal string properly. Delphi still
can use this string for output and can figure out when it ends by looking for the null terminator, but if you append further
characters after the null terminator, they will be skipped altogether.

How can we fix this problem? The solution is to tell the system to convert the string returned by the GetWindowText API
call back to a Pascal string. However, if you write the following code:

S1 := String (S1);

the system will ignore it, because converting a data type back into itself is a useless operation. To obtain the proper long
Pascal string, you need to recast the string to a PChar and let Delphi convert it back again properly to a string:

S1 := String (PChar (S1));

Actually, you can skip the string conversion, because PChar-to-string conversions are automatic in Delphi. Here is the
final code:

procedure TForm1.Button3Click(Sender: TObject);
var
 S1: String;
begin
 SetLength (S1, 100);
 GetWindowText (Handle, PChar (S1), Length (S1));
 S1 := String (PChar (S1));
 S1 := S1 + ' is the title';
 Button3.Caption := S1;
end;

An alternative is to reset the length of the Delphi string, using the length of the PChar string, by writing:

SetLength (S1, StrLen (PChar (S1)));

You can find three versions of this code in the LongStr example, which has three buttons to execute them. However, if
you just need to access the title of a form, you can simply use the Caption property of the form object itself. There is no
need to write all this confusing code, which was intended only to demonstrate the string conversion problems. There are
practical cases when you need to call Windows API functions, and then you have to consider this complex situation.

Essential Pascal

http://localhost/epascal/english/ch07str.htm (4 di 7) [07/05/2001 17.31.39]

Formatting Strings
Using the plus (+) operator and some of the conversion functions (such as IntToStr) you can indeed build complex strings
out of existing values. However, there is a different approach to formatting numbers, currency values, and other strings
into a final string. You can use the powerful Format function or one of its companion functions.

The Format function requires as parameters a string with the basic text and some placeholders (usually marked by the %
symbol) and an array of values, one for each placeholder. For example, to format two numbers into a string you can write:

Format ('First %d, Second %d', [n1, n2]);

where n1 and n2 are two Integer values. The first placeholder is replaced by the first value, the second matches the
second, and so on. If the output type of the placeholder (indicated by the letter after the % symbol) doesn't match the type
of the corresponding parameter, a runtime error occurs. Having no compile-time type checking is actually the biggest
drawback of using the Format function.

The Format function uses an open-array parameter (a parameter that can have an arbitrary number of values), something
I'll discuss toward the end of this chapter. For the moment, though, notice only the array-like syntax of the list of values
passed as the second parameter.

Besides using %d, you can use one of many other placeholders defined by this function and briefly listed in Table 7.1.
These placeholders provide a default output for the given data type. However, you can use further format specifiers to
alter the default output. A width specifier, for example, determines a fixed number of characters in the output, while a
precision specifier indicates the number of decimal digits. For example,

Format ('%8d', [n1]);

converts the number n1 into an eight-character string, right-aligning the text (use the minus (-) symbol to specify
left-justification) filling it with white spaces.

Table 7.1: Type Specifiers for the Format Function

TYPE SPECIFIER DESCRIPTION

d (decimal) The corresponding integer value is converted to a string of decimal digits.

x (hexadecimal) The corresponding integer value is converted to a string of hexadecimal digits.

p (pointer) The corresponding pointer value is converted to a string expressed with hexadecimal digits.

s (string) The corresponding string, character, or PChar value is copied to the output string.

e (exponential) The corresponding floating-point value is converted to a string based on exponential notation.

f (floating point) The corresponding floating-point value is converted to a string based on floating point notation.

g (general) The corresponding floating-point value is converted to the shortest possible decimal string using
either floating-point or exponential notation.

n (number) The corresponding floating-point value is converted to a floating-point string but also uses
thousands separators.

m (money)
The corresponding floating-point value is converted to a string representing a currency amount.
The conversion is based on regional settings-see the Delphi Help file under Currency and date/time
formatting variables.

The best way to see examples of these conversions is to experiment with format strings yourself. To make this easier I've
written the FmtTest program, which allows a user to provide formatting strings for integer and floating-point numbers. As
you can see in Figure 7.2, this program displays a form divided into two parts. The left part is for Integer numbers, the
right part for floating-point numbers.

Each part has a first edit box with the numeric value you want to format to a string. Below the first edit box there is a
button to perform the formatting operation and show the result in a message box. Then comes another edit box, where
you can type a format string. As an alternative you can simply click on one of the lines of the ListBox component, below,

Essential Pascal

http://localhost/epascal/english/ch07str.htm (5 di 7) [07/05/2001 17.31.39]

to select a predefined formatting string. Every time you type a new formatting string, it is added to the corresponding list
box (note that by closing the program you lose these new items).

Figure 7.2: The output of a floating-point value from the FmtTest program

The code of this example simply uses the text of the various controls to produce its output. This is one of the three
methods connected with the Show buttons:

procedure TFormFmtTest.BtnIntClick(Sender: TObject);
begin
 ShowMessage (Format (EditFmtInt.Text,
 [StrToInt (EditInt.Text)]));
 // if the item is not there, add it
 if ListBoxInt.Items.IndexOf (EditFmtInt.Text) < 0 then
 ListBoxInt.Items.Add (EditFmtInt.Text);
end;

The code basically does the formatting operation using the text of the EditFmtInt edit box and the value of the EditInt
control. If the format string is not already in the list box, it is then added to it. If the user instead clicks on an item in the list
box, the code moves that value to the edit box:

procedure TFormFmtTest.ListBoxIntClick(Sender: TObject);
begin
 EditFmtInt.Text := ListBoxInt.Items [
 ListBoxInt.ItemIndex];
end;

Essential Pascal

http://localhost/epascal/english/ch07str.htm (6 di 7) [07/05/2001 17.31.39]

Conclusion
Strings a certainly a very common data type. Although you can safely use them in most cases without understanding how
they work, this chapter should have made clear the exact behavior of strings, making it possible for you to use all the
power of this data type.

Strings are handled in memory in a special dynamic way, as happens with dynamic arrays. This is the topic of the next
chapter.

Next Chapter: Memory

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch07str.htm (7 di 7) [07/05/2001 17.31.39]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 8
Memory

Author's Note: This chapter will cover memory handling, discuss the various memory areas, and introduce dynamic
arrays. Temporarily only this last part is available.

Delphi 4 Dynamic Arrays
Traditionally, the Pascal language has always had fixed-size arrays. When you declare a data type using the array
construct, you have to specify the number of elements of the array. As expert programmers probably know, there were a
few techniques you could use to implement dynamic arrays, typically using pointers and manually allocating and freeing
the required memory.

Delphi 4 introduces a very simple implementation of dynamic arrays, modeling them after the dynamic long string type
I've just covered. As long strings, dynamic arrays are dynamically allocated and reference counted, but they do not offer a
copy-on-write technique. That's not a big problem, as you can deallocate an array by setting its variable to nil.

You can now simply declare an array without specifying the number of elements and then allocate it with a given size
using the SetLength procedure. The same procedure can also be used to resize an array without losing its content. There
are also other string-oriented procedures, such as the Copy function, that you can use on arrays.

Here is a small code excerpt, underscoring the fact that you must both declare and allocate memory for the array before
you can start using it:

procedure TForm1.Button1Click(Sender: TObject);
var
 Array1: array of Integer;
begin
 Array1 [1] := 100; // error
 SetLength (Array1, 100);
 Array1 [99] := 100; // OK
 ...
end;

As you indicate only the number of elements of the array, the index invariably starts from 0. Generic arrays in Pascal
account for a non-zero low bound and for non-integer indexes, two features that dynamic arrays don't support. To learn
the status of a dynamic array, you can use the Length, High, and Low functions, as with any other array. For dynamic
arrays, however, Low always returns 0, and High always returns the length minus one. This implies that for an empty
array High returns -1 (which, when you think about it, is a strange value, as it is lower than that returned by Low).

Figure 8.1: The form of the DynArr example

Essential Pascal

http://localhost/epascal/english/ch08mem.htm (1 di 3) [07/05/2001 17.31.39]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

After this short introduction I can show you a simple example, called DynArr and shown in Figure 8.1. It is indeed simple
because there is nothing very complex about dynamic arrays. I'll also use it to show a few possible errors programmers
might make. The program declares two global arrays and initializes the first in the OnCreate handler:

var
 Array1, Array2: array of Integer;

procedure TForm1.FormCreate(Sender: TObject);
begin
 // allocate
 SetLength (Array1, 100);
end;

This sets all the values to zero. This initialization code makes it possible to start reading and writing values of the array
right away, without any fear of memory errors. (Assuming, of course, that you don't try to access items beyond the upper
bound of the array.) For an even better initialization, the program has a button that writes into each cell of the array:

procedure TForm1.btnFillClick(Sender: TObject);
var
 I: Integer;
begin
 for I := Low (Array1) to High (Array1) do
 Array1 [I] := I;
end;

The Grow button allows you to modify the size of the array without losing its contents. You can test this by using the Get
value button after pressing the Grow button:

procedure TForm1.btnGrowClick(Sender: TObject);
begin
 // grow keeping existing values
 SetLength (Array1, 200);
end;

procedure TForm1.btnGetClick(Sender: TObject);
begin
 // extract
 Caption := IntToStr (Array1 [99]);
end;

The only slightly complex code is in the OnClick event of the Alias button. The program copies one array to the other one
with the := operator, effectively creating an alias (a new variable referring to the same array in memory). At this point,
however, if you modify one of the arrays, the other is affected as well, as they both refer to the same memory area:

procedure TForm1.btnAliasClick(Sender: TObject);
begin
 // alias
 Array2 := Array1;
 // change one (both change)

Essential Pascal

http://localhost/epascal/english/ch08mem.htm (2 di 3) [07/05/2001 17.31.39]

 Array2 [99] := 1000;
 // show the other
 Caption := IntToStr (Array1 [99]);

The btnAliasClick method does two more operations. The first is an equality test on the arrays. This tests not the actual
elements of the structures but rather the memory areas the arrays refer to, checking whether the variables are two aliases
of the same array in memory:

procedure TForm1.btnAliasClick(Sender: TObject);
begin
 ...
 if Array1 = Array2 then
 Beep;
 // truncate first array
 Array1 := Copy (Array2, 0, 10);
end;

The second is a call to the Copy function, which not only moves data from one array to the other, but also replaces the
first array with a new one created by the function. The effect is that the Array1 variable now refers to an array of 11
elements, so that pressing the Get value or Set value buttons produces a memory error and raises an exception (unless
you have range-checking turned off, in which case the error remains but the exception is not displayed). The code of the
Fill button continues to work fine even after this change, as the items of the array to modify are determined using its
current bounds.

Conclusion
This chapter temporarily covers only dynamic arrays, certainly an important element for memory management, but only a
portion of the entire picture. More material will follow.

The memory structure described in this chapter is typical of Windows programming, a topic I'll introduce in the next
chapter (without going to the full extent of using the VCL, though).

Next Chapter: Windows Programming

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch08mem.htm (3 di 3) [07/05/2001 17.31.39]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 9:
Windows
Programming

Delphi provides a complete encapsulation of the low-level Windows API using Object Pascal and the Visual Component
Library (VCL), so it is rarely necessary to build Windows applications using plain Pascal and calling Windows API
functions directly. Nonetheless, programmers who want to use some special techniques not supported by the VCL still
have that option in Delphi. You would only want to take this approach for very special cases, such as the development of
new Delphi components based on unusual API calls, and I don't want to cover the details. Instead, we'll look at a few
elements of Delphi's interaction with the operating system and a couple of techniques that Delphi programmers can
benefit from.

Windows Handles
Among the data types introduced by Windows in Delphi, handles represent the most important group. The name of this
data type is THandle, and the type is defined in the Windows unit as:

type
 THandle = LongWord;

Handle data types are implemented as numbers, but they are not used as such. In Windows, a handle is a reference to
an internal data structure of the system. For example, when you work with a window (or a Delphi form), the system gives
you a handle to the window. The system informs you that the window you are working with is window number 142, for
example. From that point on, your application can ask the system to operate on window number 142—moving it, resizing
it, reducing it to an icon, and so on. Many Windows API functions, in fact, have a handle as the first parameter. This
doesn't apply only to functions operating on windows; other Windows API functions have as their first parameter a GDI
handle, a menu handle, an instance handle, a bitmap handle, or one of the many other handle types.

In other words, a handle is an internal code you can use to refer to a specific element handled by the system, including a
window, a bitmap, an icon, a memory block, a cursor, a font, a menu, and so on. In Delphi, you seldom need to use
handles directly, since they are hidden inside forms, bitmaps, and other Delphi objects. They become useful when you
want to call a Windows API function that is not supported by Delphi.

To complete this description, here is a simple example demonstrating Windows handles. The WHandle program has a
simple form, containing just a button. In the code, I respond to the OnCreate event of the form and the OnClick event of
the button, as indicated by the following textual definition of the main form:

object FormWHandle: TFormWHandle
 Caption = 'Window Handle'
 OnCreate = FormCreate
 object BtnCallAPI: TButton
 Caption = 'Call API'
 OnClick = BtnCallAPIClick

Essential Pascal

http://localhost/epascal/english/ch09win.htm (1 di 6) [07/05/2001 17.31.40]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

 end
end

As soon as the form is created, the program retrieves the handle of the window corresponding to the form, by accessing
the Handle property of the form itself. We call IntToStr to convert the numeric value of the handle into a string, and we
append that to the caption of the form, as you can see in Figure 9.1:

procedure TFormWHandle.FormCreate(Sender: TObject);
begin
 Caption := Caption + ' ' + IntToStr (Handle);
end;

Because FormCreate is a method of the form's class, it can access other properties and methods of the same class
directly. Therefore, in this procedure we can simply refer to the Caption of the form and its Handle property directly.

Figure 9.1: The WHandle example shows the handle of the form window. Every time you run this program you'll get a
different value.

If you run this program several times you'll generally get different values for the handle. This value, in fact, is determined
by Windows and is sent back to the application. (Handles are never determined by the program, and they have no
predefined values; they are determined by the system, which generates new values each time you run a program.)

When the user presses the button, the program simply calls a Windows API function, SetWindowText, which changes the
text or caption of the window passed as the first parameter. To be more precise, the first parameter of this API function is
the handle of the window we want to modify:

procedure TFormWHandle.BtnCallAPIClick(Sender: TObject);
begin
 SetWindowText (Handle, 'Hi');
end;

This code has the same effect as the previous event handler, which changed the text of the window by giving a new value
to the Caption property of the form. In this case calling an API function makes no sense, because there is a simpler
Delphi technique. Some API functions, however, have no correspondence in Delphi, as we'll see in more advanced
examples later in the book.

External Declarations
Another important element for Windows programming is represented by external declarations. Originally used to link the
Pascal code to external functions that were written in assembly language, the external declaration is used in Windows
programming to call a function from a DLL (a dynamic link library). In Delphi, there are a number of such declarations in
the Windows unit:

// forward declaration
function LineTo (DC: HDC; X, Y: Integer): BOOL; stdcall;

// external declaration (instead of actual code)
function LineTo; external 'gdi32.dll' name 'LineTo';

This declaration means that the code of the function LineTo is stored in the GDI32.DLL dynamic library (one of the most
important Windows system libraries) with the same name we are using in our code. Inside an external declaration, in fact,

Essential Pascal

http://localhost/epascal/english/ch09win.htm (2 di 6) [07/05/2001 17.31.40]

we can specify that our function refer to a function of a DLL that originally had a different name.

You seldom need to write declarations like the one just illustrated, since they are already listed in the Windows unit and
many other Delphi system units. The only reason you might need to write this external declaration code is to call functions
from a custom DLL, or to call undocumented Windows functions.

Note: In the 16-bit version of Delphi, the external declaration used the name of the library without the extension, and was
followed by the name directive (as in the code above) or by an alternative index directive, followed by the ordinal number
of the function inside the DLL. The change reflects a system change in the way libraries are accessed: Although Win32
still allows access to DLL functions by number, Microsoft has stated this won't be supported in the future. Notice also that
the Windows unit replaces the WinProcs and WinTypes units of the 16-bit version of Delphi.

A Windows Callback Function
We've seen in Chapter 6 that Objet Pascal supports procedural types. A common use of procedural types is to provide
callback functions to a Windows API function.

First of all, what is a callback function? The idea is that some API function performs a given action over a number of
internal elements of the system, such as all of the windows of a certain kind. Such a function, also called an enumerated
function, requires as a parameter the action to be performed on each of the elements, which is passed as a function or
procedure compatible with a given procedural type. Windows uses callback functions in other circumstances, but we'll
limit our study to this simple case.

Now consider the EnumWindows API function, which has the following prototype (copied from the Win32 Help file):

BOOL EnumWindows(
 WNDENUMPROC lpEnumFunc, // address of callback function
 LPARAM lParam // application-defined value
);

Of course, this is the C language definition. We can look inside the Windows unit to retrieve the corresponding Pascal
language definition:

function EnumWindows (
 lpEnumFunc: TFNWndEnumProc;
 lParam: LPARAM): BOOL; stdcall;

Consulting the help file, we find that the function passed as a parameter should be of the following type (again in C):

BOOL CALLBACK EnumWindowsProc (
 HWND hwnd, // handle of parent window
 LPARAM lParam // application-defined value
);

This corresponds to the following Delphi procedural type definition:

type
 EnumWindowsProc = function (Hwnd: THandle;
 Param: Pointer): Boolean; stdcall;

The first parameter is the handle of each main window in turn, while the second is the value we've passed when calling
the EnumWindows function. Actually in Pascal the TFNWndEnumProc type is not properly defined; it is simply a pointer.
This means we need to provide a function with the proper parameters and then use it as a pointer, taking the address of
the function instead of calling it. Unfortunately, this also means that the compiler will provide no help in case of an error in
the type of one of the parameters.

Windows requires programmers to follow the stdcall calling convention every time we call a Windows API function or pass
a callback function to the system. Delphi, by default, uses a different and more efficient calling convention, indicated by
the register keyword.

Here is the definition of a proper compatible function, which reads the title of the window into a string, then adds it to a
ListBox of a given form:

Essential Pascal

http://localhost/epascal/english/ch09win.htm (3 di 6) [07/05/2001 17.31.40]

function GetTitle (Hwnd: THandle; Param: Pointer): Boolean; stdcall;
var
 Text: string;
begin
 SetLength (Text, 100);
 GetWindowText (Hwnd, PChar (Text), 100);
 FormCallBack.ListBox1.Items.Add (
 IntToStr (Hwnd) + ': ' + Text);
 Result := True;
end;

The form has a ListBox covering almost its whole area, along with a small panel on the top hosting a button. When the
button is pressed, the EnumWindows API function is called, and the GetTitle function is passed as its parameter:

procedure TFormCallback.BtnTitlesClick(Sender: TObject);
var
 EWProc: EnumWindowsProc;
begin
 ListBox1.Items.Clear;
 EWProc := GetTitle;
 EnumWindows (@EWProc, 0);
end;

I could have called the function without storing the value in a temporary procedural type variable first, but I wanted to
make clear what is going on in this example. The effect of this program is actually quite interesting, as you can see in
Figure 9.2. The Callback example shows a list of all the existing main windows running in the system. Most of them are
hidden windows you usually never see (and many actually have no caption).

Figure 9.2: The output of the Callback example, listing the current main windows (visible and hidden).

Essential Pascal

http://localhost/epascal/english/ch09win.htm (4 di 6) [07/05/2001 17.31.40]

A Minimal Windows Program
To complete the coverage of Windows programming and the Pascal language, I want to show you a very simple but
complete application built without using the VCL. The program simply takes the command-line parameter (stored by the
system in the cmdLine global variable) and then extracts information from it with the ParamCount and ParamStr Pascal
functions. The first of these functions returns the number of parameters; the second returns the parameter in a given
position.

Although users seldom specify command-line parameters in a graphical user interface environment, the Windows
command-line parameters are important to the system. For example, once you have defined an association between a
file extension and an application, you can simply run a program by selecting an associated file. In practice, when you
double-click on a file, Windows starts the associated program and passes the selected file as a command-line parameter.

Here is the complete source code of the project (a DPR file, not a PAS file):

program Strparam;

uses
 Windows;

begin
 // show the full string
 MessageBox (0, cmdLine,
 'StrParam Command Line', MB_OK);

 // show the first parameter
 if ParamCount > 0 then
 MessageBox (0, PChar (ParamStr (1)),
 '1st StrParam Parameter', MB_OK)
 else
 MessageBox (0, PChar ('No parameters'),
 '1st StrParam Parameter', MB_OK);
end.

The output code uses the MessageBox API function, simply to avoid getting the entire VCL into the project. A pure
Windows program as the one above, in fact, has the advantage of a very small memory footprint: The executable file of
the program is about 16 Kbytes.

To provide a command-line parameter to this program, you can use Delphi's Run > Parameters menu command. Another
technique is to open the Windows Explorer, locate the directory that contains the executable file of the program, and drag
the file you want to run onto the executable file. The Windows Explorer will start the program using the name of the
dropped file as a command-line parameter. Figure 9.3 shows both the Explorer and the corresponding output.

Figure 9.3: You can provide a command-line parameter to the StrParam example by dropping a file over the executable
file in the Windows Explorer.

Essential Pascal

http://localhost/epascal/english/ch09win.htm (5 di 6) [07/05/2001 17.31.40]

Conclusion
In this chapter we've seen a low-level introduction to Windows programming, discussing handles and a very simple
Windows program. For normal Windows programming tasks, you'll generally use the visual development support
provided by Delphi and based on the VCL. But this is beyond the scope of this book, which is the Pascal language.

Next chapter covers variants, a very strange addition to Pascal type system, introduced to provide full OLE support.

Next Chapter: Variants

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch09win.htm (6 di 6) [07/05/2001 17.31.40]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 10
Variants

To provide full OLE support, the 32-bit version of Delphi includes the Variant data type. Here I want to discuss this data
type from a general perspective. The Variant type, in fact, has a pervasive effect on the whole language, and the Delphi
components library also uses them in ways not related to OLE programming.

Variants Have No Type
In general, you can use variants to store any data type and perform numerous operations and type conversions. Notice
that this goes against the general approach of the Pascal language and against good programming practices. A variant is
type-checked and computed at run time. The compiler won't warn you of possible errors in the code, which can be caught
only with extensive testing. On the whole, you can consider the code portions that use variants to be interpreted code,
because, as with interpreted code, many operations cannot be resolved until run time. This affects in particular the speed
of the code.

Now that I've warned you against the use of the Variant type, it is time to look at what it can do. Basically, once you've
declared a variant variable such as the following:

var
 V: Variant;

you can assign to it values of several different types:

V := 10;
V := 'Hello, World';
V := 45.55;

Once you have the variant value, you can copy it to any compatible-or incompatible-data type. If you assign a value to an
incompatible data type, Delphi performs a conversion, if it can. Otherwise it issues a run-time error. In fact, a variant
stores type information along with the data, allowing a number of run-time operations; these operations can be handy but
are both slow and unsafe.

Consider the following example (called VariTest), which is an extension of the code above. I placed three edit boxes on a
new form, added a couple of buttons, and then wrote the following code for the OnClick event of the first button:

procedure TForm1.Button1Click(Sender: TObject);
var
 V: Variant;
begin
 V := 10;
 Edit1.Text := V;
 V := 'Hello, World';
 Edit2.Text := V;
 V := 45.55;

Essential Pascal

http://localhost/epascal/english/ch10var.htm (1 di 4) [07/05/2001 17.31.40]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

 Edit3.Text := V;
end;

Funny, isn't it? Besides assigning a variant holding a string to the Text property of an edit component, you can assign to
the Text a variant holding an integer or a floating-point number. As you can see in Figure 10.1, everything works.

Figure 10.1: The output of the VariTest example after the Assign button has been pressed.

Even worse, you can use the variants to compute values, as you can see in the code related to the second button:

procedure TForm1.Button2Click(Sender: TObject);
var
 V: Variant;
 N: Integer;
begin
 V := Edit1.Text;
 N := Integer(V) * 2;
 V := N;
 Edit1.Text := V;
end;

Writing this kind of code is risky, to say the least. If the first edit box contains a number, everything works. If not, an
exception is raised. Again, you can write similar code, but without a compelling reason to do so, you shouldn't use the
Variant type; stick with the traditional Pascal data types and type-checking approach. In Delphi and in the VCL (Visual
Component Library), variants are basically used for OLE support and for accessing database fields.

Variants in Depth
Delphi includes a variant record type, TVarData, which has the same memory layout as the Variant type. You can use this
to access the actual type of a variant. The TVarData structure includes the type of the Variant, indicated as VType, some
reserved fields, and the actual value.

The possible values of the VType field correspond to the data types you can use in OLE automation, which are often
called OLE types or variant types. Here is a complete alphabetical list of the available variant types:

varArray●

varBoolean●

varByRef●

varCurrency●

varDate●

varDispatch●

varDouble●

varEmpty●

Essential Pascal

http://localhost/epascal/english/ch10var.htm (2 di 4) [07/05/2001 17.31.40]

varError●

varInteger●

varNull●

varOleStr●

varSingle●

varSmallint●

varString●

varTypeMask●

varUnknown●

varVariant●

You can find descriptions of these types in the Values in variants topic in the Delphi Help system.

There are also many functions for operating on variants that you can use to make specific type conversions or to ask for
information about the type of a variant (see, for example, the VarType function). Most of these type conversion and
assignment functions are actually called automatically when you write expressions using variants. Other variant support
routines (look for the topic Variant support routines in the Help file) actually operate on variant arrays.

Variants Are Slow!
Code that uses the Variant type is slow, not only when you convert data types, but also when you add two variant values
holding an integer each. They are almost as slow as the interpreted code of Visual Basic! To compare the speed of an
algorithm based on variants with that of the same code based on integers, you can look at the VSpeed example.

This program runs a loop, timing its speed and showing the status in a progress bar. Here is the first of the two very
similar loops, based on integers and variants:

procedure TForm1.Button1Click(Sender: TObject);
var
 time1, time2: TDateTime;
 n1, n2: Variant;
begin
 time1 := Now;
 n1 := 0;
 n2 := 0;
 ProgressBar1.Position := 0;
 while n1 < 5000000 do
 begin
 n2 := n2 + n1;
 Inc (n1);
 if (n1 mod 50000) = 0 then
 begin
 ProgressBar1.Position := n1 div 50000;
 Application.ProcessMessages;
 end;
 end;
 // we must use the result
 Total := n2;
 time2 := Now;
 Label1.Caption := FormatDateTime (
 'n:ss', Time2-Time1) + ' seconds';
end;

The timing code is worth looking at, because it's something you can easily adapt to any kind of performance test. As you
can see, the program uses the Now function to get the current time and the FormatDateTime function to output the time
difference, asking only for the minutes ("n") and the seconds ("ss") in the format string. As an alternative, you can use the

Essential Pascal

http://localhost/epascal/english/ch10var.htm (3 di 4) [07/05/2001 17.31.40]

Windows API's GetTickCount function, which returns a very precise indication of the milliseconds elapsed since the
operating system was started.

In this example the speed difference is actually so great that you'll notice it even without a precise timing. Anyway, you
can see the results for my own computer in Figure 10.2. The actual values depend on the computer you use to run this
program, but the proportion won't change much.

Figure 10.2: The different speeds of the same algorithm, based on integers and variants (the actual timing varies
depending on the computer), as shown by the VSpeed example.

Conclusion
Variants are so different from traditional Pascal data types that I've decided to cover them in this short separate chapter.
Although their role is in OLE programming, they can be handy to write quick and dirty programs without having even to
think about data types. As we have seen, this affects performance by far.

Now that we have covered most of the language features, let me discuss the overall structure of a program and the
modularization offered by units.

Next Chapter: Program and Units

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch10var.htm (4 di 4) [07/05/2001 17.31.40]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 11
Program and Units

Delphi applications make intensive use of units, or program modules. Units, in fact, were the basis of the modularity in the
language before classes were introduced. In a Delphi application, every form has a corresponding unit behind it. When
you add a new form to a project (with the corresponding toolbar button or the File > New Form menu command), Delphi
actually adds a new unit, which defines the class for the new form.

Units
Although every form is defined in a unit, the reverse is not true. Units do not need to define forms; they can simply define
and make available a collection of routines. By selecting the File > New menu command and then the Unit icon in the
New page of the Object Repository, you add a new blank unit to the current project. This blank unit contains the following
code, delimiting the sections a unit is divided into:

unit Unit1;

interface

implementation

end.

The concept of a unit is simple. A unit has a unique name corresponding to its filename, an interface section declaring
what is visible to other units, and an implementation section with the real code and other hidden declarations. Finally, the
unit can have an optional initialization section with some startup code, to be executed when the program is loaded into
memory; it can also have an optional finalization section, to be executed on program termination.

The general structure of a unit, with all its possible sections, is the following:

unit unitName;

interface

// other units we need to refer to
uses
 A, B, C;

// exported type definition
type
 newType = TypeDefinition;

// exported constants
const

Essential Pascal

http://localhost/epascal/english/ch11unit.htm (1 di 4) [07/05/2001 17.31.41]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

 Zero = 0;

// global variables
var
 Total: Integer;

// list of exported functions and procedures
procedure MyProc;

implementation

uses
 D, E;

// hidden global variable
var
 PartialTotal: Integer;

// all the exported functions must be coded
procedure MyProc;
begin
 // ... code of procedure MyProc
end;

initialization
 // optional initialization part

finalization
 // optional clean-up code

end.

The uses clause at the beginning of the interface section indicates which other units we need to access in the interface
portion of the unit. This includes the units that define the data types we refer to in the definition of other data types, such
as the components used within a form we are defining.

The second uses clause, at the beginning of the implementation section, indicates more units we need to access only in
the implementation code. When you need to refer to other units from the code of the routines and methods, you should
add elements in this second uses clause instead of the first one. All the units you refer to must be present in the project
directory or in a directory of the search path (you can set the search path for a project in the Directories/Conditionals page
of the project’s Options dialog box).

C++ programmers should be aware that the uses statement does not correspond to an include directive. The effect of a
uses statement is to import just the precompiled interface portion of the units listed. The implementation portion of the unit
is considered only when that unit is compiled. The units you refer to can be both in source code format (PAS) or compiled
format (DCU), but the compilation must have taken place with the same version of the Delphi.

The interface of a unit can declare a number of different elements, including procedures, functions, global variables, and
data types. In Delphi applications, the data types are probably used the most often. Delphi automatically places a new
class data type in a unit each time you create a form. However, containing form definitions is certainly not the only use for
units in Delphi. You can continue to have traditional units, with functions and procedures, and you can have units with
classes that do not refer to forms or other visual elements.

Units and Scope
In Pascal, units are the key to encapsulation and visibility, and they are probably even more important than the private
and public keywords of a class. (In fact, as we’ll see in the next chapter, the effect of the private keyword is related to the
scope of the unit containing the class.) The scope of an identifier (such as a variable, procedure, function, or a data type)
is the portion of the code in which the identifier is accessible. The basic rule is that an identifier is meaningful only within

Essential Pascal

http://localhost/epascal/english/ch11unit.htm (2 di 4) [07/05/2001 17.31.41]

its scope—that is, only within the block in which it is declared. You cannot use an identifier outside its scope. Here are
some examples.

Local variables: If you declare a variable within the block defining a routine or a method, you cannot use this
variable outside that procedure. The scope of the identifier spans the whole procedure, including nested routines
(unless an identifier with the same name in the nested routine hides the outer definition). The memory for this
variable is allocated on the stack when the program executes the routine defining it. As soon as the routine
terminates, the memory on the stack is automatically released.

●

Global hidden variables: If you declare an identifier in the implementation portion of a unit, you cannot use it
outside the unit, but you can use it in any block and procedure defined within the unit. The memory for this
variable is allocated as soon as the program starts and exists until it terminates. You can use the initialization
section of the unit to provide a specific initial value.

●

Global variables: If you declare an identifier in the interface portion of the unit, its scope extends to any other unit
that uses the one declaring it. This variable uses memory and has the same lifetime as the previous group; the
only difference is in its visibility.

●

Any declarations in the interface portion of a unit are accessible from any part of the program that includes the unit in its
uses clause. Variables of form classes are declared in the same way, so that you can refer to a form (and its public fields,
methods, properties, and components) from the code of any other form. Of course, it’s poor programming practice to
declare everything as global. Besides the obvious memory consumption problems, using global variables makes a
program less easy to maintain and update. In short, you should use the smallest possible number of global variables.

Units as Namespaces
The uses statement is the standard technique to access the scope of another unit. At that point you can access the
definitions of the unit. But it might happen that two units you refer to declare the same identifier; that is, you might have
two classes or two routines with the same name.

In this case you can simply use the unit name to prefix the name of the type or routine defined in the unit. For example,
you can refer to the ComputeTotal procedure defined in the given Totals unit as Totals.ComputeTotal. This should not be
required very often, as you are strongly advised against using the same name for two different things in a program.

However, if you look into the VCL library and the Windows files, you’ll find that some Delphi functions have the same
name as (but generally different parameters than) some Windows API functions available in Delphi itself. An example is
the simple Beep procedure.

If you create a new Delphi program, add a button, and write the following code:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Beep;
end;

then as soon as you press the button you’ll hear a short sound. Now, move to the uses statement of the unit and change
the code from this:

uses
 Windows, Messages, SysUtils, Classes, ...

to this very similar version (simply moving the SysUtils unit before the Windows unit):

uses
 SysUtils, Windows, Messages, Classes, ...

If you now try to recompile this code, you’ll get a compiler error: "Not enough actual parameters." The problem is that the
Windows unit defines another Beep function with two parameters. Stated more generally, what happens in the definitions
of the first units you include in the uses statement might be hidden by corresponding definitions of later units. The safe
solution is actually quite simple:

procedure TForm1.Button1Click(Sender: TObject);
begin
 SysUtils.Beep;

Essential Pascal

http://localhost/epascal/english/ch11unit.htm (3 di 4) [07/05/2001 17.31.41]

end;

This code will compile regardless of the order of the units in the uses statements. There are few other name clashes in
Delphi, simply because Delphi code is generally hosted by methods of classes. Having two methods with the same name
in two different classes doesn’t create any problem. The problems arise only with global routines.

Units and Programs
A Delphi application consists of two kinds of source code files: one or more units and one program file. The units can be
considered secondary files, which are referred to by the main part of the application, the program. In theory, this is true. In
practice, the program file is usually an automatically generated file with a limited role. It simply needs to start up the
program, running the main form. The code of the program file, or Delphi project file (DPR), can be edited either manually
or by using the Project Manager and some of the Project Options related to the application object and the forms.

The structure of the program file is usually much simpler than the structure of the units. Here is the source code of a
sample program file:

program Project1;

uses
 Forms,
 Unit1 in ‘Unit1.PAS’ {Form1DateForm};

begin
 Application.Initialize;
 Application.CreateForm (TForm1, Form1);
 Application.Run;
end.

As you can see, there is simply a uses section and the main code of the application, enclosed by the begin and end
keywords. The program’s uses statement is particularly important, because it is used to manage the compilation and
linking of the application.

Conclusion
Units were the Pascal (actually Turbo Pascal) technique for module programming. Even if they were later followed b
objects and classes, they still play a key role for encapsulation, for the definition of some sort of name spaces, and for the
overall structure of Delphi programs. Also, units have influence on scope and global memory allocations.

Next Chapter: Files in the Pascal Language

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/ch11unit.htm (4 di 4) [07/05/2001 17.31.41]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Chapter 12
Files in the Pascal
Language

One of the peculiarities of Pascal compared with other programming languages is its built-in support for files. As you
might recall from Chapter 2, the language has a file keyword, which is a type specifier, like array or record. You use
file to define a new type, and then you can use the new data type to declare new variables:

type
 IntFile: file of Integers;
var
 IntFile1: IntFile;

It is also possible to use the file keyword without indicating a data type, to specify an untyped file. Alternatively, you can
use the TextFile type, defined in the System units to declare files of ASCII characters. Each kind of file has its own
predefined routines, as we will see later in this chapter.

Routines for Working with Files
Once you have declared a file variable, you can assign it to a real file in the file system using the AssignFile method.
The next step is usually to call Reset to open the file for reading at the beginning, Rewrite to open (or create) it for
writing, and Append to add new items to the end of the file without removing the older items. Once the input or output
operations are done, you should call CloseFile.

As an example look at the folloing code, which simply saves some numbers to a file:

type
 IntFile: file of Integers;
var
 IntFile1: IntFile;
begin
 AssignFile (IntFile1, 'c:/tmp/test.my')
 Rewrite (IntFile1);
 Write (IntFile1, 1);
 Write (IntFile1, 2);
 CloseFile (IntFile1);
end;

The CloseFile operation should typically be done inside a finally block, to avoid leaving the file open in case the file
handling code generates an exception. Actually file based operations generate exceptiosn or not depending on the $I
compiler settings. In case the system doesn't raise exceptions, you can check the IOResult global variable to see if
anything went wrong.

Essential Pascal

http://localhost/epascal/english/ch12files.htm (1 di 6) [07/05/2001 17.31.41]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Delphi includes many other file management routines, some of whcih are includes in the list below:

Append FileClose Flush
AssignFile FileCreate GetDir
BlockRead FileDateToDateTime IOResult
BlockWrite FileExists MkDir
ChangeFileExt FileGetAttr Read
CloseFile FileGetDate Readln
DateTimeToFileDate FileOpen Rename
DeleteFile FilePos RenameFile
DiskFree FileRead Reset
DiskSize FileSearch Rewrite
Eof FileSeek RmDir
Eoln FileSetAttr Seek
Erase FileSetDate SeekEof
ExpandFileName FileSize SeekEoln
ExtractFileExt FileWrite SetTextBuf
ExtractFileName FindClose Truncate
ExtractFilePath FindFirst Write
FileAge FindNext Writeln

Not all of these routines are defined in standard Pascal, but many of them have been part of Borland Pascal for a long
time. You can find detailed information about these routines in Delphi's Help files. Here, I'll show you three simple
examples to demonstrate how these features can be used.

Handling Text Files
One of the most commonly used file formats is that of text files. As I mentioned before, Delphi has some specific support
for text files, most notably the TextFile data type defined by the System unit. Ignoring the fact that Delphi's string lists
can autoamtically save themselves to a file (with the SaveToFile method, based on the use of streams), you could
easily save the content of a string list to a TextFile by writing the folloing code (in which the file name is requested to
the user, using Delph's SaveDialog component):

var
 OutputFile: TextFile;
 I: Integer;
begin
 // choose a file
 if SaveDialog1.Execute then
 begin
 // output the text to a file
 AssignFile (OutputFile, SaveDialog1.FileName);
 Rewrite (OutputFile);
 try
 // save listbox data to file
 for I := 0 to ListBox1.Items.Count - 1 do
 Writeln (OutputFile, ListBox1.Items[I]);
 finally
 CloseFile (OutputFile);
 end;
 end;
end;

Instead of being connected to a physical file, a Pascal file type variable can be hooked directly to the printer, so that the
output will be printed instead of beign saved to a file. To accomplish this, simple use the AssignPrn procedure. For

Essential Pascal

http://localhost/epascal/english/ch12files.htm (2 di 6) [07/05/2001 17.31.41]

example, in the code above you could replace the line AssignFile (OutputFile, SaveDialog1.FileName); with
the line AssignPrn (OutputFile);

A Text File Converter
Up to now we've seen simple examples of creating new files. In our next example, we'll process an existing file, creating a
new one with a modified version of the contents. The program, named Filter, can convert all the characters in a text file to
uppercase, capitalize only the initial word of each sentence, or ignore the characters from the upper portion of the ASCII
character set.

The form of the program has two read-only edit boxes for the names of the input and output files, and two buttons to
select input and output files using the standard dialog boxes. The form's lower portion contains a RadioGroup component
and a bitmap button (named ConvertBitBtn) to apply the current conversion to the selected files. The radio group has
three items, as you can see from the following portion of the form's textual description:

object RadioGroup1: TRadioGroup
 Caption = 'Conversion'
 Items.Strings = (
 '&Uppercase'
 'Capitalize &sentences'
 'Remove s&ymbols')

The user can click on the two buttons to choose the names of the input and output files, displayed in the two edit boxes:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if OpenDialog1.Execute then
 Edit1.Text := OpenDialog1.Filename;
end;

The second button activates the SaveDialog1 dialog box. The real code of the example is in the three conversion
routines that are called by the bitmap button's OnClick event-handler. These calls take place inside a case statement in
the middle of the ConvertBitBtn button's OnClick handler:

 case RadioGroup1.ItemIndex of
 0: ConvUpper;
 1: ConvCapitalize;
 2: ConvSymbols;
 end;

Once again, you can see the entire source code among the download files. Before calling one of the conversion
procedures, the ConvertBitBtnClick method displays a dialog box (ConvertForm) with a ProgressBar component,
to show the user that the conversion is taking place (as you can see in Figure 12.1). This method does most of the work
related to handling the files-it opens the input file as a file of bytes (a file storing data as plain bytes) the first time, so that
it can use the FileSize procedure, which is not available for text files. Then this file is closed and reopened as a text
file.

FIGURE 12.1: The conversion procedures update the secondary form's progress bar to let the user see the percentage of
the file already processed.

Since the program opens two files, and each of these operations can fail, it uses two nested try blocks to ensure a high
level of protection, although using the standard dialog boxes to select file names already provides a good confirmation of
file selection. Now, let's take a look at one of the conversion routines in detail. The simplest of the three conversion
routines is ConvUpper, which converts every character in the text file to uppercase. Here is its code:

procedure TForm1.ConvUpper;
var
 Ch: Char;
 Position: LongInt;
begin
 Position := 0;
 while not Eof (FileIn) do

Essential Pascal

http://localhost/epascal/english/ch12files.htm (3 di 6) [07/05/2001 17.31.41]

 begin
 Read (FileIn, Ch);
 Ch := UpCase (Ch);
 Write (FileOut, Ch);
 Inc (Position);
 ConvertForm.ProgressBar1.Position :=
 Position * 100 div FileLength;
 Application.ProcessMessages;
 end;
end;

This method reads each character from the source file until the program reaches the end of the file (Eof). Each single
character is converted and copied to the output file. As an alternative, it is possible to read and convert one line at a time
(that is, a string at a time) using string handling routines. This will make the program significantly faster. The approach
I've used here is reasonable only for an introductory example.

The conversion procedure's actual code, however, is complicated by the fact that it has to update the dialog box's
progress bar. At each step of the conversion, a long integer variable with the current position in the file is incremented.
This variable's value is used to compute the percentage of work completed, as you can see in the code above.

The conversion procedure for removing symbols is very simple:

while not Eof (FileIn) do
begin
 Read (FileIn, Ch);
 if Ch < Chr (127) then
 Write (FileOut, Choose);
 ...

The procedure used to capitalize the text, in contrast, is really a complex piece of code, which you can find in the code of
the example. The conversion is based on a case statement with four branches:

If the letter is uppercase, and it is the first letter after an ending punctuation mark (as indicated by the Period
Boolean variable), it is left as is; otherwise, it is converted to lowercase. This conversion is not done by a standard
procedure, simply because there isn't one for single characters. It's done with a low-level function I've written,
called LowCase.

●

If the letter is lowercase, it is converted to uppercase only if it was at the beginning of a new sentence.●

If the character is an ending punctuation mark (period, question mark, or exclamation mark), Period is set to True.●

If the character is anything else, it is simply copied to the destination file, and Period is set to False.●

Figure 12.2 shows an example of this code's effect; it shows a text file before and after the conversion. This program is
far from adequate for professional use, but it is a first step toward building a full-scale case conversion program. Its
biggest drawbacks are that it frequently converts proper nouns to lowercase, and capitalizes any letter after a period
(even if it's the first letter of a filename extension).

FIGURE 12.2: The result of running the Filter example's Capitalize conversion.

Saving Generic Data
In addition to using text files, you can save other data types to a file, including integers, real numbers, arrays, and
records. Using a custom file type instead of a text file may be an advantage because it might take less space (the textual
representation of a number usually takes much more space than its binary value), but this approach won't let the user
browse through the files using a text editor (which might be an advantage, too).

How do you save a series of integers to a file? First you have to define a file as shown:

SaveFile: file of Integer;

Then you need to assign the real file to the file variable, open the file, operate on it , and close it. For example the
following code saves all the numeric data collected in a 5x4 string grid:

Essential Pascal

http://localhost/epascal/english/ch12files.htm (4 di 6) [07/05/2001 17.31.41]

 {save to the current file}
 AssignFile (SaveFile, CurrentFile);
 Rewrite (SaveFile);
 try
 {write the value of each grid element}
 for I := 1 to 5 do
 for J := 1 to 4 do
 begin
 Value := StrToIntDef (Trim (
 StringGrid1.Cells [I, J]), 0);
 Write (SaveFile, Value);
 end;
 finally
 CloseFile (SaveFile);
 end;

To save the data to a file, the program saves each value of the string grid (after converting it into a number). To
accomplish this, the program uses two nested for loops to scan the grid. Notice the use of the temporary Value variable:
the Write and Read procedures require a parameter passed by reference (var), so you cannot pass the property of a
Delphi component, since it doesn't correspond directly to a memory location.

Of course, the data should be read in the same order it is written, as you can see in the Open1Click method:

 {load from the current file}
 AssignFile (LoadFile, CurrentFile);
 Reset (LoadFile);
 try
 {read the value of each grid element}
 for I := 1 to 5 do
 for J := 1 to 4 do
 begin
 Read (LoadFile, Value);
 StringGrid1.Cells [I, J] := IntToStr(Value);
 end;
 finally
 CloseFile (LoadFile);
 end;

From Files to Streams
Although direct handling of files, using the traditioanl Pascal-langauge appraoch is certainly still an interesting techcnique,
a strongly urge you to use streams (the TStream and derived classes) to handle any complex files. Streams represent
virtual files, which can be mapped to physical files, to a memory block, to a socket, or any other continuous series of
bytes. You can find more on streams in the Delphi help file and in my Mastering Delphi book.

Conclusion
At least for the moment, this chapter on files is the last of the book. Feel free to email me your comment and requests.

If after this introduction on the Pascal language you want to delve into the object-oriented elements of Object Pascal in
Delphi, you can refer to my published book Mastering Delphi 5 (Sybex, 1999). For more information on this and more
advanced books of mine (and of other authors as well) you can refer to my web site, www.marcocantu.com. The same
site hosts updated versions of this book, and its examples. Keep also an eye for the companion book Essential Delphi.

Essential Pascal

http://localhost/epascal/english/ch12files.htm (5 di 6) [07/05/2001 17.31.41]

http://www.marcocantu.com/
http://www.marcocantu.com/edelphi

Back to the Cover Page

© Copyright Marco Cantù, Wintech Italia Srl 1995-2001

Essential Pascal

http://localhost/epascal/english/ch12files.htm (6 di 6) [07/05/2001 17.31.41]

www.marcocantu.com●

Marco's Delphi Books●

Essential Pascal - Web Site●

Essential Pascal - Local Index●

Marco Cantù's
Essential Pascal

Appendix A
Glossary

This is a short glossary of technical terms used throughout the book. They might also be defined elsewhere in the text,
but I've decided to collect them here anyway, to make it easier to find them.

Heap (Memory)
The term Heap indicates a portion of the memory available to a program, also called dynamic memory area. The heap is
the area in which the allocation and deallocation of memory happens in random order. This means that if you allocate
three blocks of memory in sequence, they can be destroyed later on in any order. The heap manager takes care of all the
details for you, so you simply ask for new memory with GetMem or by calling a constructor to create an object, and Delphi
will return you a new memory block (optionally reusing memory blocks already discarded).

The heap is one of the three memory areas available to an application. The other two are the global area (this is where
global variables live) and the stack. Contrary to the heap, global variables are allocated when the program starts and
remain there until it terminates. For the stack see the specific entry in this glossary.

Delphi uses the heap for allocating the memory of each and every object, the text of the strings, for dynamic arrays, and
for specific requests of dynamic memory (GetMem).

Windows allows an application to have up to 2 GigaBytes of address space, most of which can be used by the heap.

Stack (Memory)
The term Stack indicates a portion of the memory available to a program, which is dynamic but is allocated and
deallocated following specific order. The stack allocation is LIFO, Last In First Out. This means that the last memory
object you've allocated will be the first to be deleted. Stack memory is typically used by routines (procedure, function, and
method calls). When you call a routine, its parameters and return type are placed on the stack (unless you optimize the
call, as Delphi does by default). Also the variables you declare within a routine (using a var block before the begin
statement) are stored on the stack, so that when the routine terminates they'll be automatically removed (before getting
back to the calling routine, in LIFO order).

The stack is one of the three memory areas available to an application. The other two are called global memory and
heap. See the heap entry in this glossary..

Delphi uses the stack for routine parameters and return values (unless you use the default register calling convention), for
local routine variables, for Windows API function calls, and so on.

Windows applications can reserve a large amount of memory for the stack. In Delphi you set this in the linker page of the
project options, however, the default generally does it. If you receive a stack full error message this is probably because
you have a function recursively calling itself forever, not because the stack space is too limited.

Essential Pascal

http://localhost/epascal/english/glossary.htm (1 di 2) [07/05/2001 17.31.41]

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

New requested terms
Dynamic●

Static●

Virtual●

memory leak●

painting●

literal●

array●

API●

class reference●

class method●

parent●

owner●

self●

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

http://localhost/epascal/english/glossary.htm (2 di 2) [07/05/2001 17.31.41]

	localhost
	Introduction
	1: Pascal History
	2: Coding In Pascal
	3: Types, Variables, and Constants
	4: User-Defined Data Types
	5: Statements
	6: Procedures and Functions
	7: Handling Strings
	8: Memory
	9: Windows Programming
	10: Variants
	11: Programs and Units
	12: File in the Pascal Language
	A: Glossay
	B: Examples

