

Rave Reports

Borland Edition 5.0

Developers Guide

Tutorial and Reference

This manual and all material accompanying it is
Copyright (C) 1995-2002, Nevrona Designs, All Rights Reserved (rev BE50a)

Developers Guide

Page 1

Table of Contents
Getting Started...3

Single User License Agreement ..3
Limited Warranty ...3
Technical Support ..4

Chapter 1 - Introduction to Rave..5
Rave Toolbar...5
Output Components...5
Rave Classes ..6

Chapter 2 - Quick Start with Rave...7
Welcome to RAVE! ..7
Structure of Rave...7

Chapter 3 - TRvSystem Component..9
Description..9
Properties ...9
Events ..10

Chapter 4 - Rave Data Connection ...11
Data Bridge ...11
Naming the Data Connection ..11
Controlling the Visibility of the connection ..11
Custom Data Connections ..11

Chapter 5 - Customizing Data Connections..13
Using Events to Customize your Data Connection ...13
OnGetCols Event ...14
OnOpen event ...14
OnFirst Event ..14
OnNext event ..15
OnEOF event ..15
OnGetRow event ...15
OnValidateRow event ..16
OnRestore event ...16

Chapter 6 - TRvNDRWriter component..17
Description..17
Properties and Events..17

Chapter 7 - Rendering components ...19
TRvRenderPreview Description ..19
TRvRenderPreview Properties ..19
TRvRenderPreview Events...19
TRvRenderPrinter Description ..19
TRvRenderPrinter Properties and Events ..19
TRvRenderPDF Description ...19
TRvRenderHTML Description ...20
TRvRenderRTF Description ...20
TRvRenderText Description ...20

Developers Guide

Page 2

Chapter 8 - TRvProject Component...21
Overview...21
Engine Property...21
Using TRvProject...21

Appendix A - Formatting..23
AlphaNumeric Items...23
Date / Time items ..24

Appendix B - Keyboard / Mouse Shortcuts ...27
Page Designer or Project Tree..27
Page Designer Only...27
Project Tree Only...27

Appendix C - Property Descriptions..29

Developers Guide

Page 3

Getting Started

Technical Information

Single User License Agreement
This is a legal Agreement between you, as the end user, and Nevrona Designs. By opening the
enclosed sealed disk package, or by using the disk, you are agreeing to be bound by the terms of
this Agreement. If you do not agree with the terms of this Agreement, promptly return the
unopened disk package and accompanying items, (including written materials), to the place you
obtained them for a full refund.

1. Grant of License - Nevrona Designs grants to you the right to use one copy of the enclosed
Nevrona Designs program, (the Software), on a single terminal connected to a single computer
(i.e. CPU). You may make one copy of the Software for back-up purposes for use on your own
computer. You must reproduce and include the copyright notice on the back-up copy. You may
not network the Software or use it on more than a single computer or computer terminal at any
time, unless a copy is purchased for each computer or terminal on the network that will use the
Software. You may transfer this Software from one computer to another, provided that the
Software is used on only one computer at a time. You may not rent or lease the Software, but you
may transfer the Software and accompanying written material and this license to another person
on a permanent basis provided you retain no copies and the other person agrees to accept the
terms and conditions of this Agreement. THIS SOFTWARE MAY NOT BE DISTRIBUTED, IN
MODIFIED OR UNMODIFIED FORM, AS PART OF ANY APPLICATION PROGRAM OR
OTHER SOFTWARE THAT IS A LIBRARY-TYPE PRODUCT, DEVELOPMENT TOOL OR
OPERATING SYSTEM, OR THAT MAY BE COMPETITIVE WITH, OR USED IN LIEU OF, THE
PROGRAM PRODUCT, WITHOUT THE EXPRESS WRITTEN PERMISSION OF NEVRONA
DESIGNS. This license does include the right to distribute applications using the enclosed
software provided the above requirements are met.

2. Term - This Agreement is effective until you terminate it by destroying the Software, together
with all copies. It will also terminate if you fail to follow this agreement. You agree upon
termination to destroy the Software, together with all copies thereof.

3. Copyright - The software is owned by Nevrona Designs and is protected by United States
laws and international treaty provisions. Therefore, you must treat the Software like any other
copyrighted material (e.g. a book or musical recording) EXCEPT that you may either (a) make
one copy of the Software solely for back-up or archival purposes, or (b) transfer the Software to a
single hard disk provided you keep the original solely for back-up or archival purposes. You may
not copy the written materials accompanying the Software.

Limited Warranty
1. Limited Warranty - Nevrona Designs warrants that the disks on which the Software is
furnished to be free from defects in material and workmanship, under normal use, for a period of
90 days after the date of the original purchase. If, during this 90-day period, a defect in the disk
should occur, the disk may be returned with proof of purchase to Nevrona Designs, which will
replace the disk without charge. Nevrona Designs warrants that the Software will perform
substantially in accordance with the accompanying written materials. Nevrona Designs does not
warrant that the functions contained in the Software will meet your requirements, or any operation
of the Software will be uninterrupted or error-free. However, Nevrona Designs will, after being
notified of significant errors during the 90-day period, correct demonstrable and significant
Software or documentation errors within a reasonable period of time, or refund all or a fair portion
of the price you have paid for the Software at Nevrona Designs' option.

2. Disclaimer of Warranties - Nevrona Designs disclaims all other warranties, either

Developers Guide

Page 4

expressed or implied, including but not limited to implied warranties of merchantability of
fitness from particular purpose, with respect to the Software and accompanying written
materials. This limited warranty gives you specific legal rights, you may have others,
varying from state to state. Nevrona Designs will have no consequential damages. In no
event, shall Nevrona Designs or its suppliers be liable for damages whatsoever, (including
without limitation, damages for loss of business profits, business interruption, loss of
business information, or any pecuniary loss), arising out of the use or the inability to this
Nevrona Designs product, even if Nevrona Designs has been advised of the possibility of
such damages. Some states do not allow the exclusion of limitation of liability for
consequential or incidental damages, and this limitation may not apply to you.

3. Sole Remedy - Nevrona Designs' entire liability in your inclusive remedy shall be, at Nevrona
Designs' option, either: (1) The return of the purchase price paid; or (2) Repair or replacement of
the Software that does not meet Nevrona Designs' limited warranty, which is returned to Nevrona
Designs with a copy of your receipt.

4. Governing Law - This Agreement will be construed and governed in accordance with laws of
the State of Arizona.

5. U.S. Government Restricted Rights - This Software and documentation are provided with
restrictive rights. Use, duplication or disclosure by the Government is subject to restrictions set
forth in Section c(1)(ii) of the Rights and Technical Data in Computer Software clause at 52.227-
7013.

Technical Support
Technical support, product updates, addons and other information relating to Rave Reports can
be found at the Nevrona Designs web site. Please visit one of the following web pages for more
information:

Technical Support - http:/www.nevrona.com/support

Addons, Tips and Tricks and other information - http:/www.nevrona.com/rave

Updates - http:/www.nevrona.com/rave/download.html

Developers Guide

Page 5

Tutorial 1

Introduction to Rave

Rave Toolbar
There are 2 different types of objects in Rave, Output Components and Report Classes. The
Output Components are responsible for sending the report to a variety of destinations. The
Report Classes are non-component classes that manage other reporting tasks.

Output Components

TRvSystem Incorporates a standard printer and preview system into one
easy to use component.

TRvNDRWriter Generates an NDR stream or file (a proprietary format) from
report execution.

TRvRenderPreview Displays a preview dialog for an NDR stream or file.

TRvRenderPrinter Sends an NDR stream or file to the printer.

TRvRenderPDF Converts an NDR stream or file to PDF format.

TRvRenderHTML Converts an NDR stream or file to HTML format.

TRvRenderRTF Converts an NDR stream or file to RTF format.

TRvRenderText Converts an NDR stream or file to Text format.

Developers Guide

Page 6

Rave Classes

TRvProject Provides a connection to a report project that was created
with the Rave visual designer. Use this component to get a
listing of all available reports or to execute a specific report.

TRvCustomConnection Connects custom data (generated through events) to
DirectDataViews created with the Rave visual designer.

TRvDataSetConnection Connects TDataSet data (e.g. TClientDataSet, 3rd party
TDataSet descendents) to DirectDataViews created with the
Rave visual designer.

TRvTableConnection Connects TTable components to DirectDataViews created
with the Rave visual designer.

TRvQueryConnection Connects TQuery components to DirectDataViews created
with the Rave visual designer.

Developers Guide

Page 7

Tutorial 2

Quick Start with Rave

Welcome to RAVE!
RAVE (Report Authoring Visual Environment) is the visual side of Rave. This tutorial will quickly
guide you through the minimum steps required to build your first visual report with the Rave visual
designer and then give a brief overview of what makes up a Rave reporting project. Later tutorials
will go into more detail on Rave so if you're ready, let's get started.
1) Start Delphi and create a new application.
2) Create a TTable, TQuery or some other TDataSet component and initialize it to a valid

table. Set the component's Active property to true to insure that all properties are set
correctly.

3) Create a TRvDataSetConnection component (located on the Rave component tab) and
set the DataSet property to the database component you created in Step 2. Change the
name of this new component to "TutorialCXN".

4) Create a TRvProject component (located on the Rave component tab). Double-click on
the new component or right click and select "Rave Visual Designer" to bring up the visual
designer.

5) Once the Rave visual designer is finished loading, select Project | New Data Object from
the main menu to bring up the Data Connections dialog. Select Direct Data View and
click Next. Make sure that TutorialCXN is highlighted in the Active Data Connections
listbox and press the OK button.

6) Locate the Project Tree (the treeview on the left side of the visual designer) and open up
the Data View Dictionary. Select the new data view, DataView1, that was just created.
Using the Property Panel (located below the Project Tree), change DataView1's Name
property to TutorialDV.

7) Now we're ready to create a report. Select Tools | Report Wizards | Simple Table from
the main menu to bring up the Simple Table wizard. Make sure TutorialDV is selected
and press Next to advance. Select 2 or 3 fields in the listbox and press Next to advance.
Change the order of the fields if you wish and press Next to advance. Change the report
title to describe the contents of this report and the press Next to advance. Change the
font sizes if you wish and then press Generate to create the report.

8) To preview this report, select Project | Execute Report to bring up the Report Setup
dialog. Make sure "Preview" is selected as the report destination and press the OK
button. You should now see a preview of your report.

Congratulations! You have now created your first Rave report. The following is a list of what
typically makes up an application using Rave:

Structure of Rave
1) Data connection components - If you noticed in the above example, Rave uses data from

your application. The standard data connection components, TRvCustomConnection,
TrvDataSetConnection and TRvTableConnection provide a bridge between the data in
your application and the Rave visual components. The TRvCustomConnection
component can be used to access non-database data such as memory arrays or binary
record files. TRvDataSetConnection can be used to provide access to TDataSet
descendent components including 3rd party dataset components. TRvTableConnection
is to be used specifically with TTable components or their descendents respectively.
More detailed usage of data connection components is explained in much more detail in
a later tutorial.

Developers Guide

Page 8

a later tutorial.
2) TRvProject component - This component provides access to the reports and their

components. The TRvProject component contains many properties and methods that
allow you to create, modify, print and design your reporting projects and will be explained
in much more detail in a later tutorial. You will usually only require one TRvProject
component per application, but there is no limitation to having more. More detailed usage
of the TRvProject component is explained in much more detail in a later tutorial.

3) Report project file (.RAV file) - The report project file is where the report definitions are
stored by the Rave visual designer. This is a binary file, similar to Delphi's .DFM files. All
reports, global pages and data views for the reporting project are stored in this single file.
You can export or import items from or to a report project file. Using methods of the
TRvProject component, you can also store the report project file in a database blob field
or other location.

4) Reports - Reports are stored in the Report Library of the reporting project. A Rave report
is made up of report pages and the visual reporting components stored on those pages.
You can create as many page definitions as you want and combine them in a wide
variety of methods.

5) Global Pages - Global pages are stored in the Global Page Catalog of the reporting
project. Components contained on global pages, unlike those in report pages, are visible
to all reports. global pages are a useful for storing templates that are mirrored on other
report pages.

6) Data Views - Data views are stored in the Data View Dictionary of the reporting project.
Data views provide an interface to data connection components. When creating new
data views, you must have the data connection component active in either a running
application or on a loaded Delphi or C++Builder form. The data view will then query the
data connection component to retrieve meta-data information such as field names, data
types, etc. Field components are contained within each data view allowing properties to
be set for each data column.

Developers Guide

Page 9

Tutorial 3

TRvSystem Component

Description
The TRvSystem component is a very powerful component that integrates the
functionality of the three components, TRvRenderPreview, TRvRenderPrinter and
TRvNDRWriter in one easy to use system. TRvSystem can send a report to the printer or

a preview screen and can display a setup and status screen as well.

Properties
DefaultDest is where the report will be sent if no setup screen is used or is the default during
setup. SystemFiler, which can be accessed by double-clicking on the left column in the Object
Inspector, will display all of the filer type options from TRvNDRWriter, TRvRenderPreview and
TRvRenderPrinter. All SystemFiler options operate the same as the other components except for
a stream mode of smMemory which does not require a filename and will use a TMemoryStream
to contain the report.

The SystemOptions properties control the configuration of the TRvSystem component.
soUseFiler will always send the report to a report file. This can be very useful if the Macro method
has been used in the report. soWaitForOK will determine whether the user has to press the OK
button once the report has been generated for output. soShowStatus will determine whether or
not the status screen is displayed when the report is being generated or printing.
soAllowPrintFromPreview will determine whether the user can print from the preview screen.
soPreviewModal determines the modal mode that the preview window is brought up in
soNoGenerate will skip over the generation phase of the report and proceed straight to the
screen. This options should only be used with a StreamMode of smFile where the report file has
been previously generated and needs only to be viewed or printed.

SystemPreview displays all of the preview type options found in TRvRenderPreview.
SystemPrinter displays all of the printer type options found in TRvNDRWriter.

The SystemSetups properties control the configuration of the standard setup screen for

Developers Guide

Page 10

TRvSystem. ssAllowSetup will determine whether or not the setup screen is displayed.
ssAllowCopies, ssAllowCollate and ssAllowDuplex will enable those options in the setup screen.
ssAllowDestPreview, ssAllowDestPrinter and ssAllowDestFile will determine which destination
options the user has access to. ssAllowPrinterSetup will determine whether the user can select
the printer setup dialog which allows the selection of alternate printers and other printer options.
ssAllowPreviewSetup determines whether the user will be allowed to select the printer setup
dialog after preview.

Events
All of the OnXxxx events for TRvSystem operate exactly like they do for TRvNDRWriter. The
override events, OverridePreview, OverrideSetup and OverrideStatus allow the programmer to
replace the default screens provided with Rave with their own. There is no printed documentation
on how to do this but the TRvSystem component uses the same method as a user would have to.
Reference the methods OverridePreviewProc, OverrideStatusProc and OverrideSetupProc for
how to create an override event method. The units RpFormPreview, RpFormStatus and
RpFormSetup located in \RAVE4\SOURCE will also show how to interface with TRvSystem and
can be used as starting points for customized versions of the different forms.

Developers Guide

Page 11

Tutorial 4

Rave Data Connection

Data Bridge
As was mentioned previously, data connections provi de a bridge between the data in your Delphi
or C++Builder application and a Rave report. The first thing you have to do is choose the type of
Rave data connection that you will need. This is determined by the type of database components
that you are using. Use the table below to help you decide the best data connection component to
use:
Data Connection
Component

Best used with… How to connect

TRvCustomConnection Memory arrays, non-database
files or non-TDataSet database
components

Define events such as OnFirst,
OnNext, OnEOF, OnGetCols and
OnGetRow.

TRvDataSetConnection 3rd Party TDataSet descendent
database components

Initialize the DataSet property to
the TDataSet component

TRvTableConnection TTable, replacement TTable or its
descendents

Initialize the Table property to the
TTable component

Naming the Data Connection
The Name property of the data connection component is used as the name of the data
connection itself. It is important to use unique names for your data connection components since
there can be no duplication across your application. It is also good pratice to include a unique
application identifier in your data connection names since data connections are visible from other
applications. For example, if your application is called Wizbang Object Wizard you could prepend
the letters WOW in front of each data connection name to help insure your data connection
names are unique for your application.

Controlling the Visibility of the connection
The Visible property of the data connection component is used to define whether the data
connection is visible to other applications or the end-user version of the Rave visual designer.
The default value of False means that the data connection will only be visible to a Rave report
being printed from within the same application as the data connection component or from the
programmer version of the Rave visual designer. A value of True for the Visible property means
that the data connection will be visible to any Rave report being run from within any application or
from the end-user or programmer version of the Rave visual designer. While data connections of
this type are available to the end-user designer, they will not be displayed when then end-user
attempts to create a new data view unless they belong to the application that started the Rave
visual designer. If you want to make data connections from other applications available to your
end-users it is best to create a report project with the programmer version of the Rave visual
designer with the data views already defined for these external data connections.

Custom Data Connections
In the future, there will be other custom data connection components available written specifically
for other database components. See the file CUSTOMDB.TXT in the source directory for more
information on availability and installation.

Developers Guide

Page 12

Developers Guide

Page 13

Tutorial 5

Customizing Data Connections

Using Events to Customize your Data Connection
Through the events in the data connection components, you can customize how the data
is sent to your Rave reports. For non-database data using the TRvCustomConnection
component, you will need to provide all access to your data through these events. For

database data connection components such as TRvDataSetConnection, you will normally only
want to override the OnValidateRow event. The data connection events are as follows:
Event Description
OnEOF Called when Rave wants to determine if it is at the end of the data. A true value

should be returned only if there are no rows or if a call to the OnNext event has
moved past the last row.

OnFirst Called when Rave wants the data cursor to be moved to the first row of the
data. With Rave's advanced buffering system, this will usually only be called
once at the beginning of a data session.

OnGetCols Called when Rave wants to retrieve the meta-data of the data. This includes
the field name, type, character size, full name and description. See below for
more details.

OnGetRow Called when Rave wants to retrieve the data for the current row. See below for
more details.

OnGetSorts Called when Rave wants to retrieve the available sorting methods.
OnNext Called when Rave wants to move the data cursor to the next row.
OnOpen Called when Rave wants to initialize the data session. The current state should

be saved for the later call to OnRestore.
OnRestore Called when Rave wants to restore the data session to its state before it was

opened.
OnSetFilter Called when Rave wants to filter the data for items such as Master-Detail

reports.
OnSetSort Called when Rave wants to sort the data. See below for more details.
OnValidateRow Called for each row to allow custom filtering of the data. For a custom data

connection, this event is normally not needed since filtering the data through
the OnNext event is more efficient. However, this event can be very useful for
other, more automated data connections such as TRvDataSetConnection. See
below for more details.

NOTE:

The TRvCustomConnection component has a DataIndex and DataRows property of type integer.
These are provided for use by custom connector events and if used, can allieviate the need to
define the OnFirst, OnNext and OnEOF events. DataIndex is intended to be used as the data
cursor position with 0 representing the first row. DataRows is intended to be used as the row
count of the data. For example, if you were defining a custom data connection for a memory
array, you would only need to initialize the Connection.DataRows property to the number of
elements in the memory array and then let Rave handle the OnFirst, OnNext and OnEOF events.
In the OnGetRow event you would then access the Connection.DataIndex property to determine
which array element to pass back (remember that DataIndex is 0 for the first row).

Developers Guide

Page 14

OnGetCols Event
The OnGetCols event is called when Rave want to retrieve the meta-data information of the data.
Inside this event you will want to call the Connection.WriteField method for each field (column) of
your data. The definition of WriteField is as follows:

procedure WriteField(Name: string;
 DataType: TRpDataType;
 Width: integer;
 FullName: string;
 Description: string);

Name is the short name of the field and should only contain alphanumeric characters. DataType
is the type of data that this field represents and should be one of the following values: dtString,
dtInteger, dtBoolean, dtFloat, dtCurrency, dtBCD, dtDate, dtTime, dtDateTime, dtBlob, dtMemo or
dtGraphic. Width is the relative character width of the field. Full name is a more descriptive name
of the field and can include spaces and other non-alphanumeric characters. If FullName is blank
then the short name is used as the field's full name. Description is a full description of the field
and is typically edited with memo component so it can contain multiple lines. Use the description
property to define how the field is to be used and provide any other information about the field's
data.

Example:

procedure TDataForm.CustomCXNGetCols(Connection: TRvCustomConnection);
begin
 With Connection do begin
 WriteField('Index',dtInteger,8,'Index Field','Description 1');
 WriteField('Name',dtString,30,'Name Field','Description 2');
 WriteField('Amount',dtFloat,20,'Amount Field','Description 3');
 end; { with }
end;

OnOpen event
The OnOpen event is called to initialize a data session. In this event you can open up data files,
initialize variables and save the current state of the data for the OnRestore event which will be
called to terminate the data session.

Example:

procedure TDataForm.CustomCXNOpen(Connection: TRvCustomConnection);
begin
 AssignFile(DataFile,'DATAFILE.DAT');
 Reset(DataFile,1);
end;

OnFirst Event
The OnFirst event is called to position the data cursor to the first row of the data.

Example:

procedure TDataForm.CustomCXNFirst(Connection: TRvCustomConnection);
begin
 Seek(DataFile,0);
 BlockRead(DataFile,DataRecord,SizeOf(DataRecord),DataRead);
end;

Developers Guide

Page 15

OnNext event
The OnNext event is called to move the data cursor to the next row of data.

Example:

procedure TDataForm.CustomCXNNext(Connection: TRvCustomConnection);
begin
 BlockRead(DataFile,DataRecord,SizeOf(DataRecord),DataRead);
end;

OnEOF event
The OnEOF event is called to return whether the data cursor is beyond the EOF or not. A true
value should be returned only if there are no rows or if a call to the OnNext event has moved past
the last row.

Example:

procedure TMainForm.CustomCXNEOF(Connection: TRvCustomConnection;
 var EOF: Boolean);
begin
 EOF := DataRead < SizeOf(DataRecord);
end;

OnGetRow event
The OnGetRow event is called to retrieve the data for the current row. There are several methods
used to write the data to a special buffer used by Rave. The order and types of the fields written
must match exactly the field definitions provided in the OnGetCols event.

The following is a list of the methods provided by the Connection object for writing data out to the
data buffer.

procedure WriteStrData(FormatData: string;
 NativeData: string); { dtString }
procedure WriteIntData(FormatData: string;
 NativeData: integer); { dtInteger }
procedure WriteBoolData(FormatData: string;
 NativeData: boolean); { dtBoolean }
procedure WriteFloatData(FormatData: string;
 NativeData: extended); { dtFloat }
procedure WriteCurrData(FormatData: string;
 NativeData: currency); { dtCurrency }
procedure WriteBCDData(FormatData: string;
 NativeData: currency); { dtBCD }
procedure WriteDateTimeData(FormatData: string;
 NativeData: TDateTime); { dtDate, dtTime and
 dtDateTime }
procedure WriteBlobData(var Buffer;
 Len: longint); { dtBlob, dtMemo and
 dtGraphic }

There is also a special method called WriteNullData (no parameters) that can be called for any
field that contains uninitialized or null data. The FormatData parameter is used to pass a
preformatted string of the data for this field. The NativeData parameter is intended to pass the
unformatted or raw data of the field. If special formatting is defined in the Rave report then the
formatting will be applied to NativeData. If no special formatting is defined in the Rave report then
the FormatData value will be used for printing.

Developers Guide

Page 16

Example:

procedure TDataForm.CustomCXNGetRow(Connection: TRvCustomConnection);
begin
 With Connection do begin
 WriteIntData('',DataRecord.IntField);
 WriteStrData('',DataRecord.StrField);
 WriteFloatData('',DataRecord.FloatField);
 end; { with }
end;

OnValidateRow event
The OnValidateRow event is called for each row and allows you to control whether the current
row will be included in the report or not. This is usually the only event that will be defined for non-
custom data connections.

Example:

procedure TDataForm.CustomCXNValidateRow(Connection: TRvCustomConnection;
 var ValidRow: Boolean);
begin
 ValidRow := DataRecord.FloatField >= 0.0;
end;

OnRestore event
The OnRestore event is called to terminate and restore a data session to its previous state. In this
event you can close data files, free resources and restore the state of the data to its state that it
was before the OnOpen event was called.

Example:

procedure TDataForm.CustomCXNRestore(Connection: TRvCustomConnection);
begin
 CloseFile(DataFile);
end;

Developers Guide

Page 17

Tutorial 6

TRvNDRWriter component

Description
The TRvNDRWriter component is used in conjunction with TRvRenderPrinter and
TRvRenderPreview to store a report in a special binary format until it is ready to be
printed or previewed.

Properties and Events
TRvNDRWriter has properties and events to control file output. AccuracyMethod determines the
way that strings are output for more accurate print preview. FileName is the file that will be
created if StreamMode is anything other than smUser. Use smFile for large reports (>10 pages or
lots of bitmaps) and smMemory for smaller reports (< 10 pages). To send a report to a file call the
Execute method.

Developers Guide

Page 18

Developers Guide

Page 19

Tutorial 7

Rendering components

TRvRenderPreview Description
The TRvRenderPreview component takes a file generated by a TRvNDRWriter
component and sends it to the screen for previewing. TRvRenderPreview has many
methods and events that allow the programmer to create a completely customized user

interface.

TRvRenderPreview Properties
ScrollBox defines the TScrollBox component that the report will be drawn in. FileName and
StreamMode are used in the same manner as TRvNDRWriter and TRvRenderPreview. GridHoriz
and GridVert define the horizontal and vertical spacing, in inches or metric, between each grid
marking drawn with GridPen. RulerType along with the grid settings can be useful during report
development for determining accurate placement of items without having to produce printed
output. MarginMethod and MarginPercent determine the method and size of the blank margin
around the page image. ShadowDepth defines the number of pixels for the page shadow.
Monochrome defines whether the output is drawn on a monochrome or color bitmap. are skipped
when calling NextPage or PrevPage. ZoomInc defines the amount that ZoomIn and ZoomOut will
use to modify the current zoom percentage, ZoomFactor.

TRvRenderPreview Events
OnPageChange is called whenever the current page is changed and allows the programmer to
update the user interface with the new current page number. OnZoomChange is called whenever
the current zoom factor, ZoomFactor, is changed and allows the programmer to update the user
interface with the new zoom factor.

TRvRenderPrinter Description
The TRvRenderPrinter component takes a file generated by a TRvNDRWriter
component and sends it to the current printer. TRvRenderPrinter is often used to do a
print from the preview screen. TRvRenderPrinter is a simple component but does have

methods and properties to customize the selection of what gets printed.

TRvRenderPrinter Properties and Events
FileName is the name of the report file generated by TRvNDRWriter if StreamMode is smMemory
or smFile. A stream mode of smUser is used when the programmer wants to provide their own
stream object (any descendent of TStream will work) by assigning it to the Stream property of
TRvNDRWriter, TRvRenderPrinter and/or TRvRenderPreview. There are no events for
TRvRenderPrinter. To send a report file to the printer call the Execute or ExecuteCustom
methods.

TRvRenderPDF Description
TRvRenderPDF will allow the generation of PDF (Adobe Acrobat) documents from
reports. Fonts can be embedded into the PDF document by setting EmbedFonts to true.
The desired quality of images included in the PDF file can be set with a percentage

quality in the ImageQuality property. Compressed PDF documents can be generated by setting
UseCompression to true, including ZLib in the uses and defining an OnCompress event such as:

Developers Guide

Page 20

With TCompressionStream.Create(clMax, OutStream) do try
 CopyFrom(InStream, InStream.Size);
finally
 Free;
end; { with }

The easiest way to include rendering capability in an application is to drop a render component
on a form which will automatically register that format with the standard setup and preview
dialogs of TRvSystem. If a more automatic means of rendering is desired, the Render method
can be called by passing in either an NDR TStream object or a file name of an NDR file as the
single parameter.

TRvRenderHTML Description
TRvRenderHTML will convert an NDR stream or file into HTML pages. Text, graphic, line
and rectangle objects objects are supported. The resulting output is in HTML 4.0 format
and is designed to match the printed output as closely as possible.

TRvRenderRTF Description
TRvRenderRTF will convert an NDR stream or file into RTF format. The resulting RTF
document is designed to appear as close as possible to the original printed report.
Elements in the document are included in separate "frames" to support accurate

positioning on the page.

TRvRenderText Description
TRvRenderText will convert and NDR stream or file to text format. Only text items in the
report are supported, all other objects such as graphics or lines will be ignored. The CPI
property allows the characters per inch to be defined and the LPI property allows the

lines per inch to be defined to match the final output device. Note that the final output of the text
file to a printer may not match the settings of CPI or LPI since there are no special formatting
commands inserted into the text file.

Developers Guide

Page 21

Chapter 8

TRvProject Component

Overview
The TRvProject component is the key to providing access to the visual reports you
create with Rave. Normally you will have a single TRvProject component in your
application, although you can have more if necessary. The ProjectFile property defines

the report project file that your application uses to hold the report definitions. This file will have an
extension of .RAV and even though it is a single file, it can contain as many report definitions as
you need. When the Open method of TRaveReport is called, this report project file will be loaded
into memory to prepare for printing or end-user design changes. You should make sure that the
Close method is called when you no longer need the report project or before you close your
application. If any changes are made to the report project you can save them by calling the Save
method. TRvProject also has several properties and methods, such as SelectReport,
GetReportList, ReportDescToMemo, ReportDesc, ReportName and ReportFullName to make it
easy to create an efficient interface for your users. See the RAVEDEMO project for a good
example of how to define a Rave interface.

Engine Property
The Engine property of TRvProject allows you to define an alternate output engine to be used.
This allows you to define custom setup and preview screens through the TRvSystem component
or to generate NDR streams or files through the TRvNDRWriter component.

Using TRvProject
The following is a basic sequence of steps that you would perform while using the TRvProject
component within your application:
1) Call RvProject.Open; to open the report project defined in the ProjectFile property.
2) Call RvProject.GetReportList(ListBox1.Items,true); to load a list of report names into

ListBox1.
3) Whenever the user click on ListBox1 (ListBox1.OnClick), call RvProject.SelectReport(

ListBox1.Items[ListBox1.ItemIndex],true); and then RvProject.ReportDescToMemo(
Memo1); to select the current report and to copy the description of the report into
Memo1.

4) Call RvProject.Execute; to print the currently selected report.
5) Call RvProject.Design; to start then end-user designer for the currently selected report

(available with End User Designer License (EUDL) only).
6) Call RvProject.Close; to close the report project and free the memory used by it.

This is just a basic overview of a typical application and how it would call the TRvProject methods
and properties. There are several other properties and methods defined in the main reference
that give you even more capabilities.

To conserve space in your application, Rave only preloads the Graphics, Standard and Reporting
components. Barcode components as well as any other custom components must be registered
and compiled into the application explicitly if they are used in any Rave reports. The following is a
list of the steps to include the barcode components into an application:
1) On the form that contains the TRvProject component for the application, add the uniy

RvCsBars to the uses clause.

Developers Guide

Page 22

2) Define the TRvProject.OnCreate event and call the RaveRegister method of the
RvCsBars unit as follows:

procedure TReportForm.RvProjectCreate(Sender: TObject);
begin
 RvCsBars.RaveRegister;
end;

The above two steps would be required of any custom component that is used in a Rave report. If
you do not do the correct steps you will get an error such as "Class TRavePostNetBarcode not
found" when opening the reporting project.

Developers Guide

Page 23

Appendix A

Formatting

Below is a list of different format codes and what they will accomplish for each output type.

AlphaNumeric Items
Description: DisplayFormat formats the value given using the format string. The following

format specifiers are supported in the format string:

Examples: Format String 123456.78 -123.0 0.5 0.0
 #,##0.00 123,456.78 -123.00 0.50 0.00
 #.# 123456.8 -123 .5 0
 $,0.00 $123,456.78 $-123.00 $0.50 $0.00
 0.00;(0.00);'-' 123456.78 (123.00) 0.50 -----

Specifier Represents
0 Digit place holder. If value being formatted has a digit where the '0' appears, then the

digit is copied to the output string. Otherwise, a '0' is in the output string.
Digit place holder. If value being formatted has a digit where the '#' appears, then the

digit is copied to the output string. Otherwise, nothing appears in that position.
. Decimal point. The first '.' character in the format string determines the location of the

decimal separator in the formatted value. The actual character used as a the decimal
separator in the output string is determined by the Number Format of the
International section in the Windows Control Panel.

, Thousand separator. If the format string contains a ',' characters, the output will have
thousand separators inserted between each group of three digits to the left of the
decimal point. The actual character used as a the thousand separator in the output is
determined by the Number Format of the International section in the Windows
Control Panel.

E+ Scientific notation. If any of the strings 'E+', 'E-', 'e+', or 'e-' are contained in the
format string, the number is formatted using scientific notation. A group of up to four
'0' characters can immediately follow the 'E+', 'E-', 'e+', or 'e-' to determine the
minimum number of digits in the exponent. The 'E+' and 'e+' formats cause a plus
sign to be output for positive exponents and a minus sign to be output for negative
exponents. The 'E-' and 'e-' formats output a sign character only for negative
exponents.

'xx'/"xx" Characters enclosed in single or double quotes are output as-is, and do not affect
formatting.

; Separates sections for positive, negative, and zero numbers in the format string.

The locations of the leftmost '0' before the decimal point in the format string and the rightmost '0'
after the decimal point in the format string determine the range of digits that are always present in
the output string.

The number being formatted is always rounded to as many decimal places as there are digit
placeholders ('0' or '#') to the right of the decimal point. If the format string contains no decimal
point, the value being formatted is rounded to the nearest whole number.

If the number being formatted has more digits to the left of the decimal separator than there are

Developers Guide

Page 24

digit placeholders to the left of the '.' character in the format string, the extra digits are output
before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string can contain
between one and three sections separated by semicolons.
One section: The format string applies to all values.
Two sections: The first section applies to positive values and zeros, and the second section

applies to negative values.
Three sections: The first section applies to positive values, the second applies to negative

values, and the third applies to zeros.

If the section for negative values or the section for zero values is empty, that is if there is nothing
between the semicolons that delimit the section, the section for positive values is used instead.

If the section for positive values is empty, or if the entire format string is empty, the value is
formatted using general floating-point formatting with 15 significant digits.

Date / Time items
Items that are either a date or time field can use the following format codes. The format specifiers
are not case sensitive. If the format parameter is blank then the value is formatted as if a 'c'
specifier had been given. The following format specifiers are supported:
Examples: dddd, mmmm d, yyyy => Monday, September 21 1998
 d mmm yy => 21 Sep 98

Specifier Displays
c Displays date using format given by ShortDateFormat global variable, followed by time

using format given by LongTimeFormat global variable. The time is not displayed if
fractional part of the DateTime value is zero.

d Displays the day as a number without a leading zero (1-31).
dd Displays the day as a number with a leading zero (01-31).
ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the

ShortDayNames global variable.
dddd Displays the day as a full name (Sunday-Saturday) using the strings given by the

LongDayNames global variable.
ddddd Displays the date using the format given by the ShortDateFormat global variable.
dddddd Displays the date using the format given by the LongDateFormat global variable.
m Displays the month as a number without a leading zero (1-12). If the m specifier

immediately follows an h or hh specifier, the minute rather than the month is displayed.
mm Displays the month as a number with a leading zero (01-12). If the mm specifier

immediately follows an h or hh specifier, the minute rather than the month is displayed.
mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the

ShortMonthNames global variable.
mmmm Displays the month as a full name (January-December) using the strings given by the

LongMonthNames global variable.
yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).

Developers Guide

Page 25

s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).
t Displays the time using the format given by the ShortTimeFormat global variable.
tt Displays the time using the format given by the LongTimeFormat global variable.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am' for any

hour before noon, and 'pm' for any hour after noon. The am/pm specifier can use
lower, upper, or mixed case, and the result is displayed accordingly.

a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for any
hour before noon, and 'p' for any hour after noon. The a/p specifier can use lower,
upper, or mixed case, and the result is displayed accordingly.

ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the contents
of the TimeAMString global variable for any hour before noon, and the contents of the
TimePMString global variable for any hour after noon.

"/" Displays the date separator character given by the DateSeparator global variable.
: Displays the time separator character given by the TimeSeparator global variable.
'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, and do not affect

formatting.

Developers Guide

Page 26

Developers Guide

Page 27

Appendix B

Keyboard / Mouse Shortcuts

Below is a list of different Keyboard / Mouse combinations that can be used as a shortcut. See
Preferences - Shortcuts for assigning keyboard keys to your own shortcuts.

Page Designer or Project Tree
Click on a component selects that component
Right Click shows context menu for that component
Shift Alt Click adds all components of the same type as the component clicked on to

the selection list of the current page designer
Shift Ctrl Click adds all children of clicked component to selection list
Shift Click on a component toggles the selection for that component. This can be

used to select multiple components.

Page Designer Only
Click in blank area of Page Designer removes selection of all components
Ctrl + Arrow Keys taps (moves) selected components in direction of arrow key
Ctrl C / Ctrl Ins copies selection to clipboard
Ctrl Click centers the design window to location clicked
Ctrl F4 unloads current global page
Ctrl V / Shift Ins paste clipboard to page designer
Ctrl X / Shift Del cuts selection to clipboards
Delete deletes currently selected component(s)
Escape changes selection to parent of current component
F9 executes the current report
F11 toggles between page designer and property panel
Shift + Arrow Keys changes size of selected components (Up = decrement height, Down =

increment height, Left = decrement width, Right = increment width)

Project Tree Only
Alt Drag DataField component to page designer - creates text component
Alt Drag selected component to container component in Project Tree - makes the

destination component (must be a container component like sections or
regions) the parent of all selected components

Ctrl Drag DataField component to page designer - creates DataText component
Ctrl Drag component to page designer - creates a mirror of component
Double Click on Global Page node - loads selected page into page designer
Double Click on Report node - actives selected report

Developers Guide

Page 28

Developers Guide

Page 29

Appendix C

Property Descriptions

Listed below is an alphabetical listing of all properties that make up the RAVE system. Properties
are defined by their data type, category, components they are members of, a short description
and any relationships they have with other properties. The default values are added where
applicable.

Abort method

Declaration
procedure Abort;

Category
Control

Component/Class
TBaseReport

Description
This method will abort the printing of the report and set the property Aborted to true.
NOTE: Abort raises the silent exception Abort that will cease the current thread of execution.
Make sure to use exception handling (try...finally) to restore any resources that you may
allocate in your reporting code.

See also
Aborted, Execute

Example
Delphi
procedure TRpStatusForm.CancelButtonClick(Sender:TObject);
begin
 RvNDRWriter1.Abort;
end;

C++Builder
void __fastcall
 TRpStatusForm::CancelButtonClick(TObject* Sender)
{
 RvNDRWriter1->Abort();
}

Developers Guide

Page 30

Aborted property (read only)

Declaration
property Aborted: boolean;

Category
Control

Component/Class
TBaseReport

Description
This property will be set to true after a call to Abort has been made.

See also
Abort

Example
Delphi
RvNDRWriter1.Execute;
if RvNDRWriter1.Aborted then begin
 StatusFormat := #13 + 'Report Canceled!';
end else begin
 StatusFormat := #13 + 'Report Completed!';
end; { else }
UpdateStatus;

C++Builder
rp->Execute();
if (rp->Aborted) {
 rp->StatusFormat = "\nReport Canceled!";
} else {
 rp->StatusFormat = "\nReport Completed!";
}
rp->UpdateStatus();

Developers Guide

Page 31

AbortPage method

Declaration
procedure AbortPage;

Category
Control

Component/Class
TBaseReport

Description
This method will abort the printing of the current page and start printing a new page.

See also
Abort

Example
Delphi
RvNDRWriter1.AbortPage;
C++Builder
rp->AbortPage();

AccuracyMethod property (read/write/published)

Declaration
property AccuracyMethod: TAccuracyMethod;

Default
amAppearance {TRvNDRWriter}, amPositioning {TRvSystem}

Category
Control

Component/Class
TBaseReport

Description
This property controls how text is written to the report file. If AccuracyMethod is equal to
amPositioning then the text is written out in a manner that will be reproduced as accurately as
possible on the screen or any printers. If it is equal to amAppearance then the text string is
written out as a complete string in the normal fashion. The problem with amAppearance is
that screen fonts often do not size the same as printer fonts. Therefore, text strings may
appear shorter or longer on the preview screen than they do on the printer.

Example
Delphi
RvNDRWriter1.AccuracyMethod := amAppearance;
C++Builder
RvNDRWriter1->AccuracyMethod = amAppearance;

Developers Guide

Page 32

Active property (read/write)

Declaration
property Active: Boolean;

Default
false

Category
Rave

Component/Class
TRvProject

Description
You can change or retrieve the active state of a report project with this property. Setting
Active to true is the same as calling the Open method while setting Active to false is the same
as calling the Close method.

See also
Close, OnAfterClose, OnAfterOpen, OnBeforeClose, OnBeforeOpen, Open

Example
Same as RaveProject1.Open;

Delphi
RvProject1.Active := True; { Same as RvProject1.Open; }
C++Builder
RvProject1->Active = true;

Active property (read/write)

Declaration
property Active: boolean read FActive write FActive

Default
true

Category
Render

Component/Class
TRpRender

Description
From the Print Setup dialog box, select the option to print to file. File types may then be
selected from the combobox. Setting the active property to true, which is the default, will
cause the component to be listed as one of the file formats to print to.

See also
DisplayName

Developers Guide

Page 33

AdjustLine method

Declaration
procedure AdjustLine;

Category
Position

Component/Class
TBaseReport

Description
This method will adjust the current text cursor so that the current line is placed correctly
below the previous line after a change in font size. Use AdjustLine when you want to reset
the line height and line font after the cursor is already on the next line.

See also
ResetLineHeight

Example
Delphi
SetFont('Arial',14);
Println('This is the first line of text');
SetFont('Arial',10);
AdjustLine;
Println('This is the second line of text');

C++Builder
rp->SetFont("Arial",14);
rp->Println("This is the first line of text");
rp->SetFont("Arial",10);
rp->AdjustLine();
rp->Println("This is the second line of text");

Developers Guide

Page 34

AllowAll method

Declaration
procedure AllowAll;

Category
Control

Component/Class
TBaseReport

Description
This method will reset the valid destinations to all after they have been modified by
AllowPreviewOnly or AllowPrinterOnly.

See also
AllowPreviewOnly, AllowPrinterOnly

Example
Draw a line on the preview screen only

Delphi
AllowPreviewOnly;
MoveTo(1.5,1.5);
LineTo(6.5,1.5);
AllowAll;

C++Builder
rp->AllowPreviewOnly();
rp->MoveTo(1.5,1.5);
rp->LineTo(6.5,1.5);
rp->AllowAll();

Developers Guide

Page 35

AllowPreviewOnly method

Declaration
procedure AllowPreviewOnly;

Category
Control

Component/Class
TBaseReport

Description
This method will set the valid destinations to preview only. Any printing commands that follow
will only be sent to the preview screen. The method can be very useful to print items that you
want to appear on the preview screen but not the printer (Such as the label extents for the
TLabelShell component).

See also
AllowAll, AllowPrinterOnly

Example
See AllowAll

AllowPrinterOnly method

Declaration
procedure AllowPrinterOnly;

Category
Control

Component/Class
TBaseReport

Description
This method will set the valid destinations to printer only. Any printing commands that follow
will only be sent to the printer. This method can be very useful to print items that you want to
appear on the printer but not the preview screen.

See also
AllowAll, AllowPreviewOnly

Example
See AllowAll

Developers Guide

Page 36

Append method

Declaration
procedure Append(Text: string);

Category
Memo

Component/Class
TMemoBuf

Description
This method will append Text to the end of the memo buffer.

See also
Insert

Example
Delphi
MemoBuf.Append(' This is a new sentence on the end.');
C++Builder
MemoBuf->Append(" This is a new sentence on the end.");

AppendMemoBuf method

Declaration
procedure AppendMemoBuf(MemoBuf: TMemoBuf);

Category
Memo

Component/Class
TMemoBuf

Description
Will append MemoBuf to the current memo buffer.

See also
InsertMemoBuf

Example
Delphi
MemoBuf1.AppendMemoBuf(MemoBuf2);
C++Builder
MemoBuf1->AppendMemoBuf(MemoBuf2);

Developers Guide

Page 37

Arc method

Declaration
procedure Arc(X1,Y1,X2,Y2,X3,Y3,X4,Y4: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method draws an arc inside an ellipse bounded by the rectangle defined by (X1,Y1) and
(X2,Y2). The arc starts at the intersection of the line drawn between the ellipse center
((X1+X2) / 2.0,(Y1+Y2) / 2.0) and the point (X3,Y3) and is drawn counterclockwise until it
reaches the intersection of the line drawn between the ellipse center and the point (X4,Y4).

See also
Ellipse, Pie

Example
Delphi
RvNDRWriter1.Arc(1.0,1.0,3.0,3.0,3.0,2.0,0.0,0.0);
C++Builder
RvNDRWriter1->Arc(1.0,1.0,3.0,3.0,3.0,2.0,0.0,0.0);

AscentHeight property (read only)

Declaration
property AscentHeight: double;

Category
Position

Component/Class
TBaseReport

Description
Returns the height of the line font above the baseline.
NOTE: This applies to the line font only and not to the current textfont.

See also
DescentHeight, FontHeight, LineHeight

Developers Guide

Page 38

AssignFont method

Declaration
procedure AssignFont(Font: TFont);

Category
Font

Component/Class
TBaseReport

Description
Selects current font to the TFont object from list.

See also
SetFont

Example
Delphi
RvNDRWriter1.AssignFont(FontDialog1.Font);
C++Builder
RvNDRWriter1->AssignFont(FontDialog1->Font);

BarBottom property (read/write)

Declaration
property BarBottom: double;

Default
pjLeft

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the location of the bottom of the bar portion of the bar code. The location of
the readable text is controlled by PrintReadable and PrintTop properties.

See also
BarTop, Bottom, PrintReadable, PrintTop

Example
See Create { bar code }

Developers Guide

Page 39

BarCodeJustify property (read/write)

Declaration
property BarCodeJustify: TPrintJustify

Default
pjLeft

Category
BarCode

Component/Class
TRpBarsBase

Description
This determines where the bar code is printed relative to the Position property.
 pjLeft99 Print the bar code left justified at Position
 pjCenter Print the bar code centered at Position
 pjRight Print the bar code right justified at Position

See also
Center, Left, Position, Right

Example
equivalent to Center := 2.5;

Delphi
Position := 2.5;
BarCodeJustify := pjCenter;

C++Builder
rp1->Position = 2.5;
rp1->BarCodeJustify = pjCenter;

Developers Guide

Page 40

BarCodeRotation property (read/write)

Declaration
property BarCodeRotation: TBarCodeRotation

Default
Rot0

Category
BarCode

Component/Class
TRpBarsBase

Description
This property allows the bar code to be rotated to 4 different orientations. The pivot point for
rotation is the top left corner of the bar code.
 Rot0 no rotation
 Rot90 rotate 90 degrees relative to page
 Rot180 rotate 180 degrees relative to page
 Rot270 rotate 270 degrees relative to page

See also
Left, Top

Example
print Bar Code upside down

Delphi
BarCodeRotation := Rot180;
C++Builder
rp1->BarCodeRotation = Rot180;

Developers Guide

Page 41

BarHeight property (read/write)

Declaration
property BarHeight: double;

Default
0.5 (PostNet 0.125)

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the value for the tallest bar.

See also
BarWidth

Example
Bars will be 3/10 inch tall

Delphi
BarHeight := 0.3;
C++Builder
rp1->BarHeight = 0.3;

BarTop property (read/write)

Declaration
property BarTop: double;

Default
0

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the location of the top of the bar code. The location of the readable text is
controlled by PrintReadable and PrintTop properties

See also
BarBottom, PrintReadable, PrintTop, Top

Example
Delphi
BarCode1.BarTop := 0.5;
C++Builder
BarCode1->BarTop = 0.5;

Developers Guide

Page 42

BarWidth property (read/write)

Declaration
property BarWidth: double

Default
0.01 (PostNet 0.020)

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the value of the narrow bar width.

See also
BarHeight, Width

Example
set narrow bar width to 2/100 ths

Delphi
BarWidth := 0.02;
C++Builder
rp1->BarWidth = 0.02;

BaseReport property (read/write)

Declaration
property BaseReport: TBaseReport

Default
nil

Category
Memo

Component/Class
TMemoBuf

Description
Sets or returns the reporting object that the memo will be printed through. There are certain
methods that require this property to be initialized before the will print

See also
MemoHeightLeft, MemoLinesLeft, PrintHeight, PrintLines

Example
Delphi
MemoBuf.BaseReport := Sender as TBaseReport;
C++Builder
MemoBuf->BaseReport = dynamic_cast<TBaseReport*>(Sender);

Developers Guide

Page 43

BaseReport property (read/write)

Declaration
property BaseReport: TBaseReport

Default
nil

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the reporting object that the bar code will be printed through. This property is
normally set through the constructor, Create.

See also
Create_TRpBarsBase

Example
Delphi
Barcode1.BaseReport := (Sender as TBaseReport);
C++Builder
Barcode1->BaseReport = dynamic_cast<TBaseReport*>(Sender);

Developers Guide

Page 44

BaseReport property (read/write)

Declaration
property BaseReport: TBaseReport

Default
nil

Category
Control

Component/Class
TRvSystem

Description
Provides access to the TBaseReport object that is created by RvSystem, the base class of all
output classes. This property will be nil until the Execute method is called. It is normally not
necessary to access this property since the TBaseReport object is passed as the Sender
parameter for all printing events.

See also
Execute

Example
Delphi
RvSystem1.BaseReport.Print('This is a test');
 or
with Sender as TBaseReport do begin
 Print('This is a test'); { Equivalent code inside OnPrint event }
end; { with }

C++Builder
rp1->BaseReport->Print("This is a test");

Developers Guide

Page 45

Bins property (read only)

Declaration
property Bins: TStrings;

Default
(the list of bins for the default printer)

Category
Printer

Component/Class
TBaseReport

Description
This property will return a TStringList containing all of the valid printer bins for the current
printer.

See also
SelectBin, SupportBin, TStrings

Example
Display the printer bins in a list box

Delphi
ListBox1.Items := RvNDRWriter1.Bins;
C++Builder
ListBox1->Items = RvNDRWriter1->Bins;

BKColor property (read/write)

Declaration
property BKColor: TColor;

Default
clWhite

Category
Graphics

Component/Class
TBaseReport

Description
This property returns or sets the current background color for text output.

See also
TColor, TextBKMode

Example
Delphi
RvNDRWriter1.BKColor := clWhite;
C++Builder
RvNDRWriter1->BKColor = clWhite;

Developers Guide

Page 46

Bold property (read/write)

Declaration
property Bold: boolean;

Default
false

Category
Font

Component/Class
TBaseReport

Description
This property returns or sets the bold attribute for the current font

See also
Italic, Strikeout, Underline

Example
Delphi
with RvNDRWriter1 do begin
 Bold := true;
 Print('Bold Text');
 Bold := false;
end; { with }

C++Builder
rp1->Bold = true;
rp1->Print("Bold Text");
rp1->Bold = false;

Bottom property (read/write)

Declaration
property Bottom: double;

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the position for the bottom of the bar code. The value for this property
includes the readable text if it is printed.

See also
BarBottom, PrintReadable, PrintTop

Developers Guide

Page 47

BottomWaste property (read only)

Declaration
property BottomWaste: double;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the waste area on the bottom side of the page that the printer cannot
print into. It is a good idea to make sure that the report's margins are greater than or equal to
its waste areas.

See also
LeftWaste, MarginBottom, RightWaste, TopWaste

Example
See LeftWaste

BoxLineColor property (read/write)

Declaration
property BoxLineColor: TColor;

Default
clBlack

Category
Tabs

Component/Class
TBaseReport

Description
This property will define the color used to draw the sides of tab boxes defined with SetTab.

See also
SetTab, Tab, TabColor, TColor

Example
Delphi
RvNDRWriter1.BoxLineColor := clGreen;
C++Builder
RvNDRWriter1->BoxLineColor = clGreen;

Developers Guide

Page 48

BrushCopy method

Declaration
procedure BrushCopy(const Dest: TRect; Bitmap: TBitmap; const Source: TRect; Color:
TColor);

Category
Graphics

Component/Class
TBaseReport

Description
Copies a portion of Bitmap specified by the rectangle Source to the printer canvas. Color of
Bitmap is replaced by the brush color of the destination canvas.
The rectangle Dest defines the region to copy the bitmap to.

See also
CreateRect, TColor, TRect

Example
Delphi
RvNDRWriter1.BrushCopy(DestRect, UserBMP, SrcRect, clBlack);
C++Builder
RvNDRWriter1->BrushCopy(DestRect, UserBMP, SrcRect, clBlack);

Buffer property (read only)

Declaration
property Buffer: ^Array[0..MaxBufSize] of Char;

Category
Memo

Component/Class
TMemoBuf

Description
This property is a pointer to memory buffer used by TMemoBuf.
NOTE: Not normally necessary to access this property.

See also
LoadFromFile, SetData, Text

Developers Guide

Page 49

BufferInc property (read/write)

Declaration
property BufferInc: longint;

Default
256

Category
Memo

Component/Class
TMemoBuf

Description
This property controls the granularity of the memo buffer when its size changes. Setting this
property to 1 will keep the buffer size exactly equal to the size of the text but will be inefficient
when the buffer grows or shrinks. Setting this property to a larger value will make editing the
memo buffer more efficient.

See also
MaxSize

Example
Delphi
MemoBuf.BufferInc := 128;
C++Builder
MemoBuf->BufferInc = 128;

CacheDir property

Declaration
property CacheDir: String read FCacheDir write FCacheDir

Category
Render

Component/Class
TRpRender

Description
If you are running the HTML component from a server, setting the CacheDir will allow you to
specify where the temporary image files will be stored.

See also
ServerMode

Developers Guide

Page 50

CalcGraphicHeight method

Declaration
function CalcGraphicHeight(Width: double; Graphic: TGraphic); double;

Category
Graphics

Component/Class
TBaseReport

Description
This method will calculate and return the value for the new Height of the Graphic based on
the Width value while maintaining the original ratio of the Graphic. This could be used to see
if there is enough room left on the page before attempting to print the graphic. This can be
used for both bitmaps and metafiles.

See also
CalcGraphicWidth, PrintBitmap, PrintBitmapRect, StretchDraw

Example
Delphi
Bitmap := TBitmap.Create;
Bitmap.LoadFromFile('RpDEMO.BMP');
PrintBitmapRect(X1, Y1, X1 + 3.0,
 Y1 + CalcGraphicHeight(3.0,Bitmap),Bitmap);
Bitmap.Free;

C++Builder
Graphics::TBitmap* Bitmap;
Bitmap = new Graphics::TBitmap();
Bitmap->LoadFromFile("RpDEMO.BMP");
rp->PrintBitmapRect(X1, Y1, X1 + 3.0,
 Y1 + rp->CalcGraphicHeight(3.0,Bitmap),Bitmap);
delete Bitmap;

Developers Guide

Page 51

CalcGraphicWidth method

Declaration
function CalcGraphicWidth(Height: double; Graphic: TGraphic): double;

Category
Graphics

Component/Class
TBaseReport

Description
This method will calculate and return the value for the new Width of the Graphic based on the
Height value while maintaining the original ratio of the Graphic. This can be used for both
bitmaps and metafiles.

See also
CalcGraphicHeight, PrintBitmap, PrintBitmapRect, StretchDraw

Example
Delphi
Bitmap := TBitmap.Create;
Bitmap.LoadFromFile('RpDEMO.BMP');
PrintBitmapRect(X1, Y1,
 X1 + CalcGraphicWidth(3.0,Bitmap), Y1 + 3.0,Bitmap);
Bitmap.Free;

C++Builder
Graphics::TBitmap* Bitmap;
Bitmap = new Graphics::TBitmap();
Bitmap->LoadFromFile("RpDEMO.BMP");
rp->PrintBitmapRect(X1, Y1,
 X1 + rp->CalcGraphicHeight(3.0,Bitmap),3.0,Bitmap);
delete Bitmap;

Developers Guide

Page 52

Canvas property (read only)

Declaration
property Canvas: TCanvas;

Category
Printer

Component/Class
TBaseReport

Description
This method returns the TCanvas object that is being printed on.
NOTE: Direct manipulation of the canvas is not supported or captured by TRvNDRWriter
(and thus TRvRenderPrinter and TRvRenderPreview).

See also
RpDev, TCanvas

Example
Save the current canvas

Delphi
RvNDRWriter1.Canvas.Pen := SavePen;
C++Builder
RvNDRWriter1->Canvas->Pen = SavePen;

Center property (read/write)

Declaration
property Center: double;

Default
relative to Left and Right properties

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the position for the horizontal center of the bar code. When a value is
assigned to Center the BarCodeJustify property is set to pjCenter as well.

See also
BarCodeJustify, Left, Position, Right

Example
Delphi
Barcode1.Center := (SectionLeft + SectionRight) / 2.0;
C++Builder
Barcode1->Center = (rp1->SectionLeft + rp1->SectionRight)/2.0;

Developers Guide

Page 53

CheckSum property (read only)

Declaration
property CheckSum: boolean;

Category
BarCode

Component/Class
TRpBarsBase

Description
This property returns the checksum character(s) that is/are calculated using the current value
of the Text property. If UseChecksum is true, this value will be automatically included in the
bar code.

See also
UseChecksum

Chord method

Declaration
procedure Chord(X1,Y1,X2,Y2,X3,Y3,X4,Y4: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method draws a chord inside an ellipse bounded by the rectangle defined by (X1,Y1)
and (X2,Y2). The chord starts at the intersection of the line drawn between the ellipse center
((X1+X2)/2.0,(Y1+Y2)/2.0) and the point (X3,Y3) and is drawn to the line drawn between the
ellipse center and the point (X4,Y4).

See also
Ellipse

Example
Delphi
RvNDRWriter1.Chord(1.0,1.0,3.0,3.0,0.0,0.8,3.0,2.0);
C++Builder
RvNDRWriter1->Chord(1.0,1.0,3.0,3.0,0.0,0.8,3.0,2.0);

Developers Guide

Page 54

Clear method

Declaration
procedure Clear;

Category
Preview

Component/Class
TRvRenderPreview

Description
This method will remove the TImage from the preview TScrollBox and refresh the display.
This method can be useful for clearing the preview screen without having to destroy the
preview form.

See also
ScrollBox

Example
Clear the preview screen

Delphi
RvRenderPreview1.Clear;
C++Builder
RvRenderPreview1->Clear();

ClearAllTabs method

Declaration
procedure ClearAllTabs;

Category
Tabs

Component/Class
TBaseReport

Description
This method will clear the current tab settings as well as all saved tab settings.
This call is normally not needed since the tabs are cleared once the report is finished.

See also
ClearTabs, SaveTabs

Example
Clear all tabs, including saved tabs

Delphi
ClearAllTabs;
C++Builder
rp1->ClearAllTabs();

Developers Guide

Page 55

ClearColumns method

Declaration
procedure ClearColumns;

Category
Column

Component/Class
TBaseReport

Description
This method removes all current column settings.

See also
SetColumns, SetColumnWidth

Example
Delphi
RvNDRWriter1.ClearColumns;
C++Builder
RvNDRWriter1->ClearColumns();

ClearRaveBlob method

Declaration
procedure ClearRaveBlob;

Category
Rave

Component/Class
TRvProject

Description
This method will clear the currently loaded report project from the application form. You
should not need to call this function since the normal method of clearing the loaded report
project is through the TRvProject.StoreRAV property editor.

See also
LoadRaveBlob, RaveBlobDateTime, SaveRaveBlob, StoreRAV

Example
Delphi
RvProject1.ClearRaveBlob;
C++Builder
RvProject1->ClearRaveBlob();

Developers Guide

Page 56

ClearTabs method

Declaration
procedure ClearTabs;

Category
Tabs

Component/Class
TBaseReport

Description
This method removes all current tab settings but will leave saved tab settings as they were.

See also
ResetTabs, SetTab

Example
Delphi
RvNDRWriter1.ClearTabs;
C++Builder
RvNDRWriter1->ClearTabs();

Close method

Declaration
procedure Close;

Category
Rave

Component/Class
TRvProject

Description
This method will close the report project and unload it from memory. If you call the Open
method of TRvProject, you should insure that this method is called before the application
terminates.

See also
Active, OnAfterClose, OnAfterOpen, OnBeforeClose, OnBeforeOpen, Open

Example
Delphi
RvProject1.Close;
C++Builder
RvProject1->Close();

Developers Guide

Page 57

CodePage property (read/write)

Declaration
property CodePage: TCodePage128;

Default
cpCodeA

Category
BarCode

Component/Class
TRpBarsBase

Description
Specifies whether Code A, Code B or Code C is being used.
 cpCodeA sets 128 output to Code A
 cpCodeB sets 128 output to Code B
 cpCodeC sets 128 output to Code C

Example
set 128 code output to C

Delphi
CodePage := cpCodeC;
Text := '125692';

C++Builder
Barcode1->CodePage = cpCodeC;
Barcode1->Text = "125692";

Developers Guide

Page 58

Collate property (read/write)

Declaration
property Collate: boolean

Default
(will be equal to the collation setting for the default printer)

Category
Printer

Component/Class
TBaseReport

Description
This property will enable or disable collation.
NOTE: This property is only supported in Delphi 2.0 and will always return false in Delphi 1.0.
Not all printer drivers support collation, use SupportCollate to determine availability.

See also
SupportCollate

Example
Delphi
if SupportCollate then begin
 Collate := true;
end; { if }

C++Builder
if (rp1->SupportCollate()) {
 rp1->Collate = true;
}

Developers Guide

Page 59

ColumnEnd property (read only)

Declaration
property ColumnEnd: double;

Category
Column

Component/Class
TBaseReport

Description
This property will return the horizontal ending position of the current column.
This can be useful for printing memo buffers inside of a column.

See also
ColumnNum, SetColumns, SetColumnWidth

Example
Print memo buffer

Delphi
SetColumns(3,0.25);
MemoBuf.PrintStart := ColumnStart;
MemoBuf.PrintEnd := ColumnEnd;
PrintMemo(MemoBuf, ColumnLinesLeft, false);

C++Builder
rp->SetColumns(3,0.25);
MemoBuf->PrintStart = rp->ColumnStart;
MemoBuf->PrintEnd = rp->ColumnEnd;
rp->PrintMemo(MemoBuf, rp->ColumnLinesLeft(), false);

Developers Guide

Page 60

ColumnLinesLeft property

Declaration
function ColumnLinesLeft: integer;

Category
Column

Component/Class
TBaseReport

Description
This method returns the number of lines that can be printed above the current SectionBottom
for the current column plus all lines that are in remaining columns. This count includes the
current line.

See also
all column methods, LinesLeft, SectionBottom

Example
Delphi
SetColumns(4, 0.5);
while ColumnLinesLeft > 0 do begin
 Println(IntToStr(LinesLeft) + '/' +
 IntToStr(ColumnLinesLeft) + '/' +
 IntToStr(LineNum) + '/' +
 IntToStr(ColumnNum));
end; { while }

C++Builder
rp->SetColumns(4, 0.5);
while (rp->ColumnLinesLeft() > 0) {
 rp->Println(IntToStr(rp->LinesLeft()) + AnsiString("/") +
 IntToStr(rp->ColumnLinesLeft()) +
 AnsiString("/") +
 IntToStr(rp->LineNum) + AnsiString("/") +
 IntToStr(rp->ColumnNum));
}/ while

Developers Guide

Page 61

ColumnNum property (read/write)

Declaration
property ColumnNum: integer;

Default
1

Category
Column

Component/Class
TBaseReport

Description
This property will return or set the current column number that the text cursor is on.

See also
Columns, SetColumns, SetColumnWidth

Example
Delphi
CurrColNum := RvNDRWriter1.ColumnNum;
C++Builder
CurrColNum = RvNDRWriter1->ColumnNum;

Columns property (read only)

Declaration
property Columns: integer;

Category
Column

Component/Class
TBaseReport

Description
This property returns the number of columns that are available from the last call to
SetColumns or SetColumnWidth.

See also
ColumnNum, SetColumns, SetColumnWidth

Example
Delphi
CurrColumns := RvNDRWriter1.Columns;
C++Builder
CurrColumns = RvNDRWriter1->Columns;

Developers Guide

Page 62

ColumnStart property (read only)

Declaration
property ColumnStart: double;

Category
Column

Component/Class
TBaseReport

Description
This property will return the horizontal starting position of the current column.
This can be useful for printing memo buffers inside of a column.

See also
ColumnNum, SetColumns, SetColumnWidth

Example
Delphi
CurrColStart := RvNDRWriter1.ColumnStart;
C++Builder
CurrColStart := RvNDRWriter1->ColumnStart;

ColumnWidth property (read only)

Declaration
property ColumnWidth: double;

Category
Column

Component/Class
TBaseReport

Description
This property returns the width of the current column.

See also
SetColumns, SetColumnWidth

Example
Delphi
CurrColWidth := RvNDRWriter1.ColumnWidth;
C++Builder
CurrColWidth := RvNDRWriter1->ColumnWidth;

Developers Guide

Page 63

ConstraintHeightLeft method

Declaration
function ConstraintHeightLeft(Constraint: double): double;

Category
Memo

Component/Class
TMemoBuf

Description
This method will return the height necessary to print the memo buffer for the current font
between PrintStart and PrintEnd. However, for speed purposes, this method will stop
processing when the height exceeds the Constraint parameter.
NOTE: You must initialize the TMemoBuf.BaseReport before calling this method.

See also
MemoHeightLeft, PrintEnd, PrintMemo, PrintStart, TMemoBuf

Example
Delphi
MemoBuf.BaseReport := Sender as TBaseReport;
HeightLeft := MemoBuf.ConstraintHeightLeft(5.0);

C++Builder
MemoBuf->BaseReport = rp;
HeightLeft = MemoBuf->ConstraintHeightLeft(5.0);

Developers Guide

Page 64

Copies property (read/write/published)

Declaration
property Copies: integer;

Default
1

Category
Printer

Component/Class
TBaseReport

Description
This property returns or sets the current number of copies of the report that will be printed by
the printer.
NOTE: Not all printers support this function, especially non-laserjet printers. Use MaxCopies
to determine availability. For these printers, just call the report multiple times or use
TRvNDRWriter and TRvRenderPrinter to speed up report generation. Use a value of 0 to
retain the setting defined by TPrinterSetupDialog.

See also
MaxCopies

Example
Print three copies

Delphi
RvNDRWriter1.Copies := 3;
C++Builder
RvNDRWriter1->Copies = 3;

CopyRect method

Declaration
procedure CopyRect(const Dest: TRect; Canvas: TCanvas; const Source: TRect);

Category
Graphics

Component/Class
TBaseReport

Description
This method copies part of an image defined by the rectangle Source from another canvas to
the area on the printer canvas defined by the rectangle Dest.

See also
CreateRect, TCanvas, TRect

Example
Delphi
RvNDRWriter1.CopyRect(DstRect, DstCanvas, SrcRect);
C++Builder
RvNDRWriter1->CopyRect(DstRect, DstCanvas, SrcRect);

Developers Guide

Page 65

CR method

Declaration
procedure CR;

Category
Position

Component/Class
TBaseReport

Description
This method performs a carriage return which moves the horizontal text cursor position to the
beginning of the current line. The beginning of the current line is defined by either the current
SectionLeft setting or the setting of ColumnStart if columns are in use.

See also
ColumnStart, LF, NewLine, SectionLeft

Example
Delphi
with RvNDRWriter1 do begin
 SectionLeft := 3.0;
 Println('This text is 3 inches from left');
 SectionLeft := 1.0;
 CR;
end; { with }

C++Builder
rp->SectionLeft = 3.0;
rp->Println("This text is 3 inches from left");
rp->SectionLeft = 1.0;
rp->CR();

Developers Guide

Page 66

Create method

Declaration
constructor Create(AOwner: TComponent);

Category
Misc

Component/Class
TBaseReport

Description
This constructor should be called to create an instance of a component. This constructor
should not normally be called if the component is placed visually on a form.

See also
Destroy

Example
Dynamically create a Rave component

Delphi
var MyReportPrinter: TRvNDRWriter;
begin
 MyReportPrinter := TRvNDRWriter.Create(self);
 with MyReportPrinter do try
 MarginTop := 1.0;
 MarginBottom := 1.5;
 MarginRight := 1.0;
 MarginLeft := 1.0;
 OnPrint := MyOnPrintMethod;
 Execute;
 finally
 Free; { This will call the Destroy method }
 end; { with }
end;

C++Builder
TRvNDRWriter* rp1;
rp1 = new TRvNDRWriter(this);
try {
 rp1->MarginTop = 1.0;
 rp1->MarginBottom = 1.5;
 rp1->MarginRight = 1.0;
 rp1->MarginLeft = 1.0;
 rp1->OnPrint = MyOnPrintMethod;
 rp1->Execute();
}
__finally {
 delete rp1;
}/ tryf

Developers Guide

Page 67

Create method

Declaration
constructor Create(BaseRpt: TBaseReport);

Category
BarCode

Component/Class
TRpBarsBase

Description
This constructor is called to create an instance of the Bar Code Class. The current reporting
object should be passed into the BaseRpt parameter.

See also
BaseReport (bar code)

Example
Delphi
BarCode1 := TRpBarsPostNet.Create(Sender as TBaseReport);
with BarCode1 do begin
 BarHeight := 0.125;
 BarWidth := 0.020;
 UseChecksum := True;
 Text := '85283-3558'; {'-' will be stripped}
 Left := MarginLeft + 1.0;
 Print;
end; {if}
BarCode1.Free;

C++Builder
TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);
TRpBarsPostNet* bc1 = new TRpBarsPostNet(rp);
bc1->BarHeight = 0.125;
bc1->BarWidth = 0.020;
bc1->UseChecksum = true;
bc1->Text = "85283-3558"; / "-" will be stripped
bc1->Left = rp->MarginLeft + 1.0;
bc1->Print();
delete bc1;

Developers Guide

Page 68

CreateBrush method

Declaration
function CreateBrush(NewColor: TColor; NewStyle: TBrushStyle; NewBitmap: TBitmap):
TBrush;

Category
Graphics

Component/Class
TBaseReport

Description
This method will create a TBrush object for the given parameters. If a bitmap is not desired,
pass in the value of nil. You can assign this brush to the canvas to change the current brush.
NOTE: The brush object returned must be released by calling the free method of TBrush.

See also
SetBrush, TBrush, TBrushStyle, TColor

Example
Delphi
var MyBrush: TBrush;
begin
 MyBrush := CreateBrush(clRed, bsSolid, nil);
end;

C++Builder
TBrush* MyBrush;
MyBrush = rp->CreateBrush(clRed, bsSolid, NULL);
MyBrush->Free();

Developers Guide

Page 69

CreateFont method

Declaration
function CreateFont(NewName: string; NewSize: integer): TFont;

Category
Font

Component/Class
TBaseReport

Description
This method will create a TFont object for the given parameters. NewSize is the point size of
the font (1/72nds of an inch). You can assign this font to the canvas to change the current
font.
NOTE: The font object returned must be released by calling the free method of TFont. Also, it
is preferable to use SaveFont and RestoreFont.

See also
RestoreFont, SaveFont, SetFont, TFont

Example
Delphi
var MyFont: TFont;
begin
 MyFont := CreateFont('Times New Roman',8.00);
end;

C++Builder
TFont* MyFont;
MyFont = rp->CreateFont("Times New Roman",8.00);

Developers Guide

Page 70

CreatePen method

Declaration
function CreatePen(NewColor: TColor; NewStyle: TPenStyle; NewWidth: integer; NewMode:
TPenMode): TPen;

Category
Graphics

Component/Class
TBaseReport

Description
This method will create a TPen object for the given parameters. The NewWidth parameter, if
positive, is the width of the pen in printer units (dots) and if negative, is the width of the pen in
1/100ths of an inch. You can assign this pen to the canvas to change the current pen.
NOTE: The pen object returned must be released by calling the free method of TPen.

See also
SetPen, TColor, TPen, TPenMode, TPenStyle

Example
Delphi
MyPen := CreatePen(clBlack,psSolid,1,pmBlack);
C++Builder
MyPen = rp->CreatePen(clBlack,psSolid,1,pmBlack);

CreatePoint method

Declaration
function CreatePoint(X,Y: double): TPoint;

Category
Graphics

Component/Class
TBaseReport

Description
This method will return a TPoint record initialized to the point (X,Y).

See also
TPoint

Example
Delphi
MyPoint := CreatePoint(1.00,6.00);
C++Builder
MyPoint = rp->CreatePoint(1.00,6.00);

Developers Guide

Page 71

CreateRect method

Declaration
function CreateRect(X1,Y1,X2,Y2: double): TRect;

Category
Graphics

Component/Class
TBaseReport

Description
This method will return a TRect record initialized to the rectangle defined by the points
(X1,Y1) and (X2,Y2).

See also
CopyRect, TextRect, TRect

Example
Delphi
MyRect := CreateRect(1.00,6.00,3.00,8.00);
C++Builder
MyRect = rp->CreateRect(1.00,6.00,3.00,8.00);

CurrentPage property (read only)

Declaration
property CurrentPage: integer;

Category
Control

Component/Class
TBaseReport

Description
This property returns the current page number.

Example
Delphi
with RvRenderPreview1 do begin
 PageEdit.Text := IntToStr(CurrentPage);
 PageLabel.Caption := 'Page ' +
 IntToStr(CurrentPage-FirstPage+1) +
 ' of ' + IntToStr(Pages);
end; { with }

C++Builder
PageEdit->Text = IntToStr(RvRenderPreview1->CurrentPage);
PageLabel->Caption = AnsiString("Page ") +
 IntToStr(RvRenderPreview1->CurrentPage -
 RvRenderPreview1->FirstPage+1) +
 AnsiString(" of ") +
 IntToStr(RvRenderPreview1->Pages);

Developers Guide

Page 72

CurrentPass property (read/write)

Declaration
property CurrentPass: Integer;

Category
Misc

Component/Class
TBaseReport

Description
This is the value that will be returned when a %c is encountered in a StatusFormat string.
Normally set by Rave and used when printing multiple copies on a printer that does not
support that option.

See also
StatusFormat, StatusLabel, StatusText, TotalPasses, UpdateStatus

Example
Delphi
RvNDRWriter1.StatusFormat := 'Printing page (Pass of)';
C++Builder
RvNDRWriter1->StatusFormat = "Printing page (Pass of)";

CursorXPos property (read only)

Declaration
property CursorXPos: longint;

Category
Position

Component/Class
TBaseReport

Description
This property returns the horizontal text cursor position in printer units (dots).

See also
CursorYPos, XPos, YPos

Example
Delphi
CurrentXDots := RvNDRWriter1.CursorXPos;
C++Builder
CurrentXDots = RvNDRWriter1->CursorXPos;

Developers Guide

Page 73

CursorYPos property (read only)

Declaration
property CursorYPos: longint;

Category
Position

Component/Class
TBaseReport

Description
This property returns the vertical text cursor position in printer units (dots).

See also
CursorXPos, XPos, YPos

Example
Delphi
CurrentYDots := RvNDRWriter1.CursorYPos;
C++Builder
CurrentYDots = RvNDRWriter1->CursorYPos;

DataSet property (read/write/published)

Declaration
property DataSet: TDataSet;

Default
nil

Category
Rave

Component/Class
TRvDataSetConnection

Description
Specifies the dataset to use with the current TRvDataSetConnection component.

Example
Delphi
CustomerCXN.DataSet := CustomerTable;
C++Builder
CustomerCXN->DataSet = CustomerTable;

Developers Guide

Page 74

DefaultDest property (read/write/published)

Declaration
property DefaultDest: TReportDest;

Default
rdPreview

Category
ReportSystem

Component/Class
TRvSystem

Description
This property will determine the default report destination that appears in the setup dialog. If
the setup dialog is disabled then DefaultDest will determine where the report is sent. Valid
values are rdFile, rdPreview and rdPrinter.

See also
ReportDest, TReportDest

Example
Delphi
RvSystem1.DefaultDest := rdPrinter;
C++Builder
RvSystem1->DefaultDest = rdPrinter;

Delete method

Declaration
procedure Delete(BufPos: longint; DelLen: longint);

Category
Memo

Component/Class
TMemoBuf

Description
This method will delete DelLen characters starting at BufPos in the memo buffer.

See also
Insert

Example
Delete 5 characters at current position

Delphi
MemoBuf.Delete(MemoBuf.Pos,5);
C++Builder
MemoBuf->Delete(MemoBuf->Pos,5);

Developers Guide

Page 75

DescentHeight property (read only)

Declaration
property DescentHeight: double;

Category
Position

Component/Class
TBaseReport

Description
Returns the height of the line font below the baseline.
NOTE: This applies to the line font only and not to the current text font.

See also
AscentHeight, FontHeight, LineHeight

Design method

Declaration
procedure Design;

Category
Rave

Component/Class
TRvProject

Description
This method will start the execution of the Rave visual designer for the currently selected
report.
NOTE: This feature is only available with a Rave EUDL license. See the Nevrona website at
http:/www.nevrona.com for more information on obtaining an EUDL license.

See also
DesignReport, Execute, ExecuteReport, SelectReport

Example
Delphi
RvProject1.Design;
C++Builder
RvProject1->Design();

Developers Guide

Page 76

DesignReport method

Declaration
procedure DesignReport(ReportName: string);

Category
Rave

Component/Class
TRvProject

Description
This method will start the execution of the Rave visual designer for the specified report.
ReportName is the short name of the report as defined in the report project. If you want to
design the report by it's full name you will need to call the SelectReport and Design methods.
NOTE: This feature is only available with a Rave EUDL license. See the Nevrona website at
http:/www.nevrona.com for more information on obtaining an EUDL license.

See also
Design, Execute, ExecuteReport

Example
Delphi
RvProject1.DesignReport('CustomerListing');
C++Builder
RvProject1->DesignReport("Customer Listing");

Destroy method

Category
Misc

Component/Class
TBaseReport

Description
The Destroy destructor should never be called directly. To destroy a component created with
Create, call the Free method.

See also
Create

Example
see Create

Developers Guide

Page 77

DeviceName property (read only)

Declaration
property DeviceName: string;

Category
Printer

Component/Class
TBaseReport

Description
This property will return the device name for the currently selected printer.

See also
PrinterIndex

Example
Save current device name

Delphi
CurrDeviceName := RvNDRWriter1.DeviceName;
C++Builder
CurrDeviceName = RvNDRWriter1->DeviceName;

DevMode property (read/write)

Declaration
property DevMode: PDevMode;

Category
Printer

Component/Class
TBaseReport

Description
This property provides access to the TDevMode structure for the current printer.
After any changes to DevMode are made, ResetPrinter should be called.

See also
TDevMode structure in Windows API help.

Example
Save current printer device mode and set the print resolution to low

Delphi
CurrDevMode := RvNDRWriter1.DevMode;
RvNDRWriter1.DevMode^.dmPrintQuality := DMRES_LOW;

C++Builder
PDevMode CurrDevMode = RvNDRWriter1->DevMode;
RvNDRWriter1->DevMode->dmPrintQuality = DMRES_LOW;

Developers Guide

Page 78

DisplayName property (read/write)

Declaration
property DisplayName: string read FDisplayName write SetDisplayName;

Category
Render

Component/Class
TRpRender

Description
When the Active property is set to true on a TRender component, the component will be
listed in the Print to File format options. The text that will show in the drop-down list that
allows you to select the component will the same as that listed in the DisplayName property.

See also
Active

DLLFile property (read/write/published)

Declaration
property DLLFile: string;

Default
' ' (empty)

Category
Rave

Component/Class
TRvProject

Description
This property sets the filename that will used if the LoadDesigner property is True. The end
user files are either RavePack or RaveSolo DLL depending upon whether or not you are
using packages. The end user DLL file can be renamed to better "fit" your project naming
conventions.
NOTE: This feature is only available with a Rave EUDL license. See the Nevrona website at
http:/www.nevrona.com for more information on obtaining an EUDL license.

See also
LoadDesigner

Example
Delphi
RvProject.DLLFile := 'MyName.DLL';
C++Builder
RvProject->DLLFile = "MyName.DLL";

Developers Guide

Page 79

DrawFocusRect method

Declaration
procedure DrawFocusRect(const Rect: TRect);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw a rectangle, defined by Rect, in the style used to indicate that the
rectangle has focus.

See also
CreateRect, TRect

Example
Delphi
RvNDRWriter1.DrawFocusRect(CreateRect(1.0,1.0,2.0,3.0));
C++Builder
RvNDRWriter1->DrawFocusRect(rp->CreateRect(1.0,1.0,2.0,3.0));

Developers Guide

Page 80

Draw method

Declaration
procedure Draw(X,Y: double; Graphic: TGraphic);

Category
Graphics

Component/Class
TBaseReport

Description
This method draws Graphic to the printer canvas at the location (X,Y).
NOTE: Do not use Draw for bitmaps. Use PrintBitmap or PrintBitmapRect instead.

See also
PrintBitmap, PrintBitmapRect, StretchDraw, TGraphic

Example
Delphi
var MyLogo: TGraphic;
begin
 MyLogo := TMetafile.Create;
 try
 MyLogo.LoadFromFile('MYLOGO.WMF');
 RvNDRWriter1.Draw(1.0,2.0,MyLogo);
 finally
 MyLogo.Free;
 end; { tryf }
end;

C++Builder
TGraphic* MyLogo;
MyLogo = new TMetafile();
try {
 MyLogo->LoadFromFile("MYLOGO.WMF");
 RvNDRWriter1->Draw(1.0,2.0,MyLogo);
 }
 __finally {
 delete MyLogo;
 }/ tryf

Developers Guide

Page 81

DriverName property (read only)

Declaration
property DriverName: string;

Category
Printer

Component/Class
TBaseReport

Description
This property will return the driver name for the currently selected printer.

Example
Save current driver name

Delphi
CurrPrintDriver := RvNDRWriter1.DriverName;
C++Builder
CurrPrintDriver = RvNDRWriter1->DriverName;

Developers Guide

Page 82

Duplex property (read/write)

Declaration
property Duplex: TDuplex;

Default
(will be equal to the duplex setting for the default printer)

Category
Printer

Component/Class
TBaseReport

Description
This property will set the duplex mode for the current printer. Not all printers or drivers
support duplex printing, use SupportDuplex to determine availability.
 dupSimplex Simplex mode (Duplex mode NOT initialized)
 dupHorizontal Duplex mode initialized - print Head to Toe
 dupVertical Duplex mode initialized - print Head to Head

See also
SupportDuplex

Example
Delphi
if SupportDuplex then begin
 Duplex := dupVertical;
end; { if }

C++Builder
if (rp->SupportDuplex()) {
 rp->Duplex = dupVertical;
 }/ if

Developers Guide

Page 83

Ellipse method

Declaration
procedure Ellipse(X1,Y1,X2,Y2: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method draws an ellipse bounded by the rectangle defined by (X1,Y1) and (X2,Y2).

See also
Arc, Pie

Example
Delphi
Ellipse(5.375,1.25,7.375,2.75);
C++Builder
rp->Ellipse(5.375,1.25,7.375,2.75);

Empty method

Declaration
function Empty: boolean;

Category
Memo

Component/Class
TMemoBuf

Description
This method will return true if the memo buffer does not have anything in it or if the current
position, Pos, is beyond the end of the buffer.

See also
Pos, Size

Example
Delphi
if not MemoBuf1.Empty then begin
 PrintMemo(MemoBuf1,0,false);
end; { if }

C++Builder
if (!MemoBuf1->Empty()) {
 rp->PrintMemo(MemoBuf1,0,false);
 }/ if

Developers Guide

Page 84

Engine property (read/write/published)

Declaration
property Engine: TRpComponent;

Default
nil

Category
Rave

Component/Class
TRvProject

Description
This property allows you to define a reporting engine to be used when printing Rave reports
through the TRvProject component. If this property is not defined, a default TRvSystem
component will be used. TRvNDRWriter and TRvSystem are all valid component classes that
can be assigned to this property.

See also
Execute, ExecuteReport

Example
Delphi
RvProject1.Engine := RvSystem1;
C++Builder
RvProject1->Engine = RvSystem1;

Execute method

Declaration
procedure Execute;

Category
Control

Component/Class
TBaseReport

Description
This method will begin the printing task assigned to the component. For report generation
components (TRvSystem, TRvNDRWriter) the event handlers OnBeforePrint, OnPrint,
OnPrintPage, OnNewPage, OnNewColumn, OnPrintHeader, OnPrintFooter and OnAfterPrint
will be called at their appropriate times. For TRvRenderPrinter or TRvRenderPreview the
contents of the report stream from a TRvNDRWriter will be sent to either the printer or the
preview screen. See Start for printing the report for a TRvRenderPreview component.

See also
Abort, Printing, All printing event handlers

Example
Delphi
RvNDRWriter1.Execute;
C++Builder
RvNDRWriter1->Execute();

Developers Guide

Page 85

Execute method

Declaration
procedure Execute;

Category
Rave

Component/Class
TRvProject

Description
This method will start the printing of the currently selected Rave report. This method can be
called while a printing job is in progress from a TRvNDRWriter component (typically inside of
the OnPrint event) to add in the Rave report to the current code generated report.

See also
ExecuteReport, SelectReport

Example
Delphi
RvProject1.Execute;
C++Builder
RvProject1->Execute();

ExecuteCustom method

Declaration
procedure ExecuteCustom(NewFirstPage: integer; NewLastPage: integer; NewCopies:
integer);

Category
Control

Component/Class
TRvRenderPreview

Description
This method will print the report but only for the specified parameters. NewCopies, if non-
zero, will override the copies setting in the report file. NewFirstPage and NewLast page, if
non-zero, will only print the report file for that page range.

See also
Copies, Execute

Example
Print 2 copies of only the first four pages

Delphi
RvRenderPrinter1.ExecuteCustom(1, 4, 2);
C++Builder
RvRenderPrinter1->ExecuteCustom(1, 4, 2);

Developers Guide

Page 86

ExecuteReport method

Declaration
procedure ExecuteReport(ReportName: string);

Category
Rave

Component/Class
TRvProject

Description
This method will start the execution of the named Rave report. This method can be called
while a printing job is in progress from a TRvNDRWriter component (typically inside of the
OnPrint event) to add in the Rave report to the current code generated report.

See also
Execute

Example
Delphi
RvProject1.ExecuteReport('CustomerListing');
C++Builder
RvProject1->ExecuteReport("CustomerListing");

Extended property (read/write)

Declaration
property Extended: boolean;

Default
false

Category
BarCode

Component/Class
TRpBarsBase

Description
If this property is true then it will output Extended Code 39 format.

See also
ExtendedText

Example
Delphi
Extended := True;
Text := 'Test Data';

C++Builder
Extended = true;
Text = "Test Data";

Developers Guide

Page 87

ExtendedText property (read only)

Declaration
property ExtendedText: string;

Category
BarCode

Component/Class
TRpBarsBase

Description
When Extended is true, this property will contain the converted Code39 text that will be
printed in the bar code.

See also
Extended, Text

Example
Delphi
ShowMessage('The raw data of this Code 39 BarCode is ' +
 Code39Bar.ExtendedText);

C++Builder
ShowMessage("The raw data of this Code 39 BarCode is " +
 Code39Bar->ExtendedText);

Field property

Declaration
property Field: TMemoField;

Category
Memo

Component/Class
TMemoBuf

Description
This property will assign the contents of a TMemoField component to the memo buffer.

See also
Pos, Size, TMemoField

Example
Delphi
MemoBuf1.Field := MyMemoField;
C++Builder
MemoBuf->Field = MyMemoField;

Developers Guide

Page 88

FieldAliasList property (read/write/published)

Default
(blank)

Category
Rave

Component/Class
TRvCustomConnection

Description
With this property you can provide aliases or remove fields entirely in your application as far
as the Rave designer is concerned. This can be used to provide easier to understand field
names, remove unnecessary fields or to remove the need to read large blob fields out of
reports that don't use them. The property is a simple string list and each line takes the form of
"FieldName=FieldAlias". To remove a field from the list of fields that are sent to Rave, leave
the FieldAlias blank. Fields that are not listed in the FieldAliasList will be passed to Rave as is
(the default behavior). Field aliases can include blanks or other non-alphanumeric characters,
but by doing so, the characters < and > will be automatically added around the field names
for all field name references within Rave.

FileName property (read/write/published)

Declaration
property FileName: String;

Default
' ' (empty)

Component/Class
TBaseReport

Description
Specifies the file name to create when the execute method is called.

Example
Delphi
RvNDRWriter1.FileName := 'DOC1.DOC';
C++Builder
RvNDRWriter1->FileName = "DOC1.DOC";

Developers Guide

Page 89

FillRect method

Declaration
procedure FillRect(const Rect: TRect);

Category
Graphics

Component/Class
TBaseReport

Description
This method fills the rectangle defined by Rect with the current brush.

See also
CreateRect, TRect

Example
Delphi
FillRect(CreateRect(1.0, 1.0, 2.0, 3.0));
C++Builder
rp->FillRect(rp->CreateRect(1.0, 1.0, 2.0, 3.0));

Finish method

Declaration
procedure Finish;

Category
Control

Component/Class
TBaseReport

Description
This method finishes a preview session for the TRvRenderPreview component or finishes a
print job for TRvNDRWriter. Start must have been called first before Finish will be a valid call.

See also
Start

Example
Delphi
RvRenderPreview1.Finish;
C++Builder
RvRenderPreview1->Finish();

Developers Guide

Page 90

FinishTabBox method

Declaration
procedure FinishTabBox(Width: integer);

Category
Tabs

Component/Class
TBaseReport

Description
Draws the top line for the current set of tabs using a line width of Width. Useful when printing
a table drawn with the setting of BOXLINELEFTRIGHT to finish the bottom of each tab box.
This function can also be called at the beginning to draw the top line of the table.

See also
SetTab

Example
Delphi
ClearTabs;
SetTab(0.5,pjLeft,1.5,5,BOXLINELEFTRIGHT,0);
SetTab(NA, pjLeft,1.5,5,BOXLINELEFTRIGHT,0);
SetTab(NA, pjLeft,4.5,5,BOXLINELEFTRIGHT,0);
FinishTabBox(1);
PrintTab('Name');
PrintTab('Picture');
PrintTab('Description');
NewLine;
FinishTabBox(1);

C++Builder
rp->ClearTabs();
 rp->SetTab(0.5,pjLeft,1.5,5,BOXLINELEFTRIGHT,0);
 rp->SetTab(NA, pjLeft,1.5,5,BOXLINELEFTRIGHT,0);
 rp->SetTab(NA, pjLeft,4.5,5,BOXLINELEFTRIGHT,0);
 rp->FinishTabBox(1);
 rp->PrintTab("Name");
 rp->PrintTab("Picture");
 rp->PrintTab("Description");
 rp->NewLine();
 rp->FinishTabBox(1);

Developers Guide

Page 91

FirstPage property (read/write/published)

Declaration
property FirstPage: integer;

Default
1

Category
Control

Component/Class
TBaseReport

Description
This property defines the first page of a range of pages to send to the printer. If the current
page is outside this range, the property PageInvalid will be true.

See also
PageInvalid

Example
print only pages 3 through 5

Delphi
RvNDRWriter1.FirstPage := 3;
RvNDRWriter1.LastPage := 5;

C++Builder
RvNDRWriter1->FirstPage = 3;
RvNDRWriter1->LastPage = 5;

FloodFill method

Declaration
procedure FloodFill(X,Y: double; Color: TColor; FillStyle: TFillStyle);

Category
Graphics

Component/Class
TBaseReport

Description
This method fills an area of the printer canvas using the current brush. FloodFill begins at the
point (X,Y) and fills until the boundary specified by the color, Color, is encountered. FillStyle
defines the method of fill used. (fsBorder will fill until the color, Color, is encountered and
fsSurface will fill while the color, Color, is still encountered.)

See also
PageInvalid, TColor

Example
Delphi
FloodFill(2.0,3.0,clRed,fsBorder);
C++Builder
FloodFill(2.0,3.0,clRed,fsBorder);

Developers Guide

Page 92

FontAlign property (read/write)

Declaration
property FontAlign: TFontAlign;

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the current font alignment.
 faTop will align text at the top of the font located at FontTop.
 faBaseline will align text at the baseline of the font located at FontBaseline.
 faBottom will align text at the bottom of the font located at FontBottom

See also
Other FontXxxx properties, FontBaseline, FontBottom, FontTop, SetFont, ResetLineHeight
should link to font category

Example
Delphi
FontAlign := faTop;
Print('This text is aligned at the top');
FontAlign := faBaseline;

C++Builder
rp->FontAlign = faTop;
rp->Print("This text is aligned at the top");
rp->FontAlign = faBaseline;

Developers Guide

Page 93

FontBaseline property (read/write)

Declaration
property FontBaseline: double;

Default
see ResetLineHeight

Category
Position

Component/Class
TBaseReport

Description
Returns or sets the baseline of the line font

See also
FontBottom, FontTop, LineBottom, LineMiddle, LineTop

Example
Delphi
FontBaseline := 1.8;
C++Builder
rp->FontBaseline = 1.8;

FontBottom property (read/write)

Declaration
property FontBottom: double;

Default
see ResetLineHeight

Category
Position

Component/Class
TBaseReport

Description
Returns or sets the bottom of the line font

See also
FontBaseline, FontTop, LineBottom, LineMiddle, LineTop

Example
Delphi
FontBottom := 2.0;
C++Builder
rp->FontBottom = 2.0;

Developers Guide

Page 94

FontCharset property (read/write)

Declaration
property FontCharset: byte;

Default
DEFAULT_CHARSET

Category
Font

Component/Class
TBaseReport

Description
Allows you to change the character set of the current font. Other values can be found in the
Windows API help under LOGFONT

Example
Delphi
SetFont('Wingdings', 10);
FontCharSet := SYMBOL_CHARSET;

C++Builder
rp->SetFont("Wingdings", 10);
rp->FontCharSet = SYMBOL_CHARSET;

FontColor property (read/write)

Declaration
property FontColor: TColor;

Default
clBlack

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the font color.

See also
Other FontXxxx properties, SetFont, TColor

Example
Delphi
FontColor := clRed;
Print('This text is in red.');

C++Builder
rp->FontColor = clRed;
rp->Print("This text is in red.");

Developers Guide

Page 95

FontHandle property (read only)

Declaration
property FontHandle: HFont;

Category
Font

Component/Class
TBaseReport

Description
This property will return the windows handle for the current printer font. This property will not
normally be used but is provided for situations that require access to the printer font.
NOTE: Canvas.Font.Handle will not equal FontHandle.

FontHeight property (read/write)

Declaration
property FontHeight: double;

Default
see ResetLineHeight

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the height of the line font.
NOTE: This applies to the line font only and not the current text font.

See also
Other FontXxxx properties, AscentHeight, DescentHeight, LineHeight

Example
Delphi
FontHeight := 0.25;
C++Builder
rp->FontHeight = 0.25;

Developers Guide

Page 96

FontName property (read/write)

Declaration
property FontName: string;

Default
'System'

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the current font name.

See also
Other FontXxxx properties, SetFont

Example
Delphi
FontName := 'Times New Roman';
C++Builder
rp->FontName = "Times New Roman";

FontPitch property (read/write)

Declaration
property FontPitch: TFontPitch;

Default
fpDefault

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the pitch setting for the current font. The normal setting of fpDefault will use
the font's normal pitch. fpFixed will attempt to convert the font to a fixed-width font and
fpVariable will attempt to convert the font to a variable-width font. Setting a font to a pitch
other than what it was designed for may have no effect or may cause another font to be
substituted in its place.

See also
Other FontXxxx properties, SetFont

Example
Delphi
FontPitch := fpVariable;
C++Builder
rp->FontPitch = fpVariable;

Developers Guide

Page 97

FontRotation property (read/write)

Declaration
property FontRotation: integer;

Default
0

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the font rotation in degrees from 0 to 359. 0 is for normal text and the angles
increase counter-clockwise. The text cursor will be updated according to the FontRotation

See also
Other FontXxxx properties

Example
Delphi
FontRotation := 45;
Print('This text is at 45 degrees');
FontRotation := 0;
Print('This is normal text');

C++Builder
rp->FontRotation = 45;
rp->Print("This text is at 45 degrees");
rp->FontRotation = 0;
rp->Print("This is normal text");

Developers Guide

Page 98

Fonts property (read only)

Declaration
property Fonts: TStrings;

Default
(list of fonts supported by the default printer)

Category
Printer

Component/Class
TBaseReport

Description
This property will return a TStringList containing all of the fonts supported by the current
printer.

See also
FontName, SetFont, TStrings

Example
Display the supported fonts in a TComboBox

Delphi
Combobox1.Items := RvNDRWriter1.Fonts;
C++Builder
ComboBox1->Items = RvNDRWriter1->Fonts;

Developers Guide

Page 99

FontSize property (read/write)

Declaration
property FontSize: double;

Default
10

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the point size of the current font.

See also
Other FontXxxx properties, SetFont

Example
Delphi
FontSize := 8;
Print('Small');
FontSize := 36;
Print('Large');

C++Builder
rp->FontSize = 8;
rp->Print("Small");
rp->FontSize = 36;
rp->Print("Large");

Developers Guide

Page 100

FontTop property (read/write)

Declaration
property FontTop: double;

Default
see ResetLineHeight

Category
Position

Component/Class
TBaseReport

Description
Returns or sets the top of the line font

See also
Other FontXxxx properties, LineBottom, LineMiddle, LineTop

Example
Place the top of the text at 2.25"

Delphi
FontTop := 2.25;
C++Builder
rp->FontTop = 2.25;

FontWidth property (read/write)

Declaration
property FontWidth: double;

Default
0

Category
Font

Component/Class
TBaseReport

Description
This is used to override the average character width for a font in units. To use normal
character sizes, specify a value of 0.

See also
FontSize

Example
set average character width to 1/4 inch

Delphi
FontWidth := 0.25;
C++Builder
rp->FontWidth = 0.25;

Developers Guide

Page 101

FrameMode property (read/write)

Declaration
property FrameMode: TFrameMode;

Default
fmInside

Category
Graphics

Component/Class
TBaseReport

Description
This property determines the technique used to draw the frames (borders) around graphical
shapes such as rectangles and ellipses. This property will only have a noticeable effect with
large pen widths.
fmInside The frame will be drawn inside the dimensions of the shape

fmSplit The frame will be drawn centered over the dimensions of the
shape

fmOutside The frame will be drawn outside the dimensions of the
shape

NOTE: If you are converting a report from ReportPrinter 2.0 or earlier that uses thick pens,
you should set the frame mode to fmSplit which was the mode used by those older versions.

See also
Ellipse, Rectangle

Example
Delphi
FrameMode := fmOutside;
C++Builder
rp->FrameMode = fmOutside;

Developers Guide

Page 102

FrameRect method

Declaration
procedure FrameRect(const Rect: TRect);

Category
Graphics

Component/Class
TBaseReport

Description
This method draws the rectangle Rect using the current brush to draw the border of the
rectangle. FrameRect does not fill the rectangle with the current brush.

See also
CreateRect, TRect

Example
Delphi
RvNDRWriter1.FrameRect(CreateRect(1.0,1.0, 2.0,3.0));
C++Builder
RvNDRWriter1->FrameRect(rp->CreateRect(1.0,1.0,2.0,3.0));

FreeSaved method

Declaration
procedure FreeSaved;

Category
Memo

Component/Class
TMemoBuf

Description
This method will free the memory allocated by a previous call to SaveBuffer. This method is
normally not needed as the saved buffer is freed when the memo buffer is freed.

See also
RestoreBuffer, SaveBuffer

Example
Delphi
MemoBuf1.FreeSaved;
C++Builder
MemoBuf1->FreeSaved();

Developers Guide

Page 103

GetMemoLine method

Declaration
function GetMemoLine(MemoBuf: TMemoBuf; var EOL: boolean): string;

Category
Memo

Component/Class
TBaseReport

Description
This method will return a single line from the memo buffer each time it is called. You can print
the memo buffer line by line by placing this function inside a Println statement. EOL returns
true when it encounters a carriage return or the end of the memo buffer.

See also
MemoLines, PrintMemo, TMemoBuf

Example
Delphi
Println(GetMemoLine(MemoBuf, EOL));
C++Builder
rp->Println(rp->GetMemoLine(MemoBuf, EOL));

GetNextLine method

Declaration
function GetNextLine(var EOL: boolean): string;

Category
Memo

Component/Class
TBaseReport

Description
This method will return a single line from the memo buffer each time it is called. You can print
the memo buffer line by line by placing this function inside a Println statement. EOL returns
true when it encounters a carriage return or the end of the memo buffer.
NOTE: You must initialize the TMemoBuf.BaseReport before calling this method.

See also
MemoLines, PrintMemo, TMemoBuf

Example
Delphi
Println(GetNextLine(EOL));
C++Builder
rp->Println(rp->GetNextLine(EOL));

Developers Guide

Page 104

GetReportCategoryList method

Declaration
procedure GetReportCategoryList(ReportList: TStrings; Categories: string); FullName:
boolean);

Category
Rave

Component/Class
TRvProject

Description
This method will allow you to get all of the reports matching specific categories. If you had
categories called Accounting, General, Status and System. Now if you want to get a list of all
reports except System, then you would call RvProject1.GetReportCategoryList(ReportList,
'Accounting; Status; General; ;'). If FullName is true, this will return the full names of all
reports in the current report project and if it is false, it will return the short names of the
reports.
NOTE: The double "; ;" at the end of the category list is to include all reports where the
category is not defined (the default value).

See also
SelectReport

GetReportList method

Declaration
procedure GetReportList(ReportList: TStrings;FullName: boolean);

Category
Rave

Component/Class
TRvProject

Description
This method will fill ReportList with a list of Rave defined reports that could then be used in a
list box or other TStrings compatible object. ReportList must be an already created TStrings
object. If FullName is true, this will return the full names of all reports in the current report
project and if it is false it will return the short names of the reports.

See also
SelectReport

Developers Guide

Page 105

GetTab method

Declaration
function GetTab(Index: integer): PTab;

Category
Tabs

Component/Class
TBaseReport

Description
This method will return the tab setting specified by Index. If Index is 0 then GetTab will return
the current tab setting and if Index is greater than the number of defined tabs then a value of
nil will be returned. See RpDEFINE.PAS for information on the PTab structure.

See also
TabIndex

GotoFooter method

Declaration
procedure GotoFooter;

Category
Position

Component/Class
TBaseReport

Description
This method will position the text cursor just above the current SectionBottom.

See also
MarginBottom, PrintFooter, SectionBottom

Example
Delphi
GotoFooter;
Print('Line just above SectionBottom');

C++Builder
rp->GotoFooter();
rp->Print("Line just above SectionBottom");

Developers Guide

Page 106

GotoHeader method

Declaration
procedure GotoHeader;

Category
Position

Component/Class
TBaseReport

Description
This method will position the text cursor just below the current SectionTop.

See also
MarginTop, PrintHeader, SectionTop

Example
Delphi
RvNDRWriter1.GotoHeader;
RvNDRWriter1.Print('Line just below SectionTop');

C++Builder
RvNDRWriter1->GotoHeader();
RvNDRWriter1->Print("Line just below SectionTop");

GotoXY method

Declaration
procedure GotoXY(NewXPos: double; NewYPos: double);

Category
Position

Component/Class
TBaseReport

Description
This method will move the text cursor to the position NewXPos, NewYPos.

See also
XPos, YPos

Example
This code shows how to position the output at specific coordinates.

Delphi
GotoXY(1.0,8.5);
Print('Text at 1.0,8.5');

C++Builder
rp->GotoXY(1.0,8.5);
rp->Print("Text at 1.0,8.5");

Developers Guide

Page 107

GraphicFieldToBitmap method

Declaration
procedure GraphicFieldToBitmap(GraphicField: TGraphicField; Bitmap: TBitmap);

Category
Graphics

Component/Class
TBaseReport

Description
This method will convert a TGraphicField (graphical data from a database) to a bitmap.
NOTE: You must include RpDBUTIL in your Uses statement to access this procedure.

See also
PrintBitmap, PrintBitmapRect, TGraphicField

Example
Convert and print a TGraphicField

Delphi
Bitmap := TBitmap.Create;
GraphicFieldToBitmap(Table1Graphic,Bitmap);
PrintBitmapRect(5.375,3.5,7.375,5.5,Bitmap);
Bitmap.Free;

C++Builder
Bitmap := new Graphic::TBitmap();
rp->GraphicFieldToBitmap(Table1Graphic,Bitmap);
rp->PrintBitmapRect(5.375,3.5,7.375,5.5,Bitmap);
delete Bitmap;

Developers Guide

Page 108

GridHoriz property (read/write/published)

Declaration
property GridHoriz: double;

Default
0.0

Category
Preview

Component/Class
TRvSystem

Description
This property will define the horizontal spacing, in units for a grid that will appear on the
preview screen. A value of 0.0 will turn off the horizontal grid.

See also
GridPen, GridVert

Example
Delphi
GridHoriz := 0.25;
C++Builder
GridHoriz = 0.25;

GridPen property (read/write/published)

Declaration
property GridPen: TPen;

Default
(Standard Pen)

Category
Preview

Component/Class
TRvSystem

Description
This property defines the pen used to draw the grid defined by GridVert and GridHoriz.

See also
GridHoriz, GridVert, RulerType, TPen

Example
Delphi
GridPen.Color := clAqua;
C++Builder
GridPen->Color = clAqua;

Developers Guide

Page 109

GridVert property (read/write/published)

Declaration
property GridVert: double;

Default
0.0

Category
Preview

Component/Class
TBaseReport

Description
This property will define the vertical spacing, in units for a grid that will appear on the preview
screen. A value of 0.0 will turn off the vertical grid.

See also
GridHoriz, GridPen

Example
Delphi
GridVert := 0.5;
C++Builder
GridVert = 0.5;

Developers Guide

Page 110

Height property (read only)

Declaration
property Height: double;

Category
BarCode

Component/Class
TRpBarsBase

Description
This is a read only property which contains the height of the entire bar code. If the
PrintReadable property is set to true, then the Height property contains the bar code height
plus the line height of the current font.

See also
BarHeight, PrintReadable

Example
Delphi
TotalBarHeight := Height;
if TotalBarHeight > 1.0 then begin
 BarHeight := 1.0; {set total height to 1.0 inches}
end; { if}

C++Builder
TotalBarHeight = rp->Height;
if (TotalBarHeight > 1.0) {
 BarHeight = 1.0; / set total height to 1.0 inches
}/ if

Developers Guide

Page 111

Home method

Declaration
procedure Home;

Category
Position

Component/Class
TBaseReport

Description
This method will move the text cursor to the beginning of line 1.

Example
Delphi
SetFont('Arial',10);
Home;
Print('Text in the Home position');

C++Builder
rp->SetFont("Arial",10);
rp->Home();
Print("Text in the Home position");

Developers Guide

Page 112

IgnoreFileSettings property (read/write)

Declaration
property IgnoreFileSettings: boolean

Default
false

Category
Misc

Component/Class
TRvRenderPrinter

Description
When this is set to true it will ignore the printer setup values (Paper Bin, Duplex, Collate,
Copies) stored in the report file and will use whatever is currently set by the user. This allows
a PrinterSetupDialog to be called before the Execute method.

See also
ShowPrintDialog, ShowPrinterSetupDialog

Example
Delphi
if RvRenderPrinter1.ShowPrinterSetupDialog then begin
 RvRenderPrinter1.IgnoreFileSettings := True;
 RvRenderPrinter1.Execute;
end; {if}

C++Builder
if (RvRenderPrinter1->ShowPrinterSetupDialog()) {
 RvRenderPrinter1->IgnoreFileSettings = true;
 RvRenderPrinter1->Execute();
}/ if

ImageQuality property (read/write)

Declaration
property ImageQuality: TImageQualityRange read FImageQuality write FImageQuality

Default
JPG'S image quality set to 90

Category
Render

Component/Class
TRpRender

Description
When sending images out to PDF, the bitmaps, metafiles, etc., are converted to JPG's in
order to allow PDF to print them. By default the image quality for JPG's is set to 90. If you
need to change the image quality, you can do this by setting the ImageQuality property. Valid
values are 1 to 100 with 100 being the absolute best quality available.

See also
MetafileDPI

Developers Guide

Page 113

InsertMemoBuf method

Declaration
procedure InsertMemoBuf(BufPos: longint; MemoBuf: TMemoBuf);

Category
Memo

Component/Class
TMemoBuf

Description
Will insert a MemoBuf at BufPos into the current memo buffer.

See also
AppendMemoBuf

Example
Delphi
MemoBuf1.InsertMemoBuf(10,MemoBuf2);
C++Builder
MemoBuf1->InsertMemoBuf(10,MemoBuf2);

Insert method

Declaration
procedure Insert(BufPos: longint; Text: string);

Category
Memo

Component/Class
TMemoBuf

Description
This method will insert Text into the memo buffer at BufPos. BufPos should be 0 to insert
before the entire buffer.

See also
Append

Example
Delphi
MemoBuf.Insert(0,'This text will now be first');
C++Builder
MemoBuf->Insert(0,"This text will now be first");

Developers Guide

Page 114

IsValidChar method

Declaration
function IsValidChar(Ch: char): boolean;

Category
BarCode

Component/Class
TRpBarsBase

Description
Is used to determine whether a character is a valid character for the particular bar code being
printed.

Example
following will return false because 2of5 only support numbers

Delphi
Code2of5.IsValidCar('A')
C++Builder
Code2of5->IsValidCar('A')

Italic property (read/write)

Declaration
property Italic: boolean;

Default
false

Category
Font

Component/Class
TBaseReport

Description
This property returns or sets the italic attribute for the current font.

See also
Bold, Strikeout, Underline

Example
Delphi

Italic := true;
Print('Italic Text');
Italic := false;

C++Builder
rp->Italic = true;
rp->Print("Italic Text");
rp->Italic = false;

Developers Guide

Page 115

Justify property (read/write)

Declaration
property Justify: TPrintJustify;

Default
pjLeft

Category
Memo

Component/Class
TMemoBuf

Description
This property sets the justification that PrintMemo will use when printing the memo buffer.
Valid values are
 pjBlock
 pjCenter
 pjLeft
 pjRight

See also
PrintMemo

Example
Delphi
MemoBuf.Justify := pjBlock; { Set block justification }
C++Builder
MemoBuf->Justify = pjBlock; / Set block justification

Developers Guide

Page 116

LastPage property (read/write/published)

Declaration
property LastPage: integer;

Default
9999

Category
Control

Component/Class
TBaseReport

Description
This property defines the last page for a range of pages to send to the printer. If the current
page is outside of this range, the property PageInvalid will be true.

See also
PageInvalid

Example
Print only pages 3 through 5

Delphi
RvNDRWriter1.FirstPage := 3;
RvNDRWriter1.LastPage := 5;

C++Builder
RvNDRWriter1->FirstPage = 3;
RvNDRWriter1->LastPage = 5;

Developers Guide

Page 117

Left property (read/write)

Declaration
property Left: double;

Default
XPos

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the position for the left edge of the bar code. When a value is assigned to
Left, the BarCodeJustify property is set to pjLeft as well.

See also
BarCodeJustify, Center, Position, Right

Example
start at 4.5 inches from left side

Delphi
Left := 4.5;
C++Builder
Left = 4.5;

Developers Guide

Page 118

LeftWaste property (read only)

Declaration
property LeftWaste: double;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the waste area on the left side of the page that the printer cannot print
into. It is a good idea to make sure that the report's margins are greater than or equal to its
waste areas.

See also
BottomWaste, MarginLeft, RightWaste, TopWaste

Example
Don't output in the printer waste regions

Delphi
if MarginLeft < LeftWaste then begin
 MarginLeft := LeftWaste;
end; { if }
if MarginRight < RightWaste then begin
 MarginRight := RightWaste;
end; { if }
if MarginTop < TopWaste then begin
 MarginTop := TopWaste;
end; { if }
if MarginBottom < BottomWaste then begin
 MarginBottom := BottomWaste;
end; { if }

C++Builder
if (rp->MarginLeft < rp->LeftWaste) {
 rp->MarginLeft = rp->LeftWaste;
}/ if
if (rp->MarginRight < rp->RightWaste) {
 rp->MarginRight = rp->RightWaste;
}/ if
if (rp->MarginTop < rp->TopWaste) {
 rp->MarginTop = rp->TopWaste;
}/ if
if (rp->MarginBottom < rp->BottomWaste) {
 rp->MarginBottom = rp->BottomWaste;
}/ if

Developers Guide

Page 119

LF method

Declaration
procedure LF;

Category
Position

Component/Class
TBaseReport

Description
This method performs a line feed which moves the vertical text cursor position down by the
distance specified by the property LineHeight. It also increments the property LineNum. If
Columns are in use, and the text cursor is moved below the current SectionBottom, the text
cursor is placed at the top of the next column. The top of the next column is defined by the
setting of SectionTop.

See also
CR, LineHeight, LineNum, NewLine, SectionBottom, SectionTop

Example
Delphi
RvNDRWriter1.LF;
C++Builder
RvNDRWriter1->LF();

LineBottom property (read/write)

Declaration
property LineBottom: double;

Default
(Bottom of the current line)

Category
Position

Component/Class
TBaseReport

See also
FontBaseline, FontBottom, FontTop, LineMiddle, LineTop

Example
Place the text right on the bottom of the section

Delphi
LineBottom := SectionBottom;
C++Builder
rp->LineBottom = rp->SectionBottom;

Developers Guide

Page 120

LineHeight property (read/write)

Declaration
property LineHeight: double;

Category
Position

Component/Class
TBaseReport

Description
This property returns or sets the current height of a line. If a value is assigned to LineHeight
then LineHeightMethod will be set to lhmUser.

See also
LineHeightMethod

Example
Save current line height to a temporary variable

Delphi
CurrHeight := RvNDRWriter1.LineHeight
C++Builder
CurrHeight = RvNDRWriter1->LineHeight

LineHeightMethod property (read/write/published)

Declaration
property LineHeightMethod: TLineHeightMethod;

Default
lhmLinesPerInch, lhmFont for TRvSystem

Category
Position

Component/Class
TBaseReport

Description
This property returns or sets the current method for calculating line heights. If equal to
lhmLinesPerInch, then the LinesPerInch property determines the line height. If equal to
lhmFont, then the current font determines the line height when a new line is generated. If
equal to lhmUser the line height will not change unless the user changes LineHeight directly.

See also
LinesPerInch

Example
Delphi
RvNDRWriter1.LineHeightMethod := lhmFont;
C++Builder
RvNDRWriter1->LineHeightMethod = lhmFont;

Developers Guide

Page 121

LineMiddle property (read/write)

Declaration
property LineMiddle: double;

Default
(Middle of current line)

Category
Position

Component/Class
TBaseReport

Description
This property returns or sets the middle of the current text line. It is useful for aligning the
middle of the current line with graphics that might be placed around the text (e.g., bullets,
etc.)

See also
FontBaseline, FontBottom, FontTop, LineBottom, LineTop

Example
Delphi
LineMiddle := 2.0;
C++Builder
rp->LineMiddle = 2.0;

Developers Guide

Page 122

LineNum property (read/write)

Declaration
property LineNum: integer;

Default
1

Category
Position

Component/Class
TBaseReport

Description
This property returns or sets the current line number. This property is highly dependent upon
the current LineHeightMethod as well as the size of the current font if LineHeightMethod is
equal to lhmFont. LineNum may not represent the actual line number if the report is jumping
around the page instead of calling Prints and Printlns.

See also
LineHeight, LineHeightMethod

Example
Delphi
with RvNDRWriter1 do
 if Odd(LineNum) then begin
 TabShade := 0;
 end else begin
 TabShade := 15;
 end; { if }
end; { with }

C++Builder
if ((rp->LineNum 2) == 1) {
 rp->TabShade = 0;
 }
 else {
 rp->TabShade = 15;
 }/ else

Developers Guide

Page 123

LinesLeft method

Declaration
function LinesLeft: integer;

Category
Position

Component/Class
TBaseReport

Description
This method will return the number of lines that can be printed above the current
SectionBottom including the current line.

See also
ColumnLinesLeft, SectionBottom

Example
Delphi
if RvNDRWriter1.LinesLeft < 3 then begin
 RvNDRWriter1.NewPage;
end; { if }

C++Builder
if (RvNDRWriter1->LinesLeft() < 3) {
 RvNDRWriter1->NewPage();
 }/ if

LinesPerInch property (read/write/published)

Declaration
property LinesPerInch: integer;

Default
6

Category
Position

Component/Class
TBaseReport

Description
This property will return or set the number of lines per inch if the LineHeightMethod property
is equal to lhmLinesPerInch.

See also
LineHeightMethod

Example
Delphi
RvNDRWriter1.LineHeightMethod := lhmLinesPerInch;
C++Builder
RvNDRWriter1->LineHeightMethod = lhmLinesPerInch;

Developers Guide

Page 124

LineTo method

Declaration
procedure LineTo(X,Y: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw a line using the current pen from the previous graphic cursor position
to the point specified by (X,Y).

See also
MoveTo

Example
Delphi
with RvNDRWriter1 do begin
 MoveTo(1.0, 1.0);
 LineTo(3.0, 3.0);
 MoveTo(1.0, 3.0);
 LineTo(3.0, 1.0);
end; { with}

C++Builder
rp->MoveTo(1.0, 1.0);
rp->LineTo(3.0, 3.0);
rp->MoveTo(1.0, 3.0);
rp->LineTo(3.0, 1.0);

Developers Guide

Page 125

LineTop property (read/write)

Declaration
property LineTop: double;

Default
(Top of the current line)

Category
Position

Component/Class
TBaseReport

Description
Returns or sets the top of the text line

See also
FontBaseline, FontTop, LineBottom, LineMiddle

Example
Place the top of the line at 4.0"

Delphi
LineTop := 4.0;
C++Builder
LineTop = 4.0;

LoadDesigner property (read/write)

Declaration
property LoadDesigner: boolean;

Default
false

Category
Rave

Component/Class
TRvProject

Description
This property determines if the end user designer will be loaded or not. If the LoadDesigner
property is True then the filename in the DLLFile property will be loaded. The end user files
are either RavePack or RaveSolo DLL depending upon whether you are using packages or
not.
NOTE: This feature is only available with a Rave EUDL license. See the Nevrona website at
http:/www.nevrona.com for more information on obtaining an EUDL license.

See also
DLLFile, Open

Developers Guide

Page 126

LoadFromFile method

Declaration
function LoadFromFile(FileName: String);

Category
Memo

Component/Class
TMemoBuf

Description
This method will load a memo buffer with the contents of a text file. To load RTF text, use
RTFLoadFile.

See also
LoadFromStream, RTFLoadFromFile, SaveToStream

Example
Delphi
MemoBuf1.LoadFromFile('Letter.Txt');
C++Builder
MemoBuf1->LoadFromFile("Letter.Txt");

LoadFromFile method

Declaration
procedure LoadFromFile(FileName: string);

Category
Rave

Component/Class
TRvProject

Description
This method will load the report project file specified by the FileName parameter as the
current Rave project.

See also
LoadFromStream, SaveToFile, SaveToStream

Example
Delphi
RvProject1.LoadFromFile('Project1.Rav');
C++Builder
RvProject1->LoadFromFile("Project1.Rav");

Developers Guide

Page 127

LoadFromStream method

Declaration
procedure LoadFromStream(Stream: TStream; BufSize: longint);

Category
Memo

Component/Class
TMemoBuf

Description
This method will load the memo buffer from the stream for BufSize number of bytes.

See also
SaveToStream

Example
Delphi
MemoBuf1.LoadFromStream(MyStream, StreamSize);
C++Builder
MemoBuf1->LoadFromStream(MyStream, StreamSize);

LoadFromStream method

Declaration
procedure LoadFromStream(Stream: TStream);

Category
Rave

Component/Class
TRvProject

Description
This method will load the report project store in Stream as the current report project.

See also
LoadFromFile, SaveToFile, SaveToStream

Example
Delphi
RvProject1.LoadFromStream(BlobStream);
C++Builder
RvProject1->LoadFromStream(BlobStream);

Developers Guide

Page 128

LoadRaveBlob method

Declaration
procedure LoadRaveBlob(Stream: TStream);

Category
Rave

Component/Class
TRvProject

Description
This method will load the report project stored in Stream into the application form. You should
not need to call this function since the normal method of loading a report project is through
the TRvProject.StoreRAV property editor.

See also
ClearRaveBlob, RaveBlobDateTime, SaveRaveBlob, StoreRAV

Example
Delphi
RvProject1.LoadRaveBlob(MyStream);
C++Builder
RvProject1->LoadRaveBlob(MyStream);

LocalFilter property (read/write/published)

Declaration
property LocalFilter: Boolean;

Default
False TRvQueryConnection and TRvTableConnection

Category
Rave

Component/Class
TRvCustomConnection

Description
This property will determine whether filtering is done locally inside of the data connection
component or whether it will rely on the filtering capabilites of the database. Local is provided
to support filtering on fields that do not allow exact representation in string form (floating point
/ date-time fields).

Example
Delphi
RvCustomConnection1.LocalFilter := True;
C++Builder
RvCustomConnection1->LocalFilter + True;

Developers Guide

Page 129

Macro method

Declaration
function Macro(MacroID: TMacroID): string;

Default
6

Category
Misc

Component/Class
TBaseReport

Description
This function inserts a macro into your report. The macro will be inserted at the time of report
output (to preview or printer) and not at report generation time. Use this method with all
printing methods. For a list of MacroIDs see the type definition of TMacroID.

See also
MacroData, TMacroID

Example
Print the current page and total pages

Delphi
PrintRight(Macro(midCurrentPage) + ' of ' +
 Macro(midTotalPages), 8.0);

C++Builder
rp->PrintRight(rp->Macro(midCurrentPage) + " of " +
 rp->Macro(midTotalPages), 8.0);

Developers Guide

Page 130

MacroData property (read/write)

Declaration
property MacroData: TStrings;

Default
empty list

Category
Printing

Component/Class
TBaseReport

Description
This property sets or returns the user-defined macro string in a list of strings for midUser01 to
midUser20

See also
Macro, TMacroID, TStrings

Example
Add current user name for Macro(midUser01)

Delphi
MacroData.Add(UserName);
RvRenderPrinter1.Execute;

C++Builder
rp->MacroData->Add(UserName);
RvRenderPrinter1->Execute();

Developers Guide

Page 131

MarginBottom property (read/write/published)

Declaration
property MarginBottom: double;

Default
0.0

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current margin settings. Margins have no direct effect on
printing other than providing values to reset the current section when a new page is
generated or when ResetSection is called. Changing a margin setting will change the same
section setting to the same measurement.

See also
MarginLeft, MarginRight, MarginTop, section properties, ResetSection

Example
This code shows how to set these properties. Also see PrintFooter

Delphi
MarginLeft := 0.5;
MarginRight := 0.5;
MarginTop := 0.5;
MarginBottom := 1.0;

C++Builder
rp->MarginLeft := 0.5;
rp->MarginRight := 0.5;
rp->MarginTop := 0.5;
rp->MarginBottom := 1.0;

Developers Guide

Page 132

MarginLeft property (read/write/published)

Declaration
property MarginLeft: double;

Default
0.0

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current margin settings. Margins have no direct effect on
printing other than providing values to reset the current section when a new page is
generated or when ResetSection is called. Changing a margin setting will change the same
section setting to the same measurement.

See also
MarginBottom, section properties, ResetSection

Example
This code shows how to set these properties. Also see PrintFooter

Delphi
MarginLeft := 0.5;
C++Builder
rp->MarginLeft := 0.5;

Developers Guide

Page 133

MarginMethod property (read/write/published)

Declaration
property MarginMethod: TMarginMethod;

Default
mmFixed

Category
Preview

Component/Class
TRvRenderPreview

Description
This property returns or sets the method used to draw the blank margin around the preview
page. The setting mmFixed will keep the border the same size no matter what the value of
ZoomFactor. The setting mmScaled will grow and shrink the border so that it maintains the
same ratio as the rest of the page.

See also
MarginPercent

Example
Delphi
RvRenderPreview1.MarginMethod := mmScaled;
C++Builder
RvRenderPreview1->MarginMethod = mmScaled;

MarginPercent property (read/write/published)

Declaration
property MarginPercent: double;

Default
0.0

Category
Preview

Component/Class
TRvRenderPreview

Description
This property defines the percent of the page width that will appear as blank space around
the preview page. A value of 0.0 would have no border. A value of 2.5 would create a border
that is equal to 2.5% of the page width.

See also
MarginMethod

Example
Set a 1bord/er

Delphi
RvRenderPreview1.MarginPercent := 1.0;
C++Builder
RvRenderPreview1->MarginPercent = 1.0;

Developers Guide

Page 134

MarginRight property (read/write/published)

Declaration
property MarginRight: double;

Default
0.0

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current margin settings. Margins have no direct effect on
printing other than providing values to reset the current section when a new page is
generated or when ResetSection is called. Changing a margin setting will change the same
section setting to the same measurement.

See also
MarginBottom, MarginLeft, MarginTop, section properties, ResetSection

Example
Delphi
MarginRight := 0.5;
C++Builder
rp->MarginRight := 0.5;

MarginTop property (read/write/published)

Declaration
property MarginTop: double;

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current margin settings. Margins have no direct effect on
printing other than providing values to reset the current section when a new page is
generated or when ResetSection is called. Changing a margin setting will change the same
section setting to the same measurement.

See also
MarginBottom, MarginLeft, MarginRight, section properties, ResetSection

Example
Delphi
MarginTop := 0.5;
C++Builder
rp->MarginTop := 0.5;

Developers Guide

Page 135

MaxCopies property (read/write/published)

Declaration
property MaxCopies: longint;

Default
(maximum number of copies supported by the default printer)

Category
Printer

Component/Class
TBaseReport

Description
This property returns the maximum number of copies supported by the current printer.

See also
Copies

Example
Delphi
if MaxCopies = 1 then begin
 Copies := 1;
end; { if }

C++Builder
if (rp->MaxCopies == 1) {
 rp->Copies = 1;
 }/ if

Developers Guide

Page 136

MaxSize property (read/write)

Declaration
property MaxSize: longint;

Default
0

Category
Memo

Component/Class
TMemoBuf

Description
This property returns or sets the current size of the memo buffer. This is the size of available
space and not the size of valid data (see Size). If a new value is assigned to MaxSize, the
buffer will be adjusted to the smallest multiple of BufferInc that is greater than or equal to the
desired new size.

See also
BufferInc, Size

Example
Allocate at least 1000 characters

Delphi
MemoBuf.MaxSize := 1000;
C++Builder
MemoBuf->Memo = Memo1;

Memo property (read/write)

Declaration
property Memo: TMemo;

Category
Memo

Component/Class
TMemoBuf

Description
This property will assign the contents of a TMemo component to a memo buffer.

See also
Field, Text, TMemo component in Delphi help

Example
Copy Memo1 into MemoBuf

Delphi
MemoBuf.Memo := Memo1;
C++Builder
MemoBuf->Memo = Memo1;

Developers Guide

Page 137

MemoHeightLeft method

Declaration
function MemoHeightLeft: double;

Category
Memo

Component/Class
TMemoBuf

Description
This method will return the height necessary to print the memo buffer for the current font
between PrintStart and PrintEnd.
NOTE: You must initialize the TMemoBuf.BaseReport before calling this method.

See also
ConstraintHeightLeft, MemoLinesLeft, PrintEnd, PrintMemo, PrintStart, TMemoBuf

Example
Delphi
MemoBuf.BaseReport := Sender as TBaseReport;
HeightLeft := MemoBuf.MemoHeightLeft;

C++Builder
MemoBuf->BaseReport = rp;
HeightLeft = MemoBuf->MemoHeightLeft();

MemoLinesLeft method

Declaration
function MemoLinesLeft: longint;

Category
Memo

Component/Class
TMemoBuf

Description
This method will return the number of lines necessary to print the memo buffer for the current
font between PrintStart and PrintEnd.
NOTE: You must initialize the TMemoBuf.BaseReport before calling this method

See also
PrintEnd, PrintMemo, PrintStart, MemoHeightLeft, TMemoBuf

Example
Delphi
MemoBuf.BaseReport := Sender as TBaseReport;
LinesLeft := MemoBuf.MemoLinesLeft;

C++Builder
MemoBuf->BaseReport = rp;
LinesLeft = MemoBuf->MemoLinesLeft();

Developers Guide

Page 138

MemoLines method

Declaration
function MemoLines(MemoBuf: TMemoBuf): longint;

Category
Memo

Component/Class
TBaseReport

Description
This method will return the number of lines necessary to print the memo buffer MemoBuf for
the current font between PrintStart and PrintEnd.

See also
PrintEnd, PrintMemo, PrintStart, TMemoBuf

Example
Save number of lines needed to print memo

Delphi
LinesLeft := RvNDRWriter1.MemoLines(MyMemo);
C++Builder
LinesLeft = RvNDRWriter1->MemoLines(MyMemo);

MetafileDPI property (read/write)

Declaration
property MetafileDPI: boolean; read FMetafileDPI write FMetafileDPI

Default
300

Category
Render

Component/Class
TRpRender

Description
The MetafileDPI property can be used to increase or decrease the dots per inch used when
saving the images in the PDF file. The higher the dots per inch the better quality the image
will appear to have. The down side to a higher dots per inch is that the file size of the PDF will
increase.

See also
ImageQuality

Developers Guide

Page 139

Monochrome property (read/write/published)

Declaration
property Monochrome: boolean;

Default
false

Category
Preview

Component/Class
TRvRenderPreview

Description
This property defines whether the preview page is drawn in color or monochrome. A setting
of true can drastically save memory, especially if the system is running in 8-bit or 24-bit color.
Shadows will be disabled if Monochrome is true.

See also
ShadowDepth

Example
Delphi
RvRenderPreview1.Monochrome := true;
C++Builder
RvRenderPreview1->Monochrome = true;

MoveTo method

Declaration
procedure MoveTo(X,Y: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method will move the current graphic cursor position to the point specified by (X,Y).

See also
LineTo

Example
Delphi
RvNDRWriter1.MoveTo(NewX, NewY);
C++Builder
RvNDRWriter1->MoveTo(NewX, NewY);

Developers Guide

Page 140

NewColumn method

Declaration
procedure NewColumn;

Category
Control

Component/Class
TBaseReport

Description
Creates a new column in addition to the columns that already exist (that were set using the
SetColumns or SetColumnWidth methods). If there is not enough space on the current page,
it will create one with the current settings on the next page.

See also
SetColumns, SetColumnWidth

Example
Delphi
RvNDRWriter1.NewColumn;
C++Builder
RvNDRWriter1->NewColumn();

NewLine method

Declaration
procedure NewLine;

Category
Position

Component/Class
TBaseReport

Description
This method performs a carriage return (CR) followed by a line feed (LF), then resets the
tabs.

See also
ColumnStart, CR, LF, ResetTabs

Example
Delphi
RvNDRWriter1.NewLine;
C++Builder
RvNDRWriter1->NewLine();

Developers Guide

Page 141

NewPage method

Declaration
procedure NewPage;

Category
Control

Component/Class
TBaseReport

Description
This method will end the current page and start printing on a new page. The OnPrintFooter
event handler will be called before the current page is finished. The OnPrintHeader and
OnNewPage event handlers will be called after the new page has been created.

See also
AbortPage, OnNewPage, OnPrintHeader, OnPrintFooter

Example
Delphi
RvNDRWriter1.NewPage;
C++Builder
RvNDRWriter1->NewPage();

NextPage method

Declaration
procedure NextPage;

Category
Preview

Component/Class
TRvRenderPreview

Description
This method will go to and print the next page to the preview window. The OnPageChange
event handler will be called if the current page number changes.

See also
CurrentPage, PrevPage, OnPageChange

Example
Delphi
RvRenderPreview1.NextPage;
C++Builder
RvRenderPreview1->NextPage();

Developers Guide

Page 142

NoBufferLine property (read/write)

Declaration
property NoBufferLine: boolean;

Default
false

Category
Graphics

Component/Class
TBaseReport

Description
By default Rave buffers lines until the end of each page so that it can optimize the output for
faster printing. Turn this option off if you need to have lines printed before other objects on a
page.

See also
LineTo, MoveTo

Example
turn off line buffering

Delphi
RvNDRWriter1.NoBufferLine := true;
C++Builder
RvNDRWriter1->NoBufferLine = true;

NoCRLF property (read/write)

Declaration
property NoCRLF: boolean;

Default
false

Category
Memo

Component/Class
TMemoBuf

Description
This property will control whether PrintMemo finishes with a carriage-return linefeed (if false)
or not (if true).

See also
PrintMemo

Example
Don't do a NewLine after PrintMemo()

Delphi
MemoBuf.NoCRLF := true;
C++Builder
MemoBuf->NoCRLF = true;

Developers Guide

Page 143

NoNewLine property (read/write)

Declaration
property NoNewLine: boolean;

Default
false

Category
Memo

Component/Class
TMemoBuf

Description
Prevents the writing of an extra new line after the memo has been printed.

See also
PrintMemo

Example
Delphi
MemoBuf.NowNewLine := true;
C++Builder
MemoBuf->NowNewLine = true;

NoNTColorFix property (read/write)

Declaration
property NoNTColorFix: boolean;

Default
false

Category
Printer

Component/Class
TBaseReport

Description
Monochrome printers in Windows NT cannot print colors as shades of gray. Instead, any
color other than black is printed as if it was white. Since this behaviour is often not desired
when printing text, Rave will convert all text colors, except white, as black if the output is
being sent to a monochrome printer on Windows NT. The NoNTColorFix property, if set to
true, allows you to disable this color conversion but is generally not needed.

See also
FontColor

Example
Disable NT color conversion

Delphi
NoNTColorFix := true;
C++Builder
NoNTColorFix = true;

Developers Guide

Page 144

NoPrinterPageHeight property (read/write)

Declaration
property NoPrinterPageHeight: double;

Default
11.0

Category
Printer

Component/Class
TBaseReport

Description
These properties define the page width and height for the print preview screen if no printers
are defined for the current Windows system.

See also
NoPrinters

Example
See NoPrinters

NoPrinterPageWidth property (read/write)

Declaration
property NoPrinterPageWidth: double;

Default
8.5

Category
Printer

Component/Class
TBaseReport

Description
These properties define the page width and height for the print preview screen if no printers
are defined for the current Windows system.

See also
NoPrinters

Example
See NoPrinters

Developers Guide

Page 145

NoPrinters method

Declaration
function NoPrinters: boolean;

Category
Printer

Component/Class
TBaseReport

Description
This function will return true if there are no printers defined in the current Windows system
and false if there are. TRvRenderPrinter will not function without an installed printer driver;
however, TRvNDRWriter and TRvRenderPreview will still work.

See also
NoPrinterPageHeight, NoPrinterPageWidth

Example
Set up for landscape paper

Delphi
if NoPrinters then begin
 NoPrinterPageHeight := 8.5;
 NoPrinterPageWidth := 11.0;
end; { if }

C++Builder
if (rp->NoPrinters()) {
 rp->NoPrinterPageHeight = 8.5;
 rp->NoPrinterPageWidth = 11.0;
}/ if

OnAfterClose event (read/write/published)

Declaration
procedure OnAfterClose(Sender: Tobject);

Category
Rave

Component/Class
TRvProject

Description
This event will be called immediately after the Rave project is closed.

See also
Active, Close, OnAfterOpen, OnBeforeClose, OnBeforeOpen, Open

Developers Guide

Page 146

OnAfterOpen event (read/write/published)

Declaration
procedure OnAfterOpen(Sender: Tobject);

Category
Rave

Component/Class
TRvProject

Description
This event will be called immediately after the Rave project is opened.

See also
Active, Close, OnAfterClose, OnBeforeClose, OnBeforeOpen, Open

OnAfterPrint event (read/write/published)

Declaration
procedure OnAfterPrint(Sender: TObject)

Category
Control

Component/Class
TBaseReport

Description
This event will be called after each print job has finished printing, even if the print job was
aborted or an exception has been generated. This can be useful for cleaning up resources
that were allocated in OnBeforePrint.

See also
Execute, OnBeforePrint

Example
Delphi
procedure TReportForm.AfterPrintReport5(Sender: TObject);
begin { AfterPrintReport5 }
 CustomerTable.Close;
end; { AfterPrintReport5 }

C++Builder
void __fastcall TReportForm:: AfterPrintReport5 (TObject *Sender)
{
 CustomerTable->Close();
}

Developers Guide

Page 147

OnBeforeClose event (read/write/published)

Declaration
procedure OnBeforeClose(Sender: Tobject);

Category
Rave

Component/Class
TRvProject

Description
This event will be called immediately before the Rave project is closed.

See also
Active, Close, OnAfterClose, OnAfterOpen, OnBeforeOpen, Open

OnBeforeOpen event (read/write/published)

Declaration
procedure OnBeforeOpen(Sender: Tobject);

Category
Rave

Component/Class
TRvProject

Description
This event will be called immediately before the Rave project is opened.

See also
Active, Close, OnAfterClose, OnAfterOpen, OnBeforeClose, Open

Developers Guide

Page 148

OnBeforePrint event (read/write/published)

Declaration
procedure OnBeforePrint(Sender: TObject);

Category
Control

Component/Class
TBaseReport

Description
This event is called before the print job has begun. This can be useful to initialize non-report
items such as table record pointers. This event can also be useful to set report items that
must be set before the print job begins (such as paper size and orientation).

See also
Execute, OnAfterPrint

Example
Delphi
procedure TReportForm.BeforePrintReport5(Sender: TObject);
begin { BeforePrintReport5 }
 with Sender as TBaseReport do begin
 StatusFormat := 'Printing Page '#13''#13'';
 StatusText.Add('');
 StatusText.Add('');
 end; { with }
 CustomerTable.First;
end; { BeforePrintReport5 }

C++Builder
void __fastcall TReportForm:: BeforePrintReport5 (TObject *Sender)
{
 TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);
 rp->StatusFormat = "Printing Page \n\n";
 rp->StatusText->Add("");
 rp->StatusText->Add("");
 CustomerTable->First();
} / BeforePrintReport5

Developers Guide

Page 149

OnCompress property (read/write)

Declaration
property OnCompress: TCompressEvent;

Default
' ' empty

Category
Render

Component/Class
TRpRender

Description
This property that can be assigned to an event. The event must be defined if you want to
compress the page stream in the PDF file. You will also need to set the Use Compression
property to true if you want the page stream compressed.

See also
UseCompression

Example
Typcially, the code defined inside the OnCompress event will be something similar to this:

Delphi
with TCompressionStream.Create(clMax, OutStream) do try
 CopyFrom(InStream, InStream.Size);
finally
 Free
end; { with }

OnCreate event (read/write/published)

Declaration
procedure OnCreate(Sender: TObject);

Category
Rave

Component/Class
TRvProject

Description
This event is called when the TRvProject is created. This is the normal place to register
custom Rave components by calling the RaveRegister procedure for the unit containing the
custom Rave components. See the tutorials for more information.

See also
OnDestroy

Developers Guide

Page 150

OnDecodeImage event (read/write/published)

Declaration
procedure OnDecodeImage(Sender: TObject); ImageStream: TStream; ImageType: String;
Bitmap: TBitmap);

Category
Graphics

Component/Class
TBaseReport

Description
This event is called when Rave needs to convert image data (created from the
PrinitImageRect method) to a bitmap for printing. This would normally appear on a
TRvRenderPrinter or TRvRenderPreview component, but could also be defined in a
TRvSystem component.

See also
PrintImageRect

Example
Delphi
var
 Image: TJPEGImage;
 Format: word;
 Data: THandle;
 Palette: HPalette;
if ImageType = 'JPG' then begin
 Image := TJPEGImage.Create; / Create a TJPEGImage class
 Image.LoadFromStream(ImageStream); / Load JPEG image from
ImageStream
 Image.DIBNeeded; / Convert JPEG to bitmap format
 / Save JPEG to clipboard in bitmap format
 Image.SaveToClipboardFormat(Format,Data,Palette);
 Image.Free; / Free the image
 / Load bitmap from clipboard
 Bitmap.LoadFromClipboardFormat(Format,Data,Palette);
end; { if}

C++Builder
if (ImageType == "JPG") {
 Image = new TJPEImage(); / Create a JPEGImage class
 Image->LoadFromStream(ImageStream); / Load JPEG image from
ImageStream
 Image->DIBNeeded(); / Convert JPEG to bitmap
format
 / Save JPEG to clipboard in bitmap format
 Image->SaveToClipboardFormat(Format,Data,Palette);
 delete Image; / Free the image
 / Load bitmap from clipboard
 Bitmap->LoadFromClipboardFormat(Format,Data,Palette);
}/ if

Developers Guide

Page 151

OnDesignerSave event (read/write/published)

Declaration
procedure OnDesignerSave(Sender: TObject);

Category
Rave

Component/Class
TRvProject

Description
When this event is defined, a save button and save menu item will be displayed in the end
user version of the Rave visual designer to allow the end user to perform intermediate saves.
In this event, you will normally call RvProject.Save or whatever code you are using to save
the project (i.e., RvProject1.SaveToStream(BlobStream)). The Sender parameter is the
TRvProject component that generated the event.
NOTE: This feature is only available with a Rave EUDL license. See the Nevrona website at
http:/www.nevrona.com for more information on obtaining an EUDL license.

See also
OnDesignerSaveAs, OnDesignerShow, SaveToStream

OnDesignerSaveAs event (read/write/published)

Declaration
procedure OnDesignerSaveAs(Sender: TObject);

Category
Rave

Component/Class
TRvProject

Description
When this event is defined, a Save As menu item will be displayed in the end user version of
the Rave visual designer to allow the end user to perform saves to alternate destinations. In
this event, you will normally prompt the user for an alternate destination and then call
RvProject.Save or whatever code you are using to save the project (i.e.,
RvProject1.SaveToStream(BlobStream)). The Sender parameter is the TRvProject
component that generated the event.
NOTE: This feature is only available with a Rave EUDL license. See the Nevrona website at
http:/www.nevrona.com for more information on obtaining an EUDL license.

See also
OnDesignerSave, OnDesignerShow, SaveToStream

Developers Guide

Page 152

OnDesignerShow event (read/write/published)

Declaration
procedure OnDesignerShow(Sender: TObject);

Category
Rave

Component/Class
TRvProject

Description
This event will be called after the Rave visual designer is initialized but immediately before it
is displayed. This will allow you to show a splash screen or change the mouse cursor while
the designer is loading, then restore everything just before Rave is displayed. The Sender
parameter is the TRvProject component that generated the event.
NOTE: This feature is only available with a Rave EUDL license. See the Nevrona website at
http:/www.nevrona.com for more information on obtaining an EUDL license.

See also
OnDesignerSave

OnDestroy event (read/write/published)

Declaration
procedure OnDestroy(MyPrinter: TRave);

Category
Rave

Component/Class
TRvProject

Description
This event is called when the TRvProject component is being destroyed. This is useful for
freeing up resources that were allocated in the OnCreate event.

See also
OnCreate

Developers Guide

Page 153

OnEOF event (read/write/published)

Declaration
procedure OnEOF(Connection: TRvCustomConnection; var Eof: Boolean);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants the EOF status for the data. See the
tutorial on customizing data connections for more information.

See also
OnFirst, OnNext

OnFirst event (read/write/published)

Declaration
procedure OnFirst(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants the data cursor to be positioned to the
beginning of the data. See the tutorial on customizing data connections for more information.

See also
OnEOF, OnNext

OnGetCols event (read/write/published)

Declaration
procedure OnGetCols(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants to retrieve the meta-data information
(field names, types, sizes and descriptions) for the data. See the tutorial on customizing data
connections for more information.

See also
OnGetRow

Developers Guide

Page 154

OnGetRow event (read/write/published)

Declaration
procedure OnGetRow(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants to retrieve the data for the current row
of the data. See the tutorial on customizing data connections for more information.

See also
OnFirst, OnNext

OnGetSorts event (read/write/published)

Declaration
procedure OnGetSorts(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants the available sorting methods
available for the data. See the tutorial on customizing data connections for more information.

See also
OnSetSort

Developers Guide

Page 155

OnNewColumn event (read/write/published)

Declaration
procedure OnNewColumn(Sender: TObject);

Category
Control

Component/Class
TBaseReport

Description
This event will be called whenever a new column has begun (after a call to Println, NewLine,
SetColumns or SetColumnWidth). This can be useful for printing column headers.

See also
NewLine, Println, SetColumns, SetColumnWidth

Example
Delphi
procedure TReportForm.OnNewColumnReport10(Sender: TObject);
begin
 with Sender as TBaseReport do begin
 Underline := true;
 Println('Column Titles');
 Underline := false;
 end; { with }
end;

C++Builder
void __fastcall TReportForm:: OnNewColumnReport10 (TObject *Sender)
{
 TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);
 rp->Underline = true;
 rp->Println("Column Titles");
 rp->Underline = false;
}

Developers Guide

Page 156

OnNewPage event (read/write/published)

Declaration
procedure OnNewPage(Sender: TObject);

Category
Control

Component/Class
TBaseReport

Description
This event will be called whenever a new page is generated.
This can be useful to initialize page related items.

See also
NewPage, SelectBin

Example
Delphi
procedure TRpForm.RvNDRWriter1NewPage(Sender: TObject);
begin
 with Sender as TBaseReport do begin
 PrintBitmapRect(0.5,0.5,1.20,1.20,Logo);
 MarginTop := 0.5;
 Home;
 SetFont('Arial',24);
 PrintHeader('Report Title', pjCenter);
 MarginTop := 1.0;
 Home;
 SetFont('Arial',10);
 PrintHeader(FormatDateTime(DateFormat, now), pjRight);
 end; { with }
end;

C++Builder
void __fastcall TRpForm:: RvNDRWriter1NewPage (TObject *Sender)
{
 TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);
 rp->PrintBitmapRect(0.5,0.5,1.20,1.20,Logo);
 rp->MarginTop = 0.5;
 rp->Home();
 rp->SetFont("Arial",24);
 rp->PrintHeader("Report Title", pjCenter);
 rp->MarginTop = 1.0;
 rp->Home();
 rp->SetFont("Arial",10);
 rp->PrintHeader(FormatDateTime("ddd, dd mmm yyyy hh:mm:ss",
Now()), pjRight);
}

Developers Guide

Page 157

OnNext event (read/write/published)

Declaration
procedure OnNext(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants the data cursor to be moved to the
next row of the data. See the tutorial on customizing data connections for more information.

See also
OnEOF, OnFirst

OnOpen event (read/write/published)

Declaration
procedure OnOpen(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants to initialize the data session. See the
tutorial on customizing data connections for more information.

See also
OnRestore

Developers Guide

Page 158

OnPageChange event (read/write/published)

Declaration
procedure OnPageChange(Sender: TObject);

Category
Preview

Component/Class
TRvRenderPreview

Description
This event will be called whenever the current page changes on the preview screen. This can
be useful for updating the current page number on visual controls on the preview screen.

See also
NextPage, PrevPage, PrintPage

Example
Delphi
procedure TPreForm.RvRenderPreview1PageChange(Sender: TObject);
begin
 with RvRenderPreview1 do begin
 PageEdit.Text := IntToStr(CurrentPage);
 PageLabel.Caption := 'Page ' + IntToStr(CurrentPage -
 FirstPage + 1) + ' of ' + IntToStr(Pages);
 end; { with }
end;

C++Builder
void __fastcall TPreForm::RvRenderPreview1PageChange(TObject
*Sender)
{
 TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);
 PageEdit->Text = IntToStr(rp->CurrentPage);
 PageLabel->Caption = "Page " + IntToStr(rp->CurrentPage -
 rp->FirstPage + 1) + " of " + IntToStr(RvRenderPreview1->Pages);
}

Developers Guide

Page 159

OnPreviewSetup event (read/write/published)

Declaration
procedure OnPreviewSetup(Sender: TObject);

Category
Preview

Component/Class
TRvSystem

Description
This will allow you to modify the TRvRenderPreview component on a preview form as well as
the preview form itself. Some functions, such as ZoomPageWidthFactor will need to be called
in the OnPreviewShow event.
NOTE: OnPreviewSetup is called before the form is shown and TRvRenderPreview is
started.

See also
OnPreviewShow

Example
Delphi
Procedure TForm1.RvSystem1PreviewSetup(Sender: Tobject);
begin
 with Sender as TRvRenderPreview do begin
 ZoomFactor := 50;
 with Owner as TForm do begin
 Position := poDesigned;
 Top := 10;
 Left := 10;
 end; { with }
 end; { with }
end;

C++Builder
void __fastcall TForm1::RvSystem1PreviewSetup(TObject *Sender)
{
 TRvRenderPreview* fp = dynamic_cast<TRvRenderPreview*>(Sender);
 fp->ZoomFactor = 50;
 TForm* pf = dynamic_cast<TForm*>(fp->Owner);
 pf->Position = poDesigned;
 pf->Top = 10;
 pf->Left = 10;
}

Developers Guide

Page 160

OnPreviewShow event (read/write/published)

Declaration
procedure OnPreviewShow(Sender: TObject);

Category
Preview

Component/Class
TRvSystem

Description
This will allow you to modify the TRvRenderPreview component on the preview form itself.
NOTE: This event is called during the OnShow event of the preview form.

See also
OnPreviewSetup

Example
Delphi
Procedure TForm1.RvSystem1PreviewShow(Sender: Tobject);
begin
 with Sender as TRvRenderPreview do begin
 ZoomFactor := ZoomPageWidthFactor;
 end; { with }
end;

C++Builder
void __fastcall TForm1::RvSystem1PreviewShow(TObject *Sender)
{
 TRvRenderPreview* fp = dynamic_cast<TRvRenderPreview*>(Sender);
 fp->ZoomFactor = fp->ZoomPageWidthFactor;
}

OnPrint event (read/write/published)

Declaration
procedure OnPrint(Sender: TObject);

Category
Control

Component/Class
TBaseReport

Description
This event will be called when it is time to print the body of the report. To begin a new page
call the NewPage method. To finish the report just exit this event. The event is useful for
more complicated reports that are different from page to page.

See also
Execute, NewPage, OnPrintPage

Developers Guide

Page 161

OnPrintFooter event (read/write/published)

Declaration
procedure OnPrintFooter(Sender: TObject);

Category
Control

Component/Class
TBaseReport

Description
This event will be called after the body for each page that has been printed.
This can be useful for printing similar footers for each page.

See also
GotoFooter, PrintFooter, OnPrintHeader

Example
Delphi
procedure TReportForm.PrintFooterReport5(Sender: TObject);
begin { PrintFooterReport5 }
 with Sender as TBaseReport do begin
 SetFont('Times New Roman',8);
 MarginBottom := 0.5;
 PrintFooter('Page ' + IntToStr(CurrentPage),pjLeft);
 PrintFooter('Date 01/20/95',pjRight);
 MarginBottom := 1.0;
 end; { with }
end; { PrintFooterReport5 }

C++Builder
void __fastcall TReportForm:: PrintFooterReport5 (TObject *Sender)
{
 TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);
 rp->SetFont("Times New Roman",8);
 rp->MarginBottom = 0.5;
 rp->PrintFooter("Page " + IntToStr(rp->CurrentPage),pjLeft);
 rp->PrintFooter("Date 01/20/95",pjRight);
 rp->MarginBottom = 1.0;
}

Developers Guide

Page 162

OnPrintHeader event (read/write/published)

Declaration
procedure OnPrintHeader(Sender: TObject);

Category
Control

Component/Class
TBaseReport

Description
This event will be called before the body for each page that has been printed.
This can be useful for printing similar headers for each page.

See also
GotoHeader, OnPrintFooter, PrintHeader

Example
Delphi
procedure TReportForm.PrintHeaderReport5(Sender: TObject);
begin { PrintHeaderReport5 }
 with Sender as TBaseReport do begin
 MarginTop := 0.5;
 SetFont('Arial',24);
 Underline := true;
 Home;
 PrintCenter('Customer List', PageWidth / 2);
 MarginTop := 1.0;
 end; { with }
end; { PrintHeaderReport5 }

C++Builder
void __fastcall TReportForm:: PrintHeaderReport5 (TObject *Sender)
{
 TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);
 rp->MarginTop = 0.5;
 rp->SetFont("Arial",24);
 rp->Underline = true;
 rp->Home();
 rp->PrintCenter("Customer List", rp->PageWidth / 2);
 rp->MarginTop = 1.0;
}

Developers Guide

Page 163

OnPrintPage event (read/write/published)

Declaration
function OnPrintPage(Sender: TObject; var PageNum: Integer): Boolean;

Category
Control

Component/Class
TBaseReport

Description
This event will be called when it is time to print the body of a page for the report. This event
will only be called if an OnPrint event handler does not already exist for this report. To begin
a new page, return a result of true; otherwise, to finish the report just exit this event with a
result of false.
This event is useful for reports that are the same from page to page.

See also
Execute, OnPrint

Example
Delphi
function TReportForm.PrintPageReport3(Sender: TObject;
 var PageNum: integer): Boolean;
 begin { PrintPageReport3 }
 with Sender as TBaseReport do begin
 SetFont('Times New Roman',10);
 Home;

 { Print memo buffer }
 SetColumns(3,0.25);
 MemoBuf.PrintStart := ColumnStart;
 MemoBuf.PrintEnd := ColumnEnd;
 PrintMemo(MemoBuf, ColumnLinesLeft, false);
 ClearColumns;

 Result := not MemoBuf.Empty;
 end; { with }
end; { PrintPageReport3 }

C++Builder

Developers Guide

Page 164

bool __fastcall TReportForm:: PrintPageReport3 (TObject *Sender,
 int &PageNum)
{
 TBaseReport* rp = dynamic_cast<TBaseReport*>(Sender);

 rp->SetFont("Times New Roman",10);
 rp->Home();

 / Print memo buffer
 rp->SetColumns(3,0.25);
 MemoBuf->PrintStart = rp->ColumnStart;
 MemoBuf->PrintEnd = rp->ColumnEnd;
 rp->PrintMemo(MemoBuf, rp->ColumnLinesLeft(), false);
 rp->ClearColumns();

 return !MemoBuf->Empty();
}

OnRestore event (read/write/published)

Declaration
procedure OnRestore(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants to restore the data session to its state
before the OnOpen event was called. See the tutorial on customizing data connections for
more information.

See also
OnOpen

OnSetFilter event (read/write/published)

Declaration
procedure OnSetFilter(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants to filter the data based on field criteria.
See the tutorial on customizing data connections for more information.

See also
OnSetSort

Developers Guide

Page 165

OnSetSort event (read/write/published)

Declaration
procedure OnSetSort(Connection: TRvCustomConnection);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called when the Rave data system wants to sort the data. See the tutorial on
customizing data connections for more information.

See also
OnSetFilter

OnValidateRow event (read/write/published)

Declaration
procedure OnValidateRow(Connection: TRvCustomConnection; var ValidRow: boolean);

Category
Rave

Component/Class
TRvCustomConnection

Description
This event is called for each row in the data and allows the custom selection of which records
will be included in the report by setting ValueRow to true or false. See the tutorial on
customizing data connections for more information.

See also
OnSetFilter

Developers Guide

Page 166

OnZoomChange event (read/write/published)

Declaration
procedure OnZoomChange(Sender: TObject);

Category
Preview

Component/Class
TRvRenderPreview

Description
This event will be called whenever the current zoom factor changes for the preview screen.
This can be useful for updating the current zoom factor on visual controls on the preview
screen.
NOTE: If an OnZoomChange event handler is created, it is responsible for redrawing the
page by calling RedrawPage.

See also
RedrawPage, ZoomIn, ZoomOut

Example
Delphi
procedure TRpPreviewForm.RvRenderPreview1ZoomChange(Sender:
TObject);
var S1: string[10];
begin
 Str(RvRenderPreview1.ZoomFactor:1:1,S1);
 ZoomEdit.Text := S1;
 RvRenderPreview1.RedrawPage;
end;

C++Builder
void __fastcall TForm1::RvRenderPreview1ZoomChange(TObject *Sender)
{
 AnsiString S1;
 S1 = FloatToStrF(RvRenderPreview1->ZoomFactor, ffGeneral,1,1);
 ZoomEdit->Text = S1;
 RvRenderPreview1->RedrawPage();
}

Developers Guide

Page 167

Open method

Declaration
procedure Open;

Category
Rave

Component/Class
TRvProject

Description
This method will open the report project file defined by ProjectFile to make it available for
printing or modification.

See also
Close, LoadDesigner, OnAfterOpen, OnBeforeOpen, ProjectFile, Save

Orientation property (read/write/published)

Declaration
property Orientation: TOrientation;

Default
poPortrait

Category
Printer

Component/Class
TBaseReport

Description
This property will return or set the current page orientation to either poPortrait or
poLandscape. Use poDefault to retain the setting defined by TPrinterSetupDialog.

Example
Delphi
RvNDRWriter1.Orientation := poLandscape;
C++Builder
RvNDRWriter1->Orientation = poLandscape;

Developers Guide

Page 168

OriginX property (read/write)

Declaration
property OriginX: double;

Default
0.0

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the currently defined origin.
Origins can be very useful for printing similar items that are at different locations of the page
(Example (Delphi) labels).

See also
OriginY

Example
Delphi
RvNDRWriter1.OriginX := 2.0;
C++Builder
RvNDRWriter1->OriginX = 2.0;

OriginY property (read/write)

Declaration
property OriginY: double;

Default
0.0

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the currently defined origin.
Origins can be very useful for printing similar items that are at different locations of the page
(Example (Delphi) labels).

See also
OriginX

Example
Delphi
RvNDRWriter1.OriginY := 2.0;
C++Builder
RvNDRWriter1->OriginY = 2.0;

Developers Guide

Page 169

OutputFileName property (read/write)

Declaration
property OutputFileName: TFileName;

Default
' ' (empty)

Category
Printer

Component/Class
TRvSystem

Description
Specifies the file name that the report output should be sent to. This is a file with printer
commands that can be later printed using a command from the DOS prompt like: "COPY /b
TEST.DAT PRN"

See also
OutputName

Example
Delphi
RvSystem1.OutputFileName := 'TEST.DAT';
C++Builder
RvSystem1->OutputFileName = "TEST.DAT";

OutputInvalid property (read only)

Declaration
property OutputInvalid: boolean;

Default
true

Category
Control

Component/Class
TBaseReport

Description
Returns true if the current report destination is invalid. Will also return true if the report has
been aborted or is finished executing. This can occur if the user has selected a page range
that does not include the current page or the report has been aborted.

See also
Abort, FirstPage, LastPage, Selection

Developers Guide

Page 170

OutputName property (read/write)

Declaration
property OutputName: string;

Default
' ' (empty)

Category
Printer

Component/Class
TBaseReport

Description
This property defines an alternate output device for the current printer. The output device can
be another port, 'LPT3:', or a file on the disk, 'C:\APP\PRINTER.DMP'. The contents of the file
that is created will contain actual printer commands and can be copied to a printer at a later
time with a DOS command This can be useful for sending output to printers that are not
hooked up to the current computer. To do this create the file, copy it to a computer hooked up
to the printer and then use the copy command to send it to the printer port.

See also
Port

Example
COPY PRINTER.DMP LPT1 /B

Delphi
RvNDRWriter1.OutputName := 'C:\APP\PRINTER.DMP';
C++Builder
RvNDRWriter1->OutputName = "C:\APP\PRINTER.DMP";

OverridePreview event (read/write)

Declaration
procedure OverridePreview(RvSystem: TRvSystem; OverrideMode: TOverrideMode; var
OverrideForm: TForm);

Category
ReportSystem

Component/Class
TRvSystem

Description
This event allows the programmer to replace the default preview screen with a custom
preview screen. See RpSYSTEM.PAS for more information.

See also
OverridePreviewProc

Developers Guide

Page 171

OverrideSetup event (read/write)

Declaration
procedure OverrideSetup(RvSystem: TRvSystem; OverrideMode: TOverrideMode; var
OverrideForm: TForm);

Category
ReportSystem

Component/Class
TRvSystem

Description
This event allows the programmer to replace the default preview screen with a custom
preview screen. See RpSYSTEM.PAS for more information.

See also
OverrideSetupProc

OverrideStatus event (read/write)

Declaration
procedure OverrideStatus(RvSystem: TRvSystem; OverrideMode: TOverrideMode; var
OverrideForm: TForm);

Category
ReportSystem

Component/Class
TRvSystem

Description
This event allows the programmer to replace the default preview screen with a custom
preview screen. See RpSYSTEM.PAS for more information.

See also
OverrideStatusProc

Developers Guide

Page 172

PageHeight property (read only)

Declaration
property PageHeight: double;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the height of the currently selected paper size.

See also
PageWidth

Example
Save current page height

Delphi
CurrPageHeight := RvNDRWriter1.PageHeight;
C++Builder
CurrPageHeight = RvNDRWriter1->PageHeight;

PageInc property (read/write/published)

Declaration
property PageInc: integer;

Default
1

Category
Preview

Component/Class
TRvRenderPreview

Description
This property will set or return the number of pages that the preview screen will be
incremented or decremented by when NextPage or PrevPage is called.

See also
NextPage, PrevPage

Example
Delphi
PageInc := 4;
C++Builder
PageInc = 4;

Developers Guide

Page 173

PageInvalid property (read only)

Declaration
property PageInvalid: boolean;

Category
Control

Component/Class
TBaseReport

Description
This property will return whether the current page is valid for printing or not. Typically this
property will be true if the current page is outside the range for FirstPage to LastPage.

See also
FirstPage, LastPage

Example
Delphi
if RvNDRWriter1.PageInvalid then begin
 { code to respond to an invalid page }
end; { if }

C++Builder
if (RvNDRWriter1.PageInvalid) {
 / code to respond to an invalid page
}/ if

Pages property (read only)

Declaration
property Pages: integer;

Category
Preview

Component/Class
TRvRenderPreview

Description
This property returns the total number of pages that exist inside the report file for a preview
screen.

See also
Macro

Example
Delphi
Edit1.Text := IntToStr(RvRenderPreview1.Pages);
Form1.Invalidate;

C++Builder
Edit1->Text = IntToStr(RvRenderPreview1->Pages);
Form1->Invalidate();

Developers Guide

Page 174

PageWidth property (read only)

Declaration
property PageWidth: double;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the width of the currently selected paper size.

See also
PageHeight

Example
Save current page width

Delphi
CurrPageWidth := RvNDRWriter1.PageWidth;
C++Builder
CurrPageWidth = RvNDRWriter1->PageWidth;

Papers property (read only)

Declaration
property Papers: TStrings;

Default
(list of paper sizes supported by the default printer)

Category
Printer

Component/Class
TBaseReport

Description
This property will return a TStringList of paper sizes that are supported by the current printer.

See also
SelectPaper, SupportPaper, TStrings

Example
Delphi
ListBox2.Items := RvNDRWriter1.Papers;
C++Builder
ListBox2->Items = RvNDRWriter1->Papers;

Developers Guide

Page 175

Pie method

Declaration
procedure Pie(X1,Y1,X2,Y2,X3,Y3,X4,Y4: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method draws a pie slice inside an ellipse bounded by the rectangle defined by (X1,Y1)
and (X2,Y2). The slice starts at the intersection of the line drawn between the ellipse center
((X1+X2) / 2.0,(Y1+Y2) / 2.0) and the point (X3,Y3) and is drawn counterclockwise until it
reaches the intersection of the line drawn between the ellipse center and the point (X4,Y4).

See also
Arc, Ellipse

Example
Delphi
SetBrush(clBlack, bsHorizontal, nil);
Pie(3.25,1.0,5.25,3.0,5.25,2.0,0.0,0.0);
SetBrush(clBlack, bsVertical, nil);
Pie(3.25,1.0,5.25,3.0,0.0,0.0,3.25,7.0);
SetBrush(clBlack, bsBDiagonal, nil);
Pie(3.25,1.0,5.25,3.0,3.25,7.0,5.25,2.0);

C++Builder
rp->SetBrush(clBlack, bsHorizontal, NULL);
 rp->Pie(3.25,1.0,5.25,3.0,5.25,2.0,0.0,0.0);
 rp->SetBrush(clBlack, bsVertical, NULL);
 rp->Pie(3.25,1.0,5.25,3.0,0.0,0.0,3.25,7.0);
 rp->SetBrush(clBlack, bsBDiagonal, NULL);
 rp->Pie(3.25,1.0,5.25,3.0,3.25,7.0,5.25,2.0);

Developers Guide

Page 176

PIVar property

Declaration
function PIVar(PIVarName: String): String;

Category
Printing

Component/Class
TBaseReport

Description
This method allows you to initialize the value of a PIVar (Post Initialize Variable). Any PIVars
of the same name that were previously printed will show this value. PIVars will use the value
that is set after it is printed. A common use for PIVars is to print a total in a header band that
would be initialized later in the footer band. This works even across multiple pages.
TRvSystem.SystemOptions.soUseFiler must be true if you are using PIVars in your report.

See also
SetPIVar

Example
Delphi
with Sender as TBaseReport do begin
 Print('SubTotal:' + PIVar('SubTotal'));
/ Other print statements including new pages
 SetPIVar('SubTotal',FormatFloat(SubTotal));
end; {with}

C++Builder
rp->Print("SubTotal:" + PIVar("SubTotal"));
/ Other print statements including new pages
 rp->SetPIVar("SubTotal",FormatFloat(SubTotal));

Developers Guide

Page 177

Polygon method

Declaration
procedure Polygon(const Points: array of TPoint);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw a polygon using the current pen defined by the points contained in the
open array Points. It also closes the shape between the first and last points and fills it using
the current brush.

Example
Delphi
RvNDRWriter1.Polygon([CreatePoint(1.0,2.0),
 CreatePoint(2.0,3.0),
 CreatePoint(5.0,2.0)]);

C++Builder
POINT points[3];
 points[0] = rp->CreatePoint(1.0,2.0);
 points[1] = rp->CreatePoint(2.0,3.0);
 points[2] = rp->CreatePoint(5.0,2.0);
 RvNDRWriter1->Polygon(points,2);

Developers Guide

Page 178

Polyline method

Declaration
procedure Polyline(const Points: array of TPoint);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw a series of lines using the current pen connecting the points defined in
the open array Points.

See also
CreatePoint, TPoint

Example
Delphi
PolyLineArr[1] := CreatePoint(0 , -1);
PolyLineArr[2] := CreatePoint(-0.59, 0.81);
PolyLineArr[3] := CreatePoint(0.95, -0.31);
PolyLineArr[4] := CreatePoint(-0.95, -0.31);
PolyLineArr[5] := CreatePoint(0.59, 0.81);
PolyLineArr[6] := CreatePoint(0 , -1);
PolyLine(PolyLineArr);

C++Builder
POINT PolyLineArr[7];
 PolyLineArr[1] = rp->CreatePoint(0 , -1);
 PolyLineArr[2] = rp->CreatePoint(-0.59, 0.81);
 PolyLineArr[3] = rp->CreatePoint(0.95, -0.31);
 PolyLineArr[4] = rp->CreatePoint(-0.95, -0.31);
 PolyLineArr[5] = rp->CreatePoint(0.59, 0.81);
 PolyLineArr[6] = rp->CreatePoint(0 , -1);
 rp->Polyline(PolyLineArr,6);

Developers Guide

Page 179

PopFont method

Declaration
function PopFont: boolean;

Category
Font

Component/Class
TBaseReport

Description
This method will set the font to the setting that was last pushed by PushFont. PopFont will
return false if no more fonts exist on the stack.

See also
PushFont

Example
Delphi
PushFont;
SetFont('Arial',10);
Println('This is in Arial');
PopFont;

C++Builder
rp->PushFont();
 rp->SetFont("Arial",10);
 rp->Println("This is in Arial");
 rp->PopFont();

Developers Guide

Page 180

PopPos method

Declaration
function PopPos: boolean;

Category
Position

Component/Class
TBaseReport

Description
This method will set the text cursor position to the setting that was last pushed by PushPos.
PopPos will return false if no more positions exist on the stack.

See also
PushPos

Example
Delphi
PushPos;
PrintXY(4,1.5,'Name');
PopPos;

C++Builder
rp->PushPos();
rp->PrintXY(4,1.5,"Name");
rp->PopPos();

PopTabs method

Declaration
function PopTabs: boolean;

Category
Tabs

Component/Class
TBaseReport

Description
This method will set the tabs to the setting that was last pushed by PushTabs. PopTabs will
return false if no more tabs exist on the stack.

See also
PushTabs

Developers Guide

Page 181

Port property (read only)

Declaration
property Port: string;

Category
Printer

Component/Class
TBaseReport

Description
This property will return the port name for the currently selected printer.

See also
PrinterIndex, OutputName

Example
Delphi
Edit1.Text := RvNDRWriter1.Port;
Form1.Invalidate;

C++Builder
Edit1->Text = RvNDRWriter1->Port;
Form1->Invalidate();

Position property (read/write)

Declaration
property Position: double;

Category
BarCode

Component/Class
TRpBarsBase

Description
This property sets or returns the positions of the bar code that is used in relation to the state
of the BarCodeJustify property. This property along with BarCodeJustify is changed
whenever the Left, Right or Center properties are changed.

See also
BarCodeJustify, BarTop, Center, Left, Right

Example
Bar Code will be centered at the SectionLeft + 3.0 point

Delphi
BarCodeJustify := pjCenter;
Position := SectionLeft + 3.0;

C++Builder
BarCodeJustify = pjCenter;
Position = SectionLeft + 3.0;

Developers Guide

Page 182

Pos property (read/write)

Declaration
property Pos: longint;

Default
0

Category
Memo

Component/Class
TMemoBuf

Description
This property will return or set the current position marker for the memo buffer. The first
position is at index 0.

See also
Reset

Example
Save current memo buffer position

Delphi
CurrMemoPos := MemoBuf1.Pos;
C++Builder
CurrMemoPos = MemoBuf1->Pos;

PrevPage method

Declaration
procedure PrevPage;

Category
Preview

Component/Class
TRvRenderPreview

Description
This method will go to and print the previous page to the preview window.
The OnPageChange event handler will be called if the current page number changes.

See also
CurrentPage, NextPage, OnPageChange

Example
Delphi
RvRenderPreview1.PrevPage;
C++Builder
RvRenderPreview1->PrevPage();

Developers Guide

Page 183

Print method

Declaration
procedure Print(Text: string);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string, Text, at the current text cursor position. If the string contains
any tab characters (9) the Tab method will be called with the default parameters. The text
cursor is left at the end of the string that is printed.

See also
all other print functions

Example
Delphi
RvNDRWriter1.Print('Hello World!');
C++Builder
RvNDRWriter1->Print("Hello World!");

Print method

Declaration
procedure Print;

Category
BarCode

Component/Class
TRpBarsBase

Description
This method will print the bar code at the current text cursor position. The text cursor is left at
the end of the string that is printed.

Example
GotoXY, PrintReadable, PrintTop, PrintXY, Text

Delphi
BarCode1.Text := '12345';
BarCode1.Print;

C++Builder
BarCode1->Text = "12345";
BarCode1->Print();

Developers Guide

Page 184

PrintBitmap method

Declaration
procedure PrintBitmap(X,Y: double; ScaleX, ScaleY: double; Bitmap: TBitmap);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw Bitmap on the printer canvas at the point defined by (X,Y).
The bitmap will be scaled by the factors ScaleX and ScaleY. (Example (Delphi) A scaling
factor of 2 would draw each pixel in the bitmap as 2 pixels on the printer canvas.)

See also
PrintBitmapRect

Example
Print MyBitmap in upper left corner four times its size

Delphi
RvNDRWriter1.PrintBitmap(1.0, 1.0, 2.0, 2.0, MyBitmap);
C++Builder
RvNDRWriter1->PrintBitmap(1.0, 1.0, 2.0, 2.0, MyBitmap);

Developers Guide

Page 185

PrintBitmapRect method

Declaration
procedure PrintBitmapRect(X1,Y1,X2,Y2: double; Bitmap: TBitmap);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw Bitmap on the printer canvas stretched or shrunken to fit within the
rectangle defined by the points (X1,Y1) and (X2,Y2).

See also
CalcGraphicHeight, CalcGraphicWidth, PrintBitmap, StretchDraw

Example
Delphi
Bitmap := TBitmap.Create;
Bitmap.LoadFromFile('RpDEMO.BMP');
PrintBitmapRect(5.375,3.5,7.375,5.5,Bitmap);
Bitmap.Free;

C++Builder
TBitmap* Bitmap = new TBitmap();
Bitmap.LoadFromFile("RpDEMO.BMP");
rp->PrintBitmapRect(5.375,3.5,7.375,5.5,Bitmap);
delete Bitmap;

PrintBlock method

Declaration
procedure PrintBlock(Text: string; Pos: double; Width: double);

Category
Printing

Component/Class
TBaseReport

Description
This method will print Text on the current line starting at Pos. The text will be block justified
within the area defined by Width.

See also
All other print functions

Example
Delphi
PrintBlock('This is block justified text',0.5,4.0);
C++Builder
Rp->PrintBlock("This is block justified text",0.5,4.0);

Developers Guide

Page 186

PrintCenter method

Declaration
procedure PrintCenter(Text: string; Pos: double);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string, Text, on the current line centered horizontally at the position,
Pos.

See also
all other print functions

Example
Delphi
PrintCenter('Text centered at 2.0', 2.0);
C++Builder
rp->PrintCenter("Text centered at 2.0", 2.0);

PrintCharJustify method

Declaration
procedure PrintCharJustify(Text: string; Ch: char; Pos: double);

Category
Printing

Component/Class
TBaseReport

Description
This method will print a text string out, justified at Pos with respect to the first occurrence of
Ch in Text. This can be useful for printing columns of numbers, aligned by the decimal point,
when there can be a variable number of digits after the decimal point.

See also
PrintLeft, PrintRight

Example
Print the number justified by the decimal point

Delphi
PrintCharJustify(NumStr,'.',4.25);
C++Builder
rp->PrintCharJustify(NumStr,".",4.25);

Developers Guide

Page 187

PrintChecksum property (read/write)

Declaration
property PrintChecksum: boolean

Default
false

Category
BarCode

Component/Class
TRpBarsBase

Description
This property determines if the readable text includes the checksum character.
NOTE: It is possible that the checksum character may not be a printable character with some
of the bar code types.

See also
BarTop, UseChecksum

PrintData method

Declaration
procedure PrintData(Value: string);

Category
Printer

Component/Class
TBaseReport

Description
This method will print the string Value directly to the printer. This can be useful for sending
printer specific commands to do things not normally supported by the Windows printer driver
(Example (Delphi) electronic forms or HP-GL commands).
WARNING: Including any printer specific commands in your reports may render the reports
unusable on other computer systems. Use this method only on a limited basis.
NOTE: This property may be used to send raw HTML tags and text out to the page which is
not altered in any way by Rave.

See also
All other print functions, PrintDataStream

Example
Delphi
RvNDRWriter1.PrintData(SpecialCodes);
C++Builder
RvNDRWriter1->PrintData(SpecialCodes);

Developers Guide

Page 188

PrintDataStream method

Declaration
procedure PrintDataStream(Stream: TStream; BufSize: longint);

Category
Printer

Component/Class
TBaseReport

Description
This procedure will send BufSize bytes from Stream directly to the printer.
If BufSize is 0 the remaining contents of Stream will be send.
NOTE: Depending upon the content of the data sent to the printer, this command may cause
your reports to be incompatible across different brands of printers.
There are also many printer functions that are incompatible with the Windows printer driver
and should not be used.

See also
PrintData

Example
Delphi
MyFileStream := TFileStream.Create('PAGE.PCL', fmOpenRead);
PrintDataStream(MyFileStream,0);
MyFileStream.Free;

C++Builder
MyFileStream = new TFileStream("PAGE.PCL", fmOpenRead);
rp->PrintDataStream(MyFileStream,0);
delete MyFileStream;

Developers Guide

Page 189

PrintEnd property (read/write)

Declaration
property PrintEnd: double;

Default
0.0

Category
Memo

Component/Class
TMemoBuf

Description
This property will return or set the rightmost position that the memo field will print in.

See also
PrintStart

Example
Leave 1.5 inches for left margin

Delphi
MemoBuf1.PrintEnd := 6.5;
C++Builder
MemoBuf1->PrintEnd = 6.5;

PrinterIndex property (read/write)

Declaration
property PrinterIndex: integer;

Default
-1

Category
Printer

Component/Class
TBaseReport

Description
This property will return or set the currently selected printer as defined in the Printer.Printers
string list. Set PrinterIndex to -1 to use the default printer.

See also
SelectPrinter

Example
Save current printer index

Delphi
CurrIndex := RvNDRWriter1.PrinterIndex;
C++Builder
CurrIndex = RvNDRWriter1->PrinterIndex;

Developers Guide

Page 190

Printers property (read only)

Declaration
property Printers: TStrings;

Default
(list of printers currently installed on the system)

Category
Printer

Component/Class
TBaseReport

Description
This property will return a TStringList of printers that are currently installed on the user's
computer.

See also
SelectPrinter, TStrings

Example
Delphi
ComboBox2.Items := Printers;
C++Builder
ComboBox2->Items := rp->Printers;

PrintFimA method

Declaration
procedure PrintFimA(X,Y: double);

Category
BarCode

Component/Class
TRpBarsBase

Description
This method prints a PostNet FIM A at the given X, Y location.

See also
PrintFimB, PrintFimC

Example
Delphi
PostNetBC1.PrintFimA(3.5,0.5);
C++Builder
PostNetBC1->PrintFimA(3.5,0.5);

Developers Guide

Page 191

PrintFimB method

Declaration
procedure PrintFimB(X,Y: double);

Category
BarCode

Component/Class
TRpBarsBase

Description
This method prints a PostNet FIM B at the given X, Y location.

See also
PrintFimA, PrintFimC

Example
Delphi
PostNetBC1.PrintFimB(3.5,0.5);
C++Builder
PostNetBC1->PrintFimB(3.5,0.5);

PrintFimC method

Declaration
procedure PrintFimC(X,Y: double);

Category
BarCode

Component/Class
TRpBarsBase

Description
This method prints a PostNet FIM C at the given X, Y location.

See also
PrintFimA, PrintFimB

Example
Delphi
PostNetBC1.PrintFimC(3.5,0.5);
C++Builder
PostNetBC1->PrintFimC(3.5,0.5);

Developers Guide

Page 192

PrintFooter method

Declaration
procedure PrintFooter(Text: string; Justify: TPrintJustify);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string, Text, just above the current SectionBottom justified by,
Justify, between the current SectionLeft and SectionRight.

See also
All other print functions, GotoFooter

Example
Delphi
PrintFooter('Date 01/20/95', pjRight);
C++Builder
PrintFooter("Date 01/20/95", pjRight);

PrintHeader method

Declaration
procedure PrintHeader(Text: string; Justify: TPrintJustify);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string, Text, just below the current SectionTop justified by, Justify,
between the current SectionLeft and SectionRight.

See also
All other print functions, GotoHeader

Example
Delphi
PrintHeader('Report Header Text', pjCenter);
C++Builder
PrintHeader("Report Header Text", pjCenter);

Developers Guide

Page 193

PrintHeight method

Declaration
procedure PrintHeight(Height:double; PrintTabs: boolean);

Category
Memo

Component/Class
TMemoBuf

Description
This method will print the memo buffer for the height specified by the Height parameter. If
Height is 0 then all lines in the memo buffer will be printed. If PrintTabs is true, then
PrintHeight will print lines of empty tabs for each line that the memo buffer is printed on.
NOTE: If the entire memo buffer is not printed, the internal position of MemoBuf will be set to
the last character that was printed. This will allow the memo buffer to be continued on
another page.
NOTE: You must initialize the TMemoBuf.BaseReport before calling this method.

See also
BaseReport, TMemoBuf, MemoHeightLeft

Developers Guide

Page 194

PrintImageRect method

Declaration
procedure PrintImageRect(X1,Y1,X2,Y2: double; ImageStream: Tstream; ImageType: string);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw ImageStream on the printer canvas stretched or shrunken to fit within
the rectangle defined by the points (X1,Y1) and (X2,Y2).

See also
CalcGraphicHeight, CalcGraphicWidth, OnDecodeImage, PrintBitmap, StretchDraw

Example
Delphi
with Sender as TBaseReport do begin
 Stream := TMemoryStream.Create;
 Image := TJPEGImage.Create;
 try
 Image.LoadFromFile('image1.jpg');
 Image.SaveToStream(Stream);
 Stream.Position := 0;
 PrintImageRect(1,1,3,3,Stream,'JPG');
 finally
 Image.Free;
 Stream.Free
 end; {tryf}
end; {with}

C++Builder
TBaseReport *rp = dynamic_cast<TBaseReport*>(Sender);
Stream = new TMemoryStream->Create();
Image = new TJPEGImage->Create();
try {
 Image->LoadFromFile("image1.jpg");
 Image->SaveToStream(Stream);
 Stream->Position = 0;
 rp->PrintImageRect(1,1,3,3,Stream, "JPG");
}
finally {
 delete Image;
 delete Stream;
}; {tryf}

Developers Guide

Page 195

Printing property (read only)

Declaration
property Printing: boolean;

Category
Control

Component/Class
TBaseReport

Description
This property will be set to true after a call to Execute has been made and will remain true
until the report has finished.

See also
Execute

Example
Delphi
if RvNDRWriter1.Printing then RvNDRWriter1.Abort;
C++Builder
if (RvNDRWriter1->Printing) RvNDRWriter1->Abort();

Developers Guide

Page 196

PrintJustify method

Declaration
procedure PrintJustify(Text: string; Pos: double; Justify: TPrintJustify; Margin: double; Width:
double);

Category
Printing

Component/Class
TBaseReport

Description
This method will print left, right, center or block justified text. The text will be justified inside a
measurement rectangle starting at Pos and with a horizontal size of Width. Margin is the
spacing between the text and the sides of the measurement rectangle in units.

See also
PrintBlock, PrintCenter, PrintLeft, PrintRight

Example
Delphi
PrintJustify('Centered Text',
 SectionLeft,pjCenter,0.0,SectionRight - SectionLeft);
{ Same as PrintCenter('Centered Text',
 (SectionLeft + SectionRight) / 2.0); }

C++Builder
rp->PrintJustify("Centered Text",
 SectionLeft,pjCenter,0.0,SectionRight - SectionLeft);
/* Same as PrintCenter("Centered Text",
 (SectionLeft + SectionRight) / 2.0); *</pre>

PrintLeft method

Declaration
procedure PrintLeft(Text: string; Pos: double);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string Text on the current line left justified at the position Pos.

See also
All other print functions

Example
Delphi
RvNDRWriter1.PrintLeft('Text left at 4.0', 4.0);
C++Builder
RvNDRWriter1->PrintLeft("Text left at 4.0", 4.0);

Developers Guide

Page 197

PrintLines method

Declaration
procedure PrintLines(Lines: longint; PrintTabs: boolean);

Category
Memo

Component/Class
TMemoBuf

Description
This method will print the memo buffer for the number of lines specified by Lines. If Lines is 0
then all lines in the memo buffer will be printed. If PrintTabs is true, then PrintMemo will print
lines of empty tabs for each line that the memo buffer is printed on.
NOTE: If the entire memo buffer is not printed, the internal position of MemoBuf will be set to
the last character that was printed. This will allow the memo buffer to be continued on
another page.
NOTE: You must initialize the TMemoBuf.BaseReport before calling this method.

See also
BaseReport, MemoLinesLeft, TMemoBuf

PrintLn method

Declaration
procedure PrintLn(Text: string);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string Text just like the Print method does; however, it also calls
NewLine to go to the next line.

See also
All other print functions, NewLine

Example
Delphi
RvNDRWriter1.Println('Text on a line');
RvNDRWriter1.Println('Text on another line');

C++Builder
RvNDRWriter1->Println("Text on a line");
RvNDRWriter1->Println("Text on another line");

Developers Guide

Page 198

PrintMemo method

Declaration
procedure PrintMemo(MemoBuf: TMemoBuf; Lines: longint; PrintTabs: boolean);

Category
Memo

Component/Class
TBaseReport

Description
This method will print the memo buffer, MemoBuf, for the number of lines specified by Lines.
If Lines is 0 then all lines in the memo buffer will be printed. If PrintTabs is true, then
PrintMemo will print lines of empty tabs for each line that the memo buffer is printed on.
NOTE: If the entire memo buffer is not printed, the internal position of MemoBuf will be set to
the last character that was printed. This will allow the memo buffer to be continued on
another page.

See also
MemoLines, TMemoBuf

Example
Delphi
SetColumns(3,0.25);
MemoBuf.PrintStart := ColumnStart;
MemoBuf.PrintEnd := ColumnEnd;
PrintMemo(MemoBuf, ColumnLinesLeft, false);
ClearColumns;

C++Builder
rp->SetColumns(3,0.25);
MemoBuf->PrintStart = rp->ColumnStart;
MemoBuf->PrintEnd := rp->ColumnEnd;
rp->PrintLines(MemoBuf, rp->ColumnLinesLeft, false);
rp->ClearColumns();

Developers Guide

Page 199

PrintPage method

Declaration
procedure PrintPage(PageNum: word);

Category
Preview

Component/Class
TRvRenderPreview

Description
This method will print the page specified by PageNum to the preview window.
The OnPageChange event handler will be called if the current page number changes.

See also
OnPageChange, RedrawPage

Example
Delphi
RvRenderPreview1.PrintPage(2);
C++Builder
RvRenderPreview1->PrintPage(2);

PrintReadable property (read/write)

Declaration
property PrintReadable: boolean;

Default
true

Category
BarCode

Component/Class
TRpBarsBase

Description
Set this property to false if you do not want readable text to be printed along with the bar
code.
NOTE: For UPC bar codes, text is always printed.

See also
PrintTop, TextJustify

Developers Guide

Page 200

PrintRight method

Declaration
procedure PrintRight(Text: string; Pos: double);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string, Text, on the current line right justified at the position, Pos.

See also
all other print functions

Example
Delphi
RvNDRWriter1.PrintRight('Right justified at 3.0',3.0);
C++Builder
RvNDRWriter1->PrintRight("Right justified at 3.0",3.0);

PrintStart property (read/write)

Declaration
property PrintStart: double;

Default
0.0

Category
Memo

Component/Class
TMemoBuf

Description
This property will return or set the leftmost position that the memo buffer will print in.

See also
PrintEnd

Example
Leave 1.5 inches for right margin

Delphi
MemoBuf1.PrintStart := 1.5;
C++Builder
MemoBuf1->PrintStart = 1.5;

Developers Guide

Page 201

PrintTab method

Declaration
procedure PrintTab(Text: string);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the next tab setting and then print Text within that tab box. This is
equivalent to Print(#9 + Text); with the exception that Text is truncated if it is too long.

See also
Print, Println, Tab

Example
Delphi
PrintTab(FieldByName('Name'));
C++Builder
PrintTab(FieldByName("Name"));

PrintTop property (read/write)

Declaration
property PrintTop: boolean;

Default
false

Category
BarCode

Component/Class
TRpBarsBase

Description
Set this property to true if you want the readable text to be printed on top of the bar code. A
false value means that the readable text will be printed below the bar code. This property has
no effect when printing UPC codes, since the UPC text is always printed at the bottom of the
bar code.

See also
PrintReadable, TextJustify

Example
Delphi
Code39.PrintTop := True;
Code39.Print;

C++Builder
Code39->PrintTop = true;
Code39->Print();

Developers Guide

Page 202

PrintXY method

Declaration
procedure PrintXY(X,Y: double; Text: string);

Category
Printing

Component/Class
TBaseReport

Description
This method will print the string, Text, at the location specified by the point (X,Y).
NOTE: The Y position will determine the location of the baseline of the printed text.

See also
All other print functions, GotoXY

Example
Delphi
RvNDRWriter1.PrintXY(1.0, 2.0, 'Text above (1.0, 2.0)');
C++Builder
RvNDRWriter1->PrintXY(1.0, 2.0, "Text above (1.0, 2.0)");

PrintXY method

Declaration
procedure PrintXY(X,Y: double);

Category
BarCode

Component/Class
TRpBarsBase

Description
This method will print the bar code at the location specified by the point (X,Y).
NOTE: The Y position will determine the location of the top of the bar code.

See also
Print, PrintReadable, PrintTop, Text

Example
Delphi
Code2of5.Text := '12345';
Code2of5.PrintXY(1.0, 2.0);

C++Builder
Code2of5->Text = "12345";
Code2of5->PrintXY(1.0, 2.0);

Developers Guide

Page 203

ProjectFile property (read/write/published)

Declaration
property ProjectFile: string;

Default
' ' (empty)

Category
Rave

Component/Class
TRvProject

Description
This property defines the filename of the report project that will be loaded when the
TRvProject component is opened. This parameter should point to a valid .RAV file.

See also
Active, Close, Open

PushFont method

Declaration
function PushFont: boolean;

Category
Font

Component/Class
TBaseReport

Description
This method will push the current font onto an internal stack for later retrieval by PopFont.

See also
PopFont

Example
see PopFont

Developers Guide

Page 204

PushPos method

Declaration
function PushPos: boolean;

Category
Position

Component/Class
TBaseReport

Description
This method will push the current text cursor position onto an internal stack for later retrieval
by PopPos.

See also
PopPos

Example
see PopPos

PushTabs method

Declaration
function PushTabs: boolean;

Category
Tabs

Component/Class
TBaseReport

Description
This method will push the current tab settings onto an internal stack for later retrieval by
PopTabs.

See also
PopTabs

Developers Guide

Page 205

Query property (read/write/published)

Declaration
property Query: TQuery;

Category
Rave

Component/Class
TRvQueryConnection

Description
Specifies the TQuery component that is connected to the TRvQueryConnection component.

Example
Delphi
CustOrdCXN.Query := CustOrdQuery;
C++Builder
CustOrdCXN->Query = CustOrdQuery;

RaveBlobDateTime property (read/write/published)

Declaration
property RaveBlobDateTime: TDateTime;

Category
Rave

Component/Class
TRvProject

Description
Returns the date and time that a report project was last loaded into the application form. This
is not the date and time of the file that was loaded, but rather the date and time that the
loading action was performed. If no report project is loaded, the value will be equal to 0.0.

See also
ClearRaveBlob, LoadRaveBlob, SaveRaveBlob

Example
Delphi
Label1.Caption := DateTimeToStr(RvProject1.RaveBlobDateTime);
C++Builder
Label1->Caption = DateTimeToStr(RvProject1->RaveBlobDateTime);

Developers Guide

Page 206

ReadableHeight property (read only)

Declaration
property ReadableHeight: double;

Category
BarCode

Component/Class
TRpBarsBase

Description
Returns the height that the readable text adds to the bar code.

See also
BarHeight, Height

RecoverPrinter method

Declaration
procedure RecoverPrinter;

Category
Printer

Component/Class
TBaseReport

Description
This method will recover the printer handle that was released by a prior call to
ReleasePrinter.

See also
ReleasePrinter

Example
See ReleasePrinter

Developers Guide

Page 207

Rectangle method

Declaration
procedure Rectangle(X1,Y1,X2,Y2: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw a rectangle defined by the points (X1,Y1) and (X2,Y2).
The rectangle will be drawn with a border of the current pen and filled with the current brush.

See also
RoundRect

Example
Delphi
RvNDRWriter1.Rectangle(1.0, 1.0, 4.0, 5.0);
C++Builder
RvNDRWriter1->Rectangle(1.0, 1.0, 4.0, 5.0);

RedrawPage method

Declaration
procedure RedrawPage;

Category
Preview

Component/Class
TRvRenderPreview

Description
This method will redraw the current page for the preview screen.

See also
PrintPage

Example
Delphi
RvRenderPreview1.RedrawPage;
C++Builder
RvRenderPreview1->RedrawPage();

Developers Guide

Page 208

RegisterGraphic method

Declaration
procedure RegisterGraphic(index: integer);

Category
Graphics

Component/Class
TBaseReport

Description
This method will help manage repeating, large bitmaps in a print job. You can register up to
10 bitmaps at once by passing in the index value from 1 to 10. With this method only one
copy of the bitmap would be stored in the file with all other print functions referencing the
same copy.
NOTE: Use UnregisterGraphic(n) to make sure that the graphic index that you are using is
cleared.
NOTE: This method will only optimize the execution of a report through TRvNDRWriter.

See also
ReuseGraphic, UnregisterGraphic

Example
Delphi
Bitmap := TBitmap.Create;
with Sender as TBaseReport do try
 Bitmap.LoadFromFile('LOGO.BMP');
 UnregisterGraphic(1);
 while not Table1.EOF do begin
 ReuseGraphic(1);
 PrintBitmapRect(1,1,2,2,Bitmap);
 RegisterGraphic(1);
 { other printing code }
 end; { while }
finaly
 Bitmap.Free;
end; { with }

C++Builder
Bitmap = new TBitmap();
try {
 Bitmap->LoadFromFile("LOGO.BMP");
 rp->UnregisterGraphic(1);
 while (!Table1->Eof) {
 rp->ReuseGraphic(1);
 rp->PrintBitmapRect(1,1,2,2,Bitmap);
 rp->RegisterGraphic(1);
 / other printing code
 }/ while
}
__finally {
 delete Bitmap;
}/ tryf

Developers Guide

Page 209

ReleasePrinter method

Declaration
procedure ReleasePrinter;

Category
Printer

Component/Class
TBaseReport

Description
This method will release the printer handle from Rave so that other components, such as
TPrinterSetupDialog, can access the printer. Use RecoverPrinter to re-initialize Rave and
recover the printer handle.

See also
RecoverPrinter

Example
Delphi
RvNDRWriter1.ReleasePrinter;
PrinterSetupDialog1.Execute;
RvNDRWriter1.RecoverPrinter;

C++Builder
RvNDRWriter1->ReleasePrinter();
PrinterSetupDialog1->Execute();
RvNDRWriter1->RecoverPrinter();

Developers Guide

Page 210

ReplaceAll method

Declaration
procedure ReplaceAll(SearchText: string; ReplaceText: string; CaseMatters: boolean);

Category
Memo

Component/Class
TMemoBuf

Description
This method will replace all occurrences of SearchText with ReplaceText.
If CaseMatters is true then the case of the characters must match; otherwise, case will not be
a factor for a match.

See also
SearchFirst, SearchNext

Example
Delphi
MemoBuf.ReplaceAll('ame, Name, false);
MemoBuf.ReplaceAll('ddress, Address, false);

C++Builder
MemoBuf->ReplaceAll("ame, Name, false);
MemoBuf->ReplaceAll("ddress, Address, false);

ReportDateTime property (read/write)

Declaration
property ReportDateTime: TDateTime;

Default
(Date and time Execute or Start was called)

Category
Printing

Component/Class
TBaseReport

Description
This property will set or return the date and time the report was started.

See also
Macro

Example
Delphi
Edit1.Text := DateTimeToStr(ReportDateTime);
C++Builder
Edit1->Text = DateTimeToStr(rp->ReportDateTime);

Developers Guide

Page 211

ReportDesc property (read only)

Declaration
property ReportDesc: string;

Category
Rave

Component/Class
TRvProject

Description
A Rave report is defined by 3 items. The name property is the standard type name with no
spaces or special characters. The full name is like a short title that can be more descriptive of
the reports purpose. The description is more like a memo that would be the complete
description about a report that could be displayed in a memobuf area for the user to select.
This property will return the description of the currently selected report.

See also
ReportFullName, ReportDescToMemo, ReportName, SelectReport

ReportDescToMemo method

Declaration
procedure ReportDescToMemo(Memo: TCustomMemo);

Category
Rave

Component/Class
TRvProject

Description
Initializes the memo component, Memo, to the contents of the currently selected report
description.

See also
ReportDesc, SelectReport

Developers Guide

Page 212

ReportDest property (read only)

Declaration
property ReportDest: TReportDest;

Category
ReportSystem

Component/Class
TRvSystem

Description
This property will be set to the actual destination of the report after the setup form has been
exited. This can be useful for determining which selection the user has chosen
(printer/preview/file) and assign that to other RvSystem components (in the DefaultDest
property).

See also
DefaultDest

ReportFullName property (read only)

Declaration
property ReportFullName: string;

Category
Rave

Component/Class
TRvProject

Description
A Rave report is defined by 3 items. The name property is the standard type name with no
spaces or special characters. The full name is like a short title that can be more descriptive of
the reports purpose. The description is more like a memo that would be the complete
description about a report that could be displayed in a memobuf area for the user to select.
This property will return the full name of the currently selected report.

See also
ReportDesc, ReportName, SelectReport

Developers Guide

Page 213

ReportName property (read only)

Declaration
property ReportName: string;

Category
Rave

Component/Class
TRvProject

Description
A Rave report is defined by 3 items. The name property is the standard type name with no
spaces or special characters. The full name is like a short title that can be more descriptive of
the reports purpose. The description is more like a memo that would be the complete
description about a report that could be displayed in a memobuf area for the user to select.
This property will return the name of the currently selected report.

See also
ReportDesc, ReportFullName, SelectReport

Reset method

Declaration
procedure Reset;

Category
Control

Component/Class
TBaseReport

Description
This method will reset certain settings (Pen, Brush, Origins, Columns, Tabs, Sections and
Text Cursor position) to their default values.

See also
ResetPrinter

Example
Delphi
RvNDRWriter1.Reset;
C++Builder
RvNDRWriter1->Reset();

Developers Guide

Page 214

Reset method

Declaration
procedure Reset;

Category
Memo

Component/Class
TMemoBuf

Description
This method will reset the memo buffer back to the beginning position.
Use this method if you have printed a portion of a memo buffer, but want to start at the
beginning again.

See also
Pos

Example
Delphi
MemoBuf1.Reset;
C++Builder
MemoBuf1->Reset();

ResetLineHeight method

Declaration
procedure ResetLineHeight;

Category
Position

Component/Class
TBaseReport

Description
This method will reset the property LineHeight to the current font if the LineHeightMethod
property is equal to lhmFont. Otherwise, ResetLineHeight sets LineHeight to the value of 1.0
LinesPerInch or leaves it alone if LineHeightMethod is lhmUser.

See also
LineHeight, LineHeightMethod

Example
Delphi
RvNDRWriter1.ResetLineHeight;
C++Builder
RvNDRWriter1->ResetLineHeight();

Developers Guide

Page 215

ResetPrinter method

Declaration
procedure ResetPrinter;

Category
Printer

Component/Class
TBaseReport

Description
This method will reset the current printer for the settings given in the DevMode structure as
well as other printer related settings.
This function is called automatically whenever you change the current printer or change the
orientation.

See also
DevMode

Example
Delphi
RvNDRWriter1.ResetPrinter;
C++Builder
RvNDRWriter1->ResetPrinter();

ResetSection method

Declaration
procedure ResetSection;

Category
Position

Component/Class
TBaseReport

Description
This method will reset the section values, SectionLeft, SectionRight, SectionTop and
SectionBottom to be equal to the current margin settings.

See also
All Margin and Section properties

Example
Delphi
RvNDRWriter1.ResetSection;
C++Builder
RvNDRWriter1->ResetSection();

Developers Guide

Page 216

ResetTabs method

Declaration
procedure ResetTabs;

Category
Tabs

Component/Class
TBaseReport

Description
This method resets the current tab to the beginning. NewLine calls this function to reset the
current tab.

See also
ClearTabs, SetTab

Example
Delphi
RvNDRWriter1.ResetTabs;
C++Builder
RvNDRWriter1->ResetTabs();

RestoreBuffer method

Declaration
procedure RestoreBuffer;

Category
Memo

Component/Class
TMemoBuf

Description
This method will restore the memo buffer to the state it was in during the last call to
SaveBuffer.

See also
SaveBuffer

Developers Guide

Page 217

RestoreFont method

Declaration
function RestoreFont(Index: integer): boolean;

Category
Font

Component/Class
TBaseReport

Description
This method will restore the font settings, saved by a previous SaveFont call, using an Index
from 1 to 10.
The result of this function will be true if the call was successful.

See also
SaveFont

Example
Restore the font saved in position 10

Delphi
RestoreFont(10);
C++Builder
rp->RestoreFont(10);

RestorePos method

Declaration
function RestorePos(Index: byte): boolean;

Category
Position

Component/Class
TBaseReport

Description
This method will set the text cursor position to the setting that was last stored at index, Index,
by SavePos. The valid values for Index are 1 to 10.

See also
SavePos

Example
Delphi
RvNDRWriter1.RestorePos(1);
C++Builder
RvNDRWriter1->RestorePos(1);

Developers Guide

Page 218

RestoreState method

Declaration
procedure RestoreState;

Category
Memo

Component/Class
TMemoBuf

Description
This method restores the cursor position and other state information of the memobuffer back
to what it was when SaveState was called.
NOTE: This does not effect the contents of the memo buffer.

See also
Pos, RestoreBuffer, SaveState

RestoreTabs method

Declaration
function RestoreTabs(Index: integer): boolean;

Category
Tabs

Component/Class
TBaseReport

Description
This method will restore the tab settings, saved by a previous SaveTabs call, using an Index
from 1 to 10.
The result of this function will be true if the call was successful.

See also
RestoreTabs, SetTab

Example
Restore the tab settings in position 3

Delphi
RestoreTabs(3);
C++Builder
RestoreTabs(3);

Developers Guide

Page 219

ReuseGraphic method

Declaration
procedure ReuseGraphic;

Category
Graphics

Component/Class
TBaseReport

Description
This method allows the use of a repeating, large bitmaps in a print job that has been
registered with the RegisterGraphic method. With this method only one copy of the bitmap
would be stored in the file with all other print functions referencing the same copy.
NOTE: This method will only optimize the execution of a report through TRvNDRWriter.

See also
RegisterGraphic, UnregisterGraphic

Example
See RegisterGraphic

RichEdit property

Declaration
property RichEdit: string

Category
Memo

Component/Class
TMemoBuf

Description
Imports the RTF contents stored in a TRichEdit component into a memo buffer.
NOTE: This property does not exist in Delphi 1.0.

See also
RTFLoadFromStream, RTFText

Example
Delphi
MemoBuf1.RichEdit := RichEdit1;
C++Builder
MemoBuf1->RichEdit = RichEdit1;

Developers Guide

Page 220

Right property (read/write)

Declaration
property Right: double;

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the position for the right edge of the bar code. When a value is assigned to
Right, the BarCodeJustify property is set to pjRight as well.

See also
BarCodeJustify, Center, Left, Position

Example
Delphi
BarCode1.Right := SectionRight;
C++Builder
BarCode1->Right = rp->SectionRight;

RightWaste property (read only)

Declaration
property RightWaste: double;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the waste area on the right side of the page that the printer cannot print
into. It is a good idea to make sure that the report's margins are greater than or equal to its
waste areas.

See also
BottomWaste, LeftWaste, MarginRight, TopWaste

Example
See LeftWaste

Developers Guide

Page 221

RoundRect method

Declaration
procedure RoundRect(X1,Y1,X2,Y2,X3,Y3: double);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw a rectangle defined by the points (X1,Y1) and (X2,Y2). The corners of
the rectangle will be drawn as quarters of an ellipse with a width of X3 and a height of Y3.
The rectangle will be drawn with a border of the current pen and filled with the current brush.

See also
Ellipse, Rectangle

Example
Delphi
RoundRect(1.125,3.5,3.125,5.0,0.25,0.25);
C++Builder
rp->RoundRect(1.125,3.5,3.125,5.0,0.25,0.25);

RTFField property

Declaration
property RTFField: TMemoField

Category
Memo

Component/Class
TMemoBuf

Description
Imports a RTF string stored in a TMemoField component into a memo buffer.

See also
Field, RTFText

Developers Guide

Page 222

RTFLoadFromFile method

Declaration
procedure RTFLoadFromFile(FileName: String);

Category
Memo

Component/Class
TMemoBuf

Description
Load an RTF text file into the memo buffer.

See also
LoadFromFile, RTFLoadFromStream

Example
Delphi
MemoBuf1.RTFLoadFromFile('Letter.RTF');
C++Builder
MemoBuf1->RTFLoadFromFile("Letter.RTF");

RTFLoadFromStream method

Declaration
procedure RTFLoadFromStream(stream: Tstream; BufSize: longint);

Category
Memo

Component/Class
TMemoBuf

Description
Loads a RTF text from a stream into the memo buffer. If BufSize is 0 then remaining lenth of
the stream is read in, otherwise, BufSize bytes are read in.

See also
LoadFromFile, RTFLoadFromFile

RTFText property

Declaration
property RTFText: string

Category
Memo

Component/Class
TMemoBuf

Description
Imports an RTF string stored in a text variable into the memo buffer.

See also
RTFField

Developers Guide

Page 223

RulerType property (read/write/published)

Declaration
property RulerType: TRulerType;

Default
rtNone

Category
Preview

Component/Class
TRvSystem

Description
This will create a ruler around the preview screen that can be used to measure items during
report development.
 rtNone: No rulers will be visible.
 rtHorizCm: A ruler in centimeters will be on the top of the page.
 rtVertCm: A ruler in centimeters will be on the left side of the page.
 rtBothCm: Rulers in centimeters will be on the top and left side of the page.
 rtHorizIn: A ruler in inches will be on the top of the page.
 rtVertIn: A ruler in inches will be on the left side of the page.
 rtBothIn: Rulers in inches will be on the top and left side of the page.

See also
GridHoriz, GridPen, GridVert

Developers Guide

Page 224

RuntimeVisibility property (read/write/published)

Declaration
property RuntimeVisibility: Boolean;

Category
Rave

Component/Class
TRvCustomConnection

Description
This property determines the visibility of the data connection to an End User designer.
 rtNone: invisible to external programs at runtime.
 rtDeveloper: visible only to developer version of Rave at runtime.
 rtEndUser: visibile to any version of Rave.

NOTE: If you are NOT distributing the end user report designer and are concerned about the
visibility of your data to external application, you should set the RuntimeVisibility to rtNone
before distributing your application.

See also
DevLock property on Rave Compoents

Example
Delphi
RvCustomConnection1.RuntimeVisibility := rtNone;
C++Builder
RvCustomConnection1->RuntimeVisibility = rtNone;

Save method

Declaration
procedure Save;

Category
Rave

Component/Class
TRvProject

Description
This method will save the current report project to the file specified by the ProjectFile
property.

See also
Close, Open, ProjectFile

Developers Guide

Page 225

SaveBuffer method

Declaration
procedure SaveBuffer;

Category
Memo

Component/Class
TMemoBuf

Description
This method will save the current memo buffer to a saved buffer that can later be restored
with RestoreBuffer. This can be useful for printing form letters that you need to modify for
each print run, but want to return to the original settings at the beginning of each page.

See also
FreeSaved, RestoreBuffer

Example
Save original contents

Delphi
MemoBuf.SaveBuffer;
C++Builder
MemoBuf->SaveBuffer();

SaveFont method

Declaration
function SaveFont(Index: integer): boolean;

Category
Font

Component/Class
TBaseReport

Description
This method will save the current font settings using a value of Index from 1 to 10. These
settings can later be restored with a call to RestoreFont. The result of this function will be true
if the call was successful.

See also
RestoreFont

Example
Save the current font settings in position 2

Delphi
SaveFont(2);
C++Builder
rp->SaveFont(2);

Developers Guide

Page 226

SavePos method

Declaration
function SavePos(Index: byte): boolean;

Category
Position

Component/Class
TBaseReport

Description
This method will store the current text cursor position into an array at index, Index. The valid
values for Index are 1 to 10.

See also
RestorePos

Example
Delphi
RvNDRWriter1.SavePos(1);
C++Builder
RvNDRWriter1->SavePos(1);

SaveRaveBlob method

Declaration
function SaveRaveBlob(Stream: TStream);

Category
Rave

Component/Class
TRvProject

Description
This method will save the currently loaded report project from the application form to Stream.
You should not need to call this function since the normal method of saving the loaded report
project is through the TRvProject.StoreRAV property editor.

See also
ClearRaveBlob, LoadRaveBlob, RaveBlobDateTime, StoreRAV

Example
Delphi
RvProject1.SaveRaveBlob(MyStream);
C++Builder
RvProject1->SaveRaveBlob(MyStream);

Developers Guide

Page 227

SaveState method

Declaration
procedure SaveState;

Category
Memo

Component/Class
TMemoBuf

Description
This method saves the current cursor position, Pos, and other state information. You can
restore the memo buffer state back by calling RestoreState.

See also
Pos, RestoreState, SaveBuffer

SaveTabs method

Declaration
function SaveTabs(Index: integer): boolean;

Category
Tabs

Component/Class
TBaseReport

Description
This method will save the current tab settings using a value of Index from 1 to 10. These
settings can later be restored with a call to RestoreTabs. The result of this function will be
true if the call was successful.

See also
RestoreTabs, SetTab

Example
Save the current tab settings in position 5

Delphi
SaveTabs(5);
C++Builder
SaveTabs(5);

Developers Guide

Page 228

SaveToFile method

Declaration
function SaveToFile(FileName: String);

Category
Rave

Component/Class
TRvProject

Description
This method will save the report project to the file specified by FileName.

See also
LoadFromStream, Save, SaveToStream

Example
Delphi
RvProject1.SaveToFile('Project1.Rav');
C++Builder
RvProject1->SaveToFile("Project1.Rav");

SaveToStream method

Declaration
procedure SaveToStream(Stream: TStream);

Category
Memo

Component/Class
TMemoBuf

Description
This method will save the memo buffer to the stream.

See also
LoadFromStream

Example
Delphi
MemoBuf1.SaveToStream(MyStream);
C++Builder
MemoBuf1->SaveToStream(MyStream);

Developers Guide

Page 229

SaveToStream method

Declaration
procedure SaveToStream(Stream: TStream);

Category
Rave

Component/Class
TRvProject

Description
This method will save the report project to Stream.

See also
LoadFromFile, LoadFromStream, Save, SaveToFile

Example
Delphi
RvProject1.SaveToStream(RaveStream);
C++Builder
RvProject1->SaveToStream(RaveStream);

ScaleX property (read/write/published)

Declaration
property ScaleX: double;

Default
100

Category
Control

Component/Class
TBaseReport

Description
These properties return or set the current scaling percent to apply. A value of 100.0 results in
normal size, while 200.0 will double the print size and 50.0 will half the print size.
This can be used with OriginX and OriginY to print multiple pages per piece of paper.

See also
OriginX, OriginY, ScaleY

Example
Scale to fit 4 pages on one sheet of paper

Delphi
RvNDRWriter1.ScaleX := 50.0;
RvNDRWriter1.ScaleY := 50.0;

C++Builder
RvNDRWriter1->ScaleX = 50.0;
RvNDRWriter1->ScaleY = 50.0;

Developers Guide

Page 230

ScaleY property (read/write/published)

Declaration
property ScaleY: double;

Default
100

Category
Control

Component/Class
TBaseReport

Description
These properties return or set the current scaling percent to apply. A value of 100.0 results in
normal size, while 200.0 will double the print size and 50.0 will half the print size.
This can be used with OriginX and OriginY to print multiple pages per piece of paper.

See also
OriginX, OriginY, ScaleX

Example
Scale to fit 4 pages on one sheet of paper

Delphi
RvNDRWriter1.ScaleX := 50.0;
RvNDRWriter1.ScaleY := 50.0;

C++Builder
RvNDRWriter1->ScaleX = 50.0;
RvNDRWriter1->ScaleY = 50.0;

ScrollBox property (read/write/published)

Declaration
property ScrollBox: TScrollBox;

Default
nil

Category
Preview

Component/Class
TRvRenderPreview

Description
This property defines the scroll box on the preview form that the report will be drawn in.

Example
Delphi
RvRenderPreview1.ScrollBox := Form1.ScrollBox1;
C++Builder
RvRenderPreview1->ScrollBox = Form1->ScrollBox1;

Developers Guide

Page 231

SearchFirst method

Declaration
function SearchFirst(SearchText: string; CaseMatters: boolean): boolean;

Category
Memo

Component/Class
TMemoBuf

Description
This method will start a search process, looking for SearchText from the beginning of the
buffer. If CaseMatters is true then the case of the characters must match; otherwise, case will
not be a factor for the match. This function will return true if it finds a match and false if it
doesn't. Use SearchNext to continue the search after the first occurrence.

See also
Pos, SearchNext

Example
Store the number of occurrences of 'APPLE' in apples

Delphi
Apples := 0;
Found := MemoBuf.SearchFirst('APPLE', false);
while Found do begin
 Inc(Apples);
 Found := MemoBuf.SearchNext;
end; { while }

C++Builder
Apples := 0;
Found := MemoBuf->SearchFirst("APPLE", false);
while (Found == true) {
 Apples++;
 Found = MemoBuf->SearchNext();
}/ while

Developers Guide

Page 232

SearchNext method

Declaration
function SearchNext: boolean;

Category
Memo

Component/Class
TMemoBuf

Description
This method will continue a search initiated by SearchFirst. This function will return true if it
finds a match and false if it doesn't.

See also
Pos, SearchFirst

Example
See SearchFirst

Developers Guide

Page 233

SectionBottom property (read/write)

Declaration
property SectionBottom: double;

Default
MarginBottom

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current section of the paper to be printed on. Items that rely
upon the current section settings are line starting points (Example (Delphi) after a CR call),
setting columns, LinesLeft and ColumnLinesLeft. The section settings are reset to the margin
values after each new page is generated. Changing a margin setting will change its
corresponding section setting to the same measurement.
NOTE: Section settings are different from margin setting in that the section values are always
measurements from the upper or left side of the page while margins are measurements from
the closest side of the page. (Example (Delphi) SectionRight := 8.0 would be the same as
MarginRight := 0.5 for 8.5 inch wide paper.)

See also
Margin properties, ResetSection, SectionLeft, SectionRight, SectionTop

Example
Delphi
with RvNDRWriter1 do begin
 SectionLeft := 1.0;
 SectionRight := 7.5;
 SectionTop := 1.5;
 SectionBottom := 1.0;
end; { with }

C++Builder
rp->SectionLeft = 1.0;
rp->SectionRight = 7.5;
rp->SectionTop = 1.5;
rp->SectionBottom = 1.0;

Developers Guide

Page 234

SectionLeft property (read/write)

Declaration
property SectionLeft: double;

Default
MarginLeft

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current section of the paper to be printed on. Items that rely
upon the current section settings are line starting points (Example (Delphi) after a CR call),
setting columns, LinesLeft and ColumnLinesLeft. The section settings are reset to the margin
values after each new page is generated. Changing a margin setting will change its
corresponding section setting to the same measurement.
NOTE: Section settings are different from margin setting in that the section values are always
measurements from the upper or left side of the page while margins are measurements from
the closest side of the page. (Example (Delphi) SectionRight := 8.0 would be the same as
MarginRight := 0.5 for 8.5 inch wide paper.)

See also
Margin properties, ResetSection, SectionBottom, SectionRight, SectionTop

Example
see SectionBottom

Developers Guide

Page 235

SectionRight property (read/write)

Declaration
property SectionRight: double;

Default
MarginRight

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current section of the paper to be printed on. Items that rely
upon the current section settings are line starting points (Example (Delphi) after a CR call),
setting columns, LinesLeft and ColumnLinesLeft. The section settings are reset to the margin
values after each new page is generated. Changing a margin setting will change its
corresponding section setting to the same measurement.
NOTE: Section settings are different from margin setting in that the section values are always
measurements from the upper or left side of the page while margins are measurements from
the closest side of the page. (Example (Delphi) SectionRight := 8.0 would be the same as
MarginRight := 0.5 for 8.5 inch wide paper.)

See also
Margin properties, ResetSection, SectionBottom, SectionLeft, SectionTop

Example
see SectionBottom

Developers Guide

Page 236

SectionTop property (read/write)

Declaration
property SectionTop: double;

Default
MarginTop

Category
Position

Component/Class
TBaseReport

Description
These properties return or set the current section of the paper to be printed on. Items that rely
upon the current section settings are line starting points (Example (Delphi) after a CR call),
setting columns, LinesLeft and ColumnLinesLeft. The section settings are reset to the margin
values after each new page is generated. Changing a margin setting will change its
corresponding section setting to the same measurement.
NOTE: Section settings are different from margin setting in that the section values are always
measurements from the upper or left side of the page while margins are measurements from
the closest side of the page. (Example (Delphi) SectionRight := 8.0 would be the same as
MarginRight := 0.5 for 8.5 inch wide paper.)

See also
Margin properties, ResetSection, SectionBottom, SectionLeft, SectionRight

Example
see SectionBottom

SelectBin method

Declaration
function SelectBin(BinName: string): boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will select a bin containing BinName in its description and return a boolean value
of whether it was successful or not.
NOTE: This method must be called before any calls to the OnNewPage event.

See also
Bins, OnNewPage, SupportBin

Example
Delphi
SelectBin('UPPER');
C++Builder
SelectBin("UPPER");

Developers Guide

Page 237

Selection property (read/write)

Declaration
property Selection: string;

Default
' ' (empty)

Category
Control

Component/Class
TBaseReport

Description
This property will override FirstPage and LastPage if not blank. Selection defines the valid
pages in a print job and can contain separate page ranges, separated by commas or with
ranges defined as First-Last. You also are allowed to select even, odd or reverse order page
output by including one of the following.
 "e" or "even" pages
 "o" or "odd" pages
 "r" "reverse order" pages
 "a" or "all"

See also
FirstPage, LastPage, SystemOptions

Example
Delphi
Selection := '1-11'; {Print pages 1 through 11}
Selection := '5-8,25'; {Print pages 5 through 8 and page 25}
Selection := '1,3,6-'; {Print pages 1,3 and 6 to end of job}
Selection := '1,e,9-11'; {Print all even pages and
 page 1, 9 through 11}
Selection := 'o'; {Print all odd pages}

C++Builder
Selection = "1-11"; / Print pages 1 through 11
Selection = "5-8,25"; / Print pages 5 through 8 and page 25
Selection = "1,3,6-"; / Print pages 1,3 and 6 to end of job
Selection = "1,e,9-11"; / Print all even pages and
 page 1, 9 through 11
Selection := "o"; / Print all odd pages

Developers Guide

Page 238

SelectPaper method

Declaration
function SelectPaper(PaperName: string): boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will select a paper size containing PaperName in its description and return a
boolean value of whether it was successful or not.

See also
Papers, SupportPaper

Example
Delphi
SelectPaper('LEGAL');
C++Builder
SelectPaper("LEGAL");

SelectPrinter method

Declaration
function SelectPrinter(SubStr: string): boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will set the current printer to the first printer in Printers that contains the
substring SubStr in its name. If no printer is found then the current printer is not changed and
a false value is returned.

See also
PrinterIndex

Example
Delphi
SelectPrinter('Laser');
C++Builder
SelectPrinter("Laser");

Developers Guide

Page 239

SelectReport method

Declaration
function SelectReport(ReportName: string; FullName: boolean): boolean;

Category
Rave

Component/Class
TRvProject

Description
This method will select the report specified by ReportName. If FullName is true, the function
will search the report whose full name matches, otherwise it will search the short names. The
result of the function is whether the selection of the report, ReportName, was successful or
not.

See also
GetReportList, ReportFullName, ReportName

ServerMode property (read/write)

Declaration
property ServerMode: Boolean read FServerMode write FServerMode

Default
false

Category
Render

Component/Class
TRpRender

Description
This property specifies whether the HTML is being generated dynamically from the report
server or is being run locally. This affects things like whether the image files will be given a
.tmp file type, which is the case for servermode, or whether they are given the .jpg file type
needed when running locally, which enables the browser to deter the file type and display the
image correctly.

See also
CacheDir

Developers Guide

Page 240

SetBrush method

Declaration
procedure SetBrush(NewColor: TColor; NewStyle: TBrushStyle; NewBitmap: TBitmap);

Category
Graphics

Component/Class
TBaseReport

Description
This method will set the current brush for the given parameters. If a bitmap is not desired,
pass in the value of nil.

See also
CreateBrush, TBrushStyle, TColor

Example
Delphi
RvNDRWriter1.SetBrush(clBlack, bsClear, nil);
C++Builder
RvNDRWriter1->SetBrush(clBlack, bsClear, NULL);

Developers Guide

Page 241

SetColumns method

Declaration
procedure SetColumns(NewColumns: integer; Between: double);

Category
Column

Component/Class
TBaseReport

Description
This method sets up a specific number of columns, NewColumns, with a separation,
Between, between each column. The column width is calculated to fit within the current
SectionLeft and SectionRight.

See also
ColumnWidth, SectionLeft, SectionRight, SetColumnWidth

Example
This code shows how to create 4 columns and send output to them. Also see PrintMemo. {
with 0.5" between each }

Delphi
SetColumns(4,0.5);
while ColumnLinesLeft > 0 do begin
 Println(IntToStr(LinesLeft) + '/' +
 IntToStr(ColumnLinesLeft) + '/' +
 IntToStr(LineNum) + '/' +
 IntToStr(ColumnNum));
end; { while }

C++Builder
rp->SetColumns(4,0.5);
while (rp->ColumnLinesLeft() > 0) {
 rp->Println(IntToStr(rp->LinesLeft()) + "/" +
 IntToStr(rp->ColumnLinesLeft()) + "/" +
 IntToStr(rp->LineNum) + "/" +
 IntToStr(rp->ColumnNum));
}/ while

Developers Guide

Page 242

SetColumnWidth method

Declaration
procedure SetColumnWidth(Width: double; Between: double);

Category
Column

Component/Class
TBaseReport

Description
This method sets the columns to a specific width, Width, with a separation, Between,
between each column. The number of columns is calculated to fit within the current
SectionLeft and SectionRight.

See also
Columns, SectionLeft, SectionRight, SetColumns

Example
Create columns 2 inches wide and a half of an inch apart

Delphi
RvNDRWriter1.SetColumnWidth(2.0, 0.5);
C++Builder
RvNDRWriter1->SetColumnWidth(2.0, 0.5);

SetData method

Declaration
procedure SetData(var Buffer; BufSize: longint);

Category
Memo

Component/Class
TMemoBuf

Description
This method will assign the data in Buffer (for BufSize bytes) to the memo buffer. This can be
useful for long strings that are more than 255 characters.

See also
Text

Example
Assign a PChar to a memo buffer

Delphi
MemoBuf.SetData(PCharVar^, StrLen(PCharVar));
C++Builder

Developers Guide

Page 243

SetFont method

Declaration
procedure SetFont(NewName: string; NewSize: integer);

Category
Font

Component/Class
TBaseReport

Description
This method will set the current font for the given parameters. NewSize is the point size of the
font (1/72nds of an inch).
NOTE: If you are using a symbol set, be sure to use FontCharSet after the SetFont method.

See also
AssignFont, CreateFont, FontCharSet

Example
Delphi
RvNDRWriter1.SetFont('Arial', 10);
C++Builder
RvNDRWriter1->SetFont("Arial", 10);

SetPaperSize method

Declaration
procedure SetPaperSize(Size: integer; Width: double; Height: double);

Category
Printer

Component/Class
TBaseReport

Description
This method will set the current paper size for the selected printer to the settings of either the
Windows API constant, Size (see TDevMode.dmPaperSize) or if Width and Height are non-
zero then it will attempt to set a custom paper size.
NOTE: Not all printer drivers support custom page sizes and most have minimum and
maximum acceptable values.

Example
Set papersize to 10" wide by 12" high then set papersize to 8.5 wide by 14" high

Delphi
RvNDRWriter1.SetPaperSize(0,10,12);
RvNDRWriter1.SetPaperSize(DMPAPER_LEGAL,0,0);

C++Builder
RvNDRWriter1->SetPaperSize(0,10,12);
RvNDRWriter1->SetPaperSize(DMPAPER_LEGAL,0,0);

Developers Guide

Page 244

SetParam method

Declaration
procedure SetParam(ParamName: string; ParamValue: string);

Category
Rave

Component/Class
TRvProject

Description
SetParam allows the application to pass project parameters to the currently loaded Rave
project. These parameters can be used to control dynamic layouts, SQL parameters or other
items to print in a visually designed report.

Example
Delphi
RvProject1.SetParam('UserName',UserName);
C++Builder
RvProject1->SetParam("UserName",UserName);

SetPen method

Declaration
procedure SetPen(NewColor: TColor; NewStyle: TPenStyle; NewWidth: integer; NewMode:
TPenMode);

Category
Graphics

Component/Class
TBaseReport

Description
This method will set the current pen for the given parameters. The NewWidth parameter, if
positive, is the width of the pen in printer units (dots) and if negative, is the width on the pen
in 1/100ths of an inch.

See also
CreatePen, TColor, TPenMode, TPenStyle

Example
Delphi
RvNDRWriter1.SetPen(clBlack,psSolid,-2,pmCopy);
C++Builder
RvNDRWriter1->SetPen(clBlack,psSolid,-2,pmCopy);

Developers Guide

Page 245

SetPIVar method

Declaration
procedure SetPIVar(PIVarName: string; PIVarValue: string);

Category
Printing

Component/Class
TBaseReport

Description
This method allows you to initialize the value of a PIVar (Post Initialize Variable). Any PIVars
of the same name that were previously printed will show this value. A common use for PIVars
is to print a total in a header band that would be initialized later in the footer band. This works
even across multiple pages. TRvSystem.SystemOptions.soUserFiler must be true if you are
using PIVars in your report.

See also
PIVar

Example
see PIVar

Developers Guide

Page 246

SetTab method

Declaration
procedure SetTab(NewPos: double; NewJustify: TPrintJustify; NewWidth: double;
NewMargin: double; NewLines: byte; NewShade: byte);

Category
Tabs

Component/Class
TBaseReport

Description
This method adds a tab setting.
 NewPos defines the starting position of the tab. If NewPos is set to the

constant, NA, then the tab will start immediately after the previous
tab box.

 NewJustify defines whether the tab is left (pjLeft), right (pjRight) or center
(pjCenter) justified. If a non-zero width is given, then a tab box is
defined and the text will be justified within the tab box rather than
justified at the tab position.

 NewMargin defines the distance between the tab box side and the text in
1/100ths of an inch.

 NewLines uses the BoxLineXxxx constants to define where lines are to be
drawn around the tab box.

 NewShade defines the percent of background shading to use for this tab box.

See also
ClearTabs, ResetTabs

Example
Delphi
ClearTabs;
SetPen(clBlack, psSolid,1, pmCopy);
SetTab(0.5,pjCenter,3.5,0, BOXLINEALL,0);
SetTab(NA, pjCenter,1.0,0, BOXLINEALL,0);
SetTab(NA, pjCenter,1.5,0, BOXLINEALL,0);
SetTab(NA, pjCenter,1.5,0, BOXLINEALL,0);
Bold := true;
Tab(-2,NA,-2,-2,NA);
Print('Name');
Tab(NA,NA,-2,-2,NA);
Print('Number');
Tab(NA,NA,-2,-2,NA);
Print('Amount 1');
Tab(NA,-2,-2,-2,NA);
Println('Amount 2');
Bold := false;

C++Builder

Developers Guide

Page 247

rp->ClearTabs();
 rp->SetPen(clBlack, psSolid,1, pmCopy);
 rp->SetTab(0.5,pjCenter,3.5,0, BOXLINEALL,0);
 rp->SetTab(NA, pjCenter,1.0,0, BOXLINEALL,0);
 rp->SetTab(NA, pjCenter,1.5,0, BOXLINEALL,0);
 rp->SetTab(NA, pjCenter,1.5,0, BOXLINEALL,0);
 rp->Bold = true;
 rp->Tab(-2,NA,-2,-2,NA);
 rp->Print("Name");
 rp->Tab(NA,NA,-2,-2,NA);
 rp->Print("Number");
 rp->Tab(NA,NA,-2,-2,NA);
 rp->Print("Amount 1");
 rp->Tab(NA,-2,-2,-2,NA);
 rp->Println("Amount 2");
 rp->Bold = false;

SetTopOfPage method

Declaration
procedure SetTopOfPage;

Category
Position

Component/Class
TBaseReport

Description
This method will set SectionTop to the bottom of the current line.

See also
MarginTop, SectionTop

Example
Delphi
RvNDRWriter1.SetTopOfPage;
C++Builder
RvNDRWriter1->SetTopOfPage();

ShadeToColor method

Declaration
function ShadeToColor(ShadeColor: TColor; ShadePercent: byte): TColor;

Category
Graphics

Component/Class
TBaseReport

Description
This function will create a color that only has ShadePercent amount of Shadecolor.

See also
SetBrush, TColor

Developers Guide

Page 248

ShadowDepth property (read/write/published)

Declaration
property ShadowDepth: integer;

Default
0

Category
Preview

Component/Class
TBaseReport

Description
This property will define the shadow depth of the preview page in pixels.
NOTE: Shadows will not be drawn while the Monochrome property is true.

See also
Monochrome

Example
Delphi
ShadowDepth := 5;
C++Builder
ShadowDepth = 5;

ShowPrintDialog method

Declaration
function ShowPrintDialog: boolean;

Category
Printer

Component/Class
TBaseReport

Description
Brings up the standard Windows PrintDialog. Use this function instead of Delphi's
TPrintDialog component.

See also
ShowPrinterSetupDialog

Example
Delphi
if RvNDRWriter1.ShowPrintDialog then begin
 RvNDRWriter1.Execute;
end; { if }

C++Builder
if (RvNDRWriter1->ShowPrintDialog()) {
 RvNDRWriter1->Execute();
}/ if

Developers Guide

Page 249

ShowPrinterSetupDialog method

Declaration
function ShowPrinterSetupDialog: boolean;

Category
Printer

Component/Class
TBaseReport

Description
Brings up the standard Windows PrinterSetupDialog. Use this function instead of Delphi's
TPrinterSetupDialog component.

See also
ShowPrintDialog

Example
Delphi
if RvNDRWriter1.ShowPrinterSetupDialog then begin
 RvNDRWriter1.Execute;
end; { if }

C++Builder
if (RvNDRWriter1->ShowPrinterSetupDialog()) {
 RvNDRWriter1->Execute();
}/ if

Size property (read/write)

Declaration
property Size: longint;

Category
Memo

Component/Class
TMemoBuf

Description
This property will return the current size of the text in the memo buffer in bytes.

See also
MaxSize, Pos

Example
Delphi
MemoBytes := MemoBuf1.Size;
C++Builder
MemoBytes = MemoBuf1->Size;

Developers Guide

Page 250

Start method

Declaration
procedure Start;

Category
Control

Component/Class
TBaseReport

Description
For TRvRenderPreview, this method starts a preview session and draws the first page to the
preview screen. Use the methods, PrevPage, NextPage, PrintPage, ZoomIn and ZoomOut to
interact with the user of the preview screen after Start has been called.
For TRvNDRWriter, these methods start a printing job that should be terminated later with a
call to Finish. All event handlers are active except for OnPrint and OnPrintPage which are
used only with Execute.

See also
Execute, Finish

Example
Delphi
RvRenderPreview1.Start;
C++Builder
RvRenderPreview1->Start();

Developers Guide

Page 251

StatusFormat property (read/write/published)

Declaration
property StatusFormat: string;

Default
'Printing page '

Category
Misc

Component/Class
TBaseReport

Description
This property defines the format for the text printed to StatusLabel during an UpdateStatus
call. There are several special formatting character pairs that can be used within the string:
 %c - Current printing pass
 %p - Current Page
 %f - First Page
 %l - Last Page
 %d - Printer Device Name
 %n - force a carriage return
 %r - Printer Driver Name
 %s - Total number of passes
 %t - Printer Port
 %0 through

%9 -
Status Text Line (see StatusText)

 %- % character

See also
CurrentPass, StatusLabel, StatusText, TotalPasses, UpdateStatus

Example
Delphi
RvNDRWriter1.StatusFormat := 'Generating page ';
RvNDRWriter1.StatusFormat := 'Printing page (Pass of)';

C++Builder
RvNDRWriter1->StatusFormat = "Generating page ";
RvNDRWriter1->StatusFormat = "Printing page (Pass of)";

Developers Guide

Page 252

StatusLabel property (read/write/published)

Declaration
property StatusLabel: TLabel;

Default
nil

Category
Misc

Component/Class
TBaseReport

Description
This property defines the TLabel component that UpdateStatus will put the status text,
StatusFormat, into.

See also
StatusFormat, StatusText, UpdateStatus

Example
Delphi
RvNDRWriter1.StatusLabel := StatusForm.Label1;
C++Builder
RvNDRWriter1->StatusLabel = StatusForm->Label1;

StatusText property (read/write/published)

Declaration
property StatusText: TStrings;

Default
(empty)

Category
Misc

Component/Class
TBaseReport

Description
This property defines a string list of at most 10 strings that can replace the special formatting
characters (%0 to %9) in StatusFormat.

See also
StatusFormat, TStrings

Example
Delphi
StatusText[1] := 'Inform user of report status';
UpdateStatus;

C++Builder
rp->StatusText->Strings[1] = "Inform user of report status";
rp->UpdateStatus();

Developers Guide

Page 253

StoreRAV property ZZZ read only/special/pub ZZZ

Declaration
property StoreRAV: boolean;

Default
false

Category
Rave

Component/Class
TRvProject

Description
This property will return whether a report project (RAV file) is stored in the executable or not.
At design-time, editing this property will bring up a dialog allowing you to load, save or
remove a report project from your application. The date and time that a report project was last
loaded into is displayed in the Object Inspector.
NOTE: This is not the date and time of the file on disk, but the date and time that the load
action was performed. A warning will be displayed if a file, defined by ProjectFile, exists that
is of a later date and time and you will be prompted to use the version on the disk instead.

See also
ClearRaveBlob, LoadRaveBlob, ProjectFile, RaveBlobDateTime, SaveRaveBlob

Developers Guide

Page 254

Stream property (read/write/published)

Declaration
property Stream: TStream;

Default
nil

Category
Control

Component/Class
TBaseReport

Description
This property returns or sets the stream used to either write to or read from the report file. A
user created stream can be assigned when StreamMode is equal to smUser but otherwise
this property should not be modified.

See also
FileName, StreamMode

Example
Delphi
var ReportStream: TMemoryStream;
begin
 ReportStream := TMemoryStream.Create;
 try
 with RvNDRWriter1 do begin
 StreamMode := smUser;
 Stream := ReportStream;
 Execute;
 end; { with }
 finally
 ReportStream.Free;
 end; { tryf }
end;

C++Builder
TMemoryStream* ReportStream = new TMemoryStream();
try {
 rp->StreamMode = smUser;
 rp->Stream = ReportStream;
 rp->Execute();
}
__finally {
 delete ReportStream;
}/ tryf

Developers Guide

Page 255

StreamMode property (read/write/published)

Declaration
property StreamMode: TStreamMode;

Default
smMemory

Category
Control

Component/Class
TBaseReport

Description
This property defines how the stream for the report file is maintained.
The setting smFile uses a TFileStream to store the report file and is very good for large
reports, but may run a little slower.
smTempFile will send the ouput to a temporary file in the \Windows\Temp directory. This
filename used by smTempFile is created by the system and will be deleted when you exit the
reporting system.
The setting smMemory uses a TMemoryStream and is good for small reports to run faster,
but do not use this option for reports that may be large.
smUser does not create a stream, but uses the stream that has been assigned to the Stream
property before the report was started. The programmer is responsible for creating and
freeing the stream if smUser is used.

See also
FileName, Stream

Example
Delphi
RvNDRWriter1.StreamMode := smMemory;
RvNDRWriter2.FileName := 'TEMP.RpT';
RvNDRWriter2.StreamMode := smFile;

C++Builder
RvNDRWriter1->StreamMode = smMemory;
RvNDRWriter2->FileName = "TEMP.RPT";
RvNDRWriter2->StreamMode = smFile;

Developers Guide

Page 256

StretchDraw method

Declaration
procedure StretchDraw(const Rect: TRect; Graphic: TGraphic);

Category
Graphics

Component/Class
TBaseReport

Description
This method draws the graphic object, Graphic, to the printer canvas stretched or shrunken to
fit within the rectangle, Rect.
NOTE: Do not use StretchDraw for bitmaps, instead use PrintBitmap or PrintBitmapRect.

See also
CreateRect, Draw, PrintBitmap, PrintBitmapRect, TGraphic, TRect

Strikeout property (read/write)

Declaration
property Strikeout: boolean;

Default
false

Category
Font

Component/Class
TBaseReport

Description
This property returns or sets the strikeout attribute for the current font.

See also
Bold, Italic, Underline

Example
Delphi
with RvNDRWriter1 do begin
 Strikeout := true;
 Print('Deleted Text');
 Strikeout := false;
end; { with }

C++Builder
rp->Strikeout = true;
rp->Print("Deleted Text");
rp->Strikeout = false;

Developers Guide

Page 257

Subscript property (read/write)

Declaration
property Subscript: boolean;

Default
false

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the subscript setting for the current text font.

See also
Superscript

Example
Print a formula

Delphi
Print('Y = Pi * X');
Subscript := true;
Print('a');
Subscript := false;

C++Builder
rp->Print("Y = Pi * X");
rp->Subscript = true;
rp->Print("a");
rp->Subscript = false;

Developers Guide

Page 258

Superscript property (read/write)

Declaration
property Superscript: boolean;

Default
false

Category
Font

Component/Class
TBaseReport

Description
Returns or sets the superscript setting for the current text font.

See also
Subscript

Example
Print a formula

Delphi
Print('E = MC');
Superscript := true;
Print('2');
Superscript := false;

C++Builder
rp->Print("E = MC");
rp->Superscript = true;
rp->Print("2");
rp->Superscript = false;

SupportBin method

Declaration
function SupportBin(BinNum: integer): boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will return true if the bin number (see TDevMode.dmDefaultSource in the
Windows API help) specified by BinNum is supported by the printer, otherwise it will return
false.

See also
SelectBin, other Support methods, TDevMode in Windows API help

Developers Guide

Page 259

SupportCollate method

Declaration
function SupportCollate: boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will return true if the printer supports collation, otherwise it will return false.

See also
Other Support methods

SupportDuplex method

Declaration
function SupportDuplex: boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will return true if the current printer supports duplex (double sided) printing.

See also
Duplex, Other Support methods

SupportOrientation method

Declaration
function SupportOrientation: boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will return true if the current printer supports orientation changes.

See also
Other Support methods

Developers Guide

Page 260

SupportPaper method

Declaration
function SupportPaper(PaperNum: integer): boolean;

Category
Printer

Component/Class
TBaseReport

Description
This method will return true if the paper number (see TDevMode.dmPaperSize in the
Windows API help) specified by PaperNum is supported by the printer, otherwise it will return
false.

See also
Other Support methods, TDevMode in Windows API help

SystemFiler property (read/write/published)

Declaration
property SystemFiler: TSystemFiler;

Category
ReportSystem

Component/Class
TRvSystem

Description
All SystemFiler options operate in the same manner as the other components except for the
stream mode of smMemory which does not require a filename and will use a
TMemoryStream to contain a report.

See also
Other System options

Example
Delphi
RvSystem1.SystemFiler.AccuracyMethod := amAppearance;
C++Builder
RvSystem1->SystemFiler->AccuracyMethod = amAppearance;

Developers Guide

Page 261

SystemOptions property (read/write/published)

Declaration
property SystemOptions: TSystemOptions;

Category
ReportSystem

Component/Class
TRvSystem

Description
The SystemOptions properties control the configuration of the TRvSystem component:
 soUseFiler will always send the report to a report file. This can be

very useful if the Macro method has been used in the
report.

 soWaitForOK will determine whether the user has to press the OK
button once the report has been generated for output.

 soShowStatus will determine whether or not the status screen is
displayed when the report is being generated.

 soAllowPrintFromPreview will determine whether the user can print from the
preview screen.

 soPreviewModal determines if the preview screen will be modal.
 soNoGenerate will cause the RvSystem component to skip over the

generation phase of the report and proceed straight to
screen or the printer. This option should only be used
with a StreamMode of smFile where the report file has
been previously generated and needs only to be viewed
or printed.

See also
Other SystemXxxx options

Example
Disable the status screen

Delphi
RvSystem1.SystemOptions := RvSystem1.SystemOptions - (soShowStatus];
C++Builder
RvSystem1->SystemOptions = RvSystem1->SystemOptions >> soShowStatus;

Developers Guide

Page 262

SystemPreview property (read/write/published)

Declaration
property SystemPreview: TSystemPreview;

Category
ReportSystem

Component/Class
TRvSystem

Description
SystemPreview displays all the preview type options displayed in TRvRenderPreview.
Following are the additional properties:
 FormHeight defines the height of the RvSystem report preview form.
 FormState defines the initial window status (normal, minimized or maximized)

of the RvSystem report preview form.
 FormWidth defines the width of the RvSystem report preview form.

See also
Other SystemXxxx options

Example
Delphi
RvSystem1.SystemPreview.FormState := wsMaximized;
C++Builder
RvSystem1->SystemPreview->FormState = wsMaximized;

SystemPrinter property (read/write/published)

Declaration
property SystemPrinter: TSystemPrinter;

Category
ReportSystem

Component/Class
TRvSystem

Description
SystemPrinter displays all the printer type options displayed in TRvRenderPrinter.

See also
Other SystemXxxx options

Example
Delphi
RvSystem1.SystemPrinter.MarginLeft := 0.5;
C++Builder
RvSystem1->SystemPrinter->MarginLeft = 0.5;

Developers Guide

Page 263

SystemSetups property (read/write/published)

Declaration
property SystemSetups: TSystemSetups;

Default
[ssAllowSetup, ssAllowCopies, ssAllowCollate, ssAllowDuplex, ssAllowDestPreview,
ssAllowDestPrinter, ssAllowDestFile, ssAllowPrinterSetup]

Category
ReportSystem

Component/Class
TRvSystem

Description
This property contains settings that define the behavior of the Printer Setup Dialog that
TRvSystem uses. To see a description of each option see TSystemSetup.

See also
TSystemSetup

Example
Disable the setup screen

Delphi
RvSystem1.SystemSetups := RvSystem1.SystemSetups - [ssAllowSetup];
C++Builder
RvSystem1->SystemSetups = RvSystem1->SystemSetups >> ssAllowSetup;

Developers Guide

Page 264

Tab method

Declaration
procedure Tab(LeftWidth: integer; RightWidth: integer; TopWidth: integer; BottomWidth:
integer; ShadeOverride: integer);

Category
Tabs

Component/Class
TBaseReport

Description
This method sets the current tab settings to the next available tab. If the next tab is a tab box,
then the lines for that tab are drawn at this time as well as any shading that might apply.
The LeftWidth, RightWidth, TopWidth and BottomWidth are overrides for the width of the side
of the tab box in 1/100ths of an inch, but should be passed as the constant, NA, for the
default pen width. If the LeftWidth, RightWidth, TopWidth or BottomWidth parameter(s) are
positive, then it is the width of the pen in printer units (dots) and if negative, it is the width on
the pen in 1/100ths of an inch.
ShadeOverride is a percent of shading to draw the background of the tab box in and will
override TabShade or the original setting of the tab box shading.

See also
SetTab, TabShade

Example
Delphi
with RvNDRWriter1 do begin
 Tab(-2,NA,-2,-2,NA);
 Print('First tab');
 Tab(NA,NA,-2,-2,NA);
 Print('Second tab');
end; { with }

C++Builder
rp->Tab(-2,NA,-2,-2,NA);
rp->Print("First tab");
rp->Tab(NA,NA,-2,-2,NA);
rp->Print("Second tab");

Developers Guide

Page 265

TabColor property (read/write/published)

Declaration
property TabColor: TColor;

Default
clBlack

Category
Tabs

Component/Class
TBaseReport

Description
This property defines the color that will be used to shade tab boxes created with SetTab.
TabShade will define what percentage of TabColor is used.

See also
SetTab, TabShade, TColor

TabEnd method

Declaration
function TabEnd(Index: integer): double;

Category
Tabs

Component/Class
TBaseReport

Description
This method will return the horizontal ending position of the tab box specified by Index.
If Index is 0 then the result will be for the current tab and if Index is greater than the number
of defined tabs then a value of 0.0 will be returned.

See also
GetTab, TabStart, TabWidth

Example
End of current tab region

Delphi
CurrEnd := RvNDRWriter1.TabEnd(0);
C++Builder
CurrEnd = RvNDRWriter1->TabEnd(0);

Developers Guide

Page 266

TabJustify property (read/write)

Declaration
property TabJustify: TTabJustify;

Default
tjNone

Category
Tabs

Component/Class
TBaseReport

Description
This property will override any tab justification that was defined with SetTab().
This can be useful for column headings that are normally centered while the remaining data
is justified according to the type of data.
tjNone will disable this feature while tjLeft, tjCenter, tjRight and tjBlock will set the justification
respectively.

Example
Delphi
TabJustify := tjCenter;
Println(#9'Name'#9'Number');
TabJustify := tjNone;

C++Builder
rp->TabJustify = tjCenter;
rp->Println("\tName\tNumber");
rp->TabJustify = tjNone;

Table property (read/write/published)

Declaration
property Table(MyPrinter: TRave);

Default
nil

Category
Rave

Component/Class
TRvTableConnection

Description
Specifies the TTable component that is connected to the TRvTableConnection component.

Example
Delphi
CustomerCXN.Table := CustomerQuery;
C++Builder
CustomerCXN->Table = CustomerQuery;

Developers Guide

Page 267

TabShade property (read/write/published)

Declaration
property TabShade: integer;

Default
0

Category
Tabs

Component/Class
TBaseReport

Description
This property defines a default tab shading that will override the tab shading defined with
SetTab but not override the setting of the ShadeOverride parameter of the Tab method.
TabShade can be useful for printing barred rows of alternating shades by setting TabShade
before each line is printed.

See also
SetTab, Tab

Example
alternate tab shading by even / odd line status

Delphi
if Odd(LineNum) then begin
 TabShade := 0;
end else begin
 TabShade := 15;
end; { else }

C++Builder
if ((rp->LineNum 2) == 1) {
 TabShade = 0;
}
else {
 TabShade = 15;
}/ else

Developers Guide

Page 268

TabStart method

Declaration
function TabStart(Index: integer): double;

Category
Tabs

Component/Class
TBaseReport

Description
This method will return the horizontal starting position of the tab box specified by Index.
If Index is 0 then the result will be for the current tab and if Index is greater than the number
of defined tabs then a value of 0.0 will be returned.

See also
GetTab, TabEnd, TabWidth

Example
Start of current tab region

Delphi
CurrStart := RvNDRWriter1.TabStart(0);
C++Builder
CurrStart = RvNDRWriter1->TabStart(0);

TabWidth method

Declaration
function TabWidth(Index: integer): double;

Category
Tabs

Component/Class
TBaseReport

Description
This method will return the width of the tab box specified by Index.
If Index is 0 then the result will be for the current tab and if Index is greater than the number
of defined tabs then a value of 0.0 will be returned.

See also
TabEnd, TabStart

Example
Width of current tab region

Delphi
CurrWidth := RvNDRWriter1.TabWidth(0);
C++Builder
CurrWidth = RvNDRWriter1->TabWidth(0);

Developers Guide

Page 269

TAccuracyMethod type (type)

Declaration
TAccuracyMethod = (amPositioning, amAppearance);

Category
Control

Component/Class
TBaseReport

Description
 amPositioning: This setting will cause the string to be written one character at a

time.
 amAppearance: This setting will cause the whole string to be written at one time.

See also
AccuracyMethod

Example
see AccuracyMethod

TBKMode type (type)

Declaration
TBKMode = (bkTransparent, bkOpaque);

Category
Graphics

Component/Class
TBaseReport

Description
 bkTransparent: This setting will write the text without erasing the background.
 bkOpaque: This setting will write the text after the background has been

cleared.

See also
TextBKMode

Example
See TextBKMode

Developers Guide

Page 270

Text property (read/write)

Declaration
property Text: string;

Default
'' (empty)

Category
Memo

Component/Class
TMemoBuf

Description
This property will set the memo buffer to a string assigned to it. If this property is referenced,
the first 255 characters (unless Delphi 2.0 is being used) of the memo buffer (or the size of
the memo buffer, whichever is less) will be returned.

See also
SetData

Example
Delphi
MemoBuf1.Text := 'New text assigned into MemoBuf1';
C++Builder
MemoBuf1->Text = "New text assigned into MemoBuf1";

Text property (read/write)

Declaration
property Text: string;

Category
BarCode

Component/Class
TRpBarsBase

Description
The text to be printed as a bar code.
NOTE: Do not include the check character. The check character will be automatically
calculated and printed according to the state of the UseChecksum property.
NOTE: Any characters that are invalid for the bar code type will be deleted from the text
property upon assignment.

See also
Print, PrintXY, TextJustify, UseChecksum

Example
example of -- since "-" is not valid it will be stripped out

Delphi
PostNetBC1.Text := '85283-3558';
C++Builder
PostNetBC1->Text = "85283-3558";

Developers Guide

Page 271

TextBKMode property (read/write/published)

Declaration
property TextBKMode: TBKMode;

Default
bkTransparent

Category
Graphics

Component/Class
TBaseReport

Description
This property will define the current text background mode as either bkTransparent, where
text will print on top of graphics without erasing the background, or as bkOpaque, where text
will print on top of graphics after the background is cleared.
NOTE: Not all printer drivers support opaque text, especially PCL5 laserjet drivers. For these
printers try setting graphics mode to Raster instead of HP/GL2 inside the printer setup
window and opaque text printing may work.

See also
BKColor

Example
Delphi
RvNDRWriter1.TextBKMode := bkOpaque;
C++Builder
RvNDRWriter1->TextBKMode = bkOpaque;

TextJustify property (read/write)

Declaration
property TextJustify: TPrintJustify

Default
pjCenter

Category
BarCode

Component/Class
TRpBarsBase

Description
Determines how the readable text is justified in relation to the bar code.
 pjLeft Left justify the text portion
 pjCenter Center justify the text portion
 pjRight Right justify the text portion

See also
PrintReadable, PrintTop, Text

Developers Guide

Page 272

TextRect method

Declaration
procedure TextRect(Rect: TRect; X,Y: double; const Text: string);

Category
Graphics

Component/Class
TBaseReport

Description
This method will draw Text clipped within the rectangle defined by Rect. The point (X,Y)
defines the starting point of the text. Use CreateRect to initialize Rect.

See also
CreateRect, All print methods, TRect

Example
Delphi
var TxtRect: TRect;
 TxtXPos: double;
 TxtYPos: double;
 Txt: string;
begin
 TxtRect := CreateRect(1.00,1.00,3.00,3.00);
 TxtXPos := 0.95;
 TxtYPos := 0.95;
 Txt := 'Text is clipped off!';
 TextRect(TxtRect, TxtXPos, TxtYPos, Txt);
end;

C++Builder
TRect TxtRect;
double TxtXPos;
double TxtYPos;
AnsiString Txt;
TxtRect = rp->CreateRect(1.00,1.00,3.00,3.00);
TxtXPos = 0.95;
TxtYPos = 0.95;
Txt = "Text is clipped off!";
rp->TextRect(TxtRect, TxtXPos, TxtYPos, Txt);

Developers Guide

Page 273

TextWidth method

Declaration
function TextWidth(Text: string): double;

Category
Position

Component/Class
TBaseReport

Description
This method will return the length of the string, Text.

Example
Delphi
var TxtLen: double;
begin
 TxtLen := TextWidth("How long am I?");
end;

C++Builder
double TxtLen = rp->TextWidth("How long am I?");

TFontAlign type (type)

Declaration
TFontAlign = (faBaseline, faTop, faBottom);

Category
Font

Component/Class
TBaseReport

Description
 faBaseline: This setting will align the font at the baseline of the font.
 faTop: This setting will align the font at the top of the line.
 faBottom: This setting will align the font at the bottom of the line.

See also
FontAlign

Example
see FontAlign

Developers Guide

Page 274

Title property (read/write/published)

Declaration
property Title: string;

Default
'Rave Report'

Category
Misc

Component/Class
TBaseReport

Description
This property defines the title for the current print job that will be displayed in the Windows
Print Manager. (16 bit is limited to 31 characters).

Example
This code causes the text "Sales Report" to show as the print job name in the print manager.

Delphi
RvNDRWriter1.Title := 'Sales Report';
C++Builder
RvNDRWriter1->Title = "Sales Report";

TitlePreview property (read/write/published)

Declaration
property TitlePreview: TFormatString;

Default
'Report Preview'

Category
ReportSystem

Component/Class
TRvSystem

Description
This property defines the caption that will be used for the RvSystem report preview form.

See also
TitleSetup, TitleStatus

Developers Guide

Page 275

TitleSetup property (read/write/published)

Declaration
property TitleSetup: TFormatString;

Default
'Report Setup'

Category
ReportSystem

Component/Class
TRvSystem

Description
This property defines the caption that will be used for the RvSystem report setup form.

See also
TitlePreview, TitleStatus

TitleStatus property (read/write/published)

Declaration
property TitleStatus: TFormatString;

Default
'Report Status'

Category
ReportSystem

Component/Class
TRvSystem

Description
This property defines the caption that will be used for the RvSystem report status form.

See also
TitlePreview, TitleSetup

Developers Guide

Page 276

TLineHeightMethod type (type)

Declaration
TLineHeightMethod = (lhmLinesPerInch, lhmFont);

Category
Position

Component/Class
TBaseReport

Description
 lhmLinesPerInch: This setting will cause the number of lines to be fit per inch.
 lhmFont: This setting will cause the line to adjust to the font size.
 lhmUser: This setting will allow the user to define LineHeight directly.

See also
LineHeightMethod, LineHeight

Example
See LineHeightMethod

Developers Guide

Page 277

TMacroID type (type)

Declaration
TMacroID = (midCurrDateShort, midCurrDateLong, midCurrDateUS, midCurrDateInter,
midCurrTimeShort, midCurrTimeLong, midCurrTimeAMPM, midCurrTime24, midFirstPage,
midLastPage, midTotalPages, midCurrentPage, midPrinterName, midDriverName,
midPortName, midUser01..midUser20);

Category
Printing

Component/Class
TBaseReport

Description
 midCurrDateShort: Returns the short date format
 midCurrDateLong: Returns the long date format
 midCurrDateUS: Returns the date as MM/DD/YY
 midCurrDateInter: Returns the date as DD/MM/YY
 midCurrTimeShort: Returns the short time format
 midCurrTimeLong: Returns the long time format
 midCurrTimeAMPM: Returns the time in am/pm format
 midCurrTime24: Returns the time in 24 hour format
 midFirstPage: Returns the first page number
 midLastPage: Returns the last page number
 midTotalPages: Returns the total number of pages
 midCurrentPage: Returns the current page number
 midPrinterName: Returns the printer name
 midDriverName: Returns the driver name
 midPortName: Returns the port name
 midUser01
 through
 midUser20: Returns the n'th entry from MacroData

See also
Macro, MacroData

Example
See Macro

Developers Guide

Page 278

TMarginMethod type (type)

Declaration
TMarginMethod = (mmScaled, mmFixed);

Category
Preview

Component/Class
TRvRenderPreview

Description
 mmScaled: This setting will cause the margin on the preview screen to be

scaled according to MarginPercent.

m
m
mF
ixe
d:

See also
MarginMethod, MarginPercent

Example
see MarginMethod

Top property (read/write)

Declaration
property Top: double;

Category
BarCode

Component/Class
TRpBarsBase

Description
Sets or returns the position for the top edge of the bar code. The value for this property
includes the readable text, if it is printed.

See also
BarTop, PrintReadable, PrintTop

Example
Print the bar code so the top is 3.5 inches down

Delphi
BarCode1.Top := 3.5;
C++Builder
BarCode1->Top = 3.5;

Developers Guide

Page 279

TopWaste property (read only)

Declaration
property TopWaste: double;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the waste area on the top side of the page that the printer cannot print
into. It is a good idea to make sure that the report's margins are greater than or equal to its
waste areas.

See also
BottomWaste, LeftWaste, MarginTop, RightWaste

Example
See LeftWaste

TOrientation type (type)

Declaration
TOrientation = (poPortrait, poLandscape, poDefault);

Category
Control

Component/Class
TBaseReport

Description
 poPortrait: Portrait mode.
 poLandscape: Landscape mode.
 poDefault: Default mode on the current printer.

See also
Orientation

Example
see Orientation example

Developers Guide

Page 280

TotalPasses property (read/write)

Declaration
property TotalPasses: Integer;

Category
Misc

Component/Class
TBaseReport

Description
This is the value that will be returned when a %s is encountered in a StatusFormat string.

See also
CurrentPass, StatusFormat, StatusLabel, StatusText, UpdateStatus

Example
Delphi
RvNDRWriter1.StatusFormat := 'Printing page (Pass of)';
C++Builder
RvNDRWriter1->StatusFormat = "Printing page (Pass of)";

TPrintJustify type (type)

Declaration
TPrintJustify = (pjCenter, pjLeft, pjRight, pjBlock);

Category
Printing

Component/Class
TBaseReport

Description
 pjCenter: Center justify
 pjLeft: Justify to the left
 pjRight: Justify to the right
 pjBlock: Block (full) justify

See also
Justify, PrintFooter, PrintHeader, SetTab

Example
See SetTab

Developers Guide

Page 281

TPrintUnits type (type)

Declaration
TPrintUnits = (unInch, unMM, unCM, unPoint, unUser);

Category
Units

Component/Class
TBaseReport

Description
 unInch: This setting will set the units to inches.
 unMM: This setting will set the units to millimeters.
 unCM: This setting will set the units to centimeters.
 unPoint: This setting will set the units to pixels.
 unUser: This setting will set the units to a scale provided by the user.

See also
Units

Example
see Units

TransparentBitmaps property (read/write)

Declaration
property TransparentBitmaps: boolean;

Default
false

Category
Graphics

Component/Class
TBaseReport

Description
This property will control the mode that PrintBitmap and PrintBitmapRect use to draw
bitmaps.
A value of true will cause bitmaps to be combined (using the AND operator) with the current
page contents while a value of false will replace the page contents with the bitmap.

See also
PrintBitmap, PrintBitmapRect

Example
Delphi
TransparentBitmaps := true;
C++Builder
TransparentBitmaps = true;

Developers Guide

Page 282

TReportDest type (type)

Declaration
TReportDest = (rdPreview, rdPrinter, rdFile);

Category
ReportSystem

Component/Class
TRvSystem

Description
 rdPreview: This setting will send the report to the preview screen.
 rdPrinter: This setting will send the report to the printer.
 rdFile: This setting will send the report to a file.

See also
DefaultDest

Example
see DefaultDest

TruncateText property

Declaration
function TruncateText(Value: String; Width: Double): String;

Category
Printing

Component/Class
TBaseReport

Description
This property calculates the width of the string "Value" using the current font. If the text is
wider than the Width parameter then it will be truncated by characters to fit.

See also
PrintTab, SetFont

Example
Delphi
RvNDRWriter1.SetFont('Arial', 14);
TruncateText('This text is too long to fit within 2 inches', 2.0);

C++Builder
RvNDRWriter1->SetFont("Arial", 14);
TruncateText("This text is too long to fit within 2 inches", 2.0);

Developers Guide

Page 283

TStreamMode type (type)

Declaration
TStreamMode = (smMemory, smTempFile, smFile, smUser);

Category
Control

Component/Class
TBaseReport

Description
 smMemory: This setting will use a memory stream for input and output.
 smFile: This setting will use a file for input and output.
 smTempFile will send the ouput to a temporary file in the \Windows\Temp

directory. This filename used by smTempFile is created by the
TRvSystem component and will be deleted when it is finished. If
this stream mode is used with a custom preview system utilizing
TRvNDRWriter, TRvRenderPrinter and TRvRenderPreview
components, the generated FileName property from the
TRvNDRWriter component must be transferred to the
TRvRenderPrinter and TRvRenderPreview components.

 smUser: This setting will use stream defined by user for input and output.

See also
Stream, StreamMode

Example
See StreamMode

TSystemOption type (type)

Declaration
TSystemOption = (soUseFiler, soWaitForOK, soShowStatus, soAllowPrintFromPreview,
soPreviewModal);

Category
ReportSystem

Component/Class
TRvSystem

Description
see SystemOptions

See also
SystemOptions

Example
see SystemOptions

Developers Guide

Page 284

TSystemOptions type (type)

Declaration
TSystemOptions = Set of TSystemOption;

Category
ReportSystem

Component/Class
TRvSystem

Description
see SystemOptions

See also
SystemOptions

Example
see SystemOptions

Developers Guide

Page 285

TSystemSetup type (type)

Declaration
TSystemSetup = (ssAllowSetup, ssAllowCopies, ssAllowCollate, ssAllowDuplex,
ssAllowDestPreview, ssAllowDestPrinter, ssAllowDestFile, ssAllowPrinterSetup);

Category
ReportSystem

Component/Class
TRvSystem

Description
 ssAllowSetup: If false, the setup screen will not be displayed.
 ssAllowCopies: If false, the user will not be able to change the copies.
 ssAllowCollate: If false, the user will not be able to change the collation

mode.
 ssAllowDuplex: If false, the user will not be able to change the duplex

mode.
 ssAllowDestPreview: If false, the user will not be able to select the preview

screen as the report destination.
 ssAllowDestPrinter: If false, the user will not be able to select the printer as the

report destination.
 ssAllowDestFile: If false, the user will not be able to select a disk file as the

report destination.
 ssAllowPrinterSetup: If false, the user will not be able to select the printer setup

dialog.

See also
SystemSetups

Example
see SystemSetups

Developers Guide

Page 286

TSystemSetups type (type)

Declaration
TSystemSetups = Set of TSystemSetup;

Category
ReportSystem

Component/Class
TRvSystem

Description
see TSystemSetup

See also
SystemSetups, TSystemSetup

Example
see SystemSetups

TTabJustify type (type)

Declaration
TTabJustify = (tjCenter, tjLeft, tjRight, tjBlock, tjNone);

Category
Tabs

Component/Class
TBaseReport

Description
 tjCenter: This setting will center justify tabs
 tjLeft: This setting will left justify tabs
 tjRight: This setting will right justify tabs
 tjBlock: This setting will block justify tabs
 tjNone: This setting will disable justification override

See also
TabJustify

Example
see TabJustify

Developers Guide

Page 287

Underline property (read/write)

Declaration
property Underline: boolean;

Default
false

Category
Font

Component/Class
TBaseReport

Description
This property returns or sets the underline attribute for the current font.

See also
Bold, Italic, Strikeout

Example
Delphi
with RvNDRWriter1 do begin
 Underline := true;
 Print('Underlined text');
 Underline := false;
end; { with }

C++Builder
rp->Underline = true;
rp->Print("Underlined text");
rp->Underline = false;

Developers Guide

Page 288

Units property (read/write/published)

Declaration
property Units: TPrintUnits;

Default
unInch

Category
Units

Component/Class
TBaseReport

Description
This property sets the current units mode to one of the following values: unInch, unMM,
unCM, unPoint and unUser.
If the setting is unUser then the units factor is determined by the value in UnitsFactor.

See also
UnitsFactor

Example
Delphi
RvNDRWriter1.Units := unInch;
C++Builder
RvNDRWriter1->Units = unInch;

Developers Guide

Page 289

UnitsFactor property (read/write/published)

Declaration
property UnitsFactor: double;

Default
1.0

Category
Units

Component/Class
TBaseReport

Description
This property returns or sets the current conversion factor necessary to convert units to
inches. Its value should equal the number of units that equal an inch.
(unCM = 2.54 since 2.54 centimeters equal an inch)

Example
300 DPI conversion

Delphi
RvNDRWriter1.Units := unUser;
RvNDRWriter1.UnitsFactor := 300;
RvNDRWriter1.PrintXY(300, 600, 'Text at 1", 2"');

C++Builder
RvNDRWriterr1->Units = unUser;
RvNDRWriter1->UnitsFactor = 300;
RvNDRWriter1->PrintXY(300, 600, "Text at 1\", 2\"");

UnregisterGraphic method

Declaration
procedure UnregisterGraphic(index: integer);

Category
Graphics

Component/Class
TBaseReport

Description
This method will help manage repeating, large bitmaps in a print job. This method is used to
insure that the index used by RegisterGraphic is clear. You must call this method if you have
previously registered a graphic in that index. However, it is safe and recommended to
always call UnregisterGraphic before using these graphic index methods.

See also
RegisterGraphic, ReuseGraphic

Example
See RegisterGraphic

Developers Guide

Page 290

UpdateStatus method

Declaration
procedure UpdateStatus;

Category
Misc

Component/Class
TBaseReport

Description
This method will update the label defined by StatusLabel with the current information defined
by the report status or the items contained in StatusText.

See also
StatusLabel, StatusText

Example
After report execution, depending on whether the user aborted the report's creation or not,
the status bar is updated with the appropriate message.

Delphi
if Aborted then begin
 StatusFormat := #13'Report Canceled!';
 UpdateStatus;
end else begin
 StatusFormat := #13'Report Completed!';
 UpdateStatus;
end; { else }

C++Builder
if (rp->Aborted) {
 rp->StatusFormat = "\nReport Canceled!";
 rp->UpdateStatus();
}
else {
 rp->StatusFormat = "\nReport Completed!";
 rp->UpdateStatus();
}/ else

Developers Guide

Page 291

UseChecksum property (read/write)

Declaration
property UseChecksum: boolean

Default
false (Code128 := true)

Category
BarCode

Component/Class
TRpBarsBase

Description
Specifies whether a checksum character should be included in the bar code.

See also
BarHeight, BarWidth, PrintReadable, Text, Width

UseCompression property (read/write)

Declaration
property UseCompression: boolean read FCompression write FCompression

Default
false

Category
Render

Component/Class
TRpRender

Description
This property determines whether you want to compress the page stream when sending the
report out to PDF. The code that actually provides the compression must be defined in the
OnCompress event.

See also
OnCompress

Developers Guide

Page 292

UseSetRange property (read/write/published)

Declaration
property UseSetRange: boolean;

Default
false

Category
Rave

Component/Class
TRvTableConnection

Description
This property will determine whether filters are handled by the TTable.Filter property or the
TTable.SetRange method.

Version property (read/write/published)

Declaration
property Version: String;

Category
Misc

Component/Class
TRpComponent

Description
Returns the current release version of Rave.

Developers Guide

Page 293

WideFactor property (read/write)

Declaration
property WideFactor: double

Default
3.0

Category
BarCode

Component/Class
TRpBarsBase

Description
The wide factor is the ratio of the wide bar to the narrow bar width.

See also
BarHeight, BarWidth, Width

Example
set wide to narrow bar ratio to be 2.5

Delphi
WideFactor := 2.5;
C++Builder
WideFactor = 2.5;

Developers Guide

Page 294

Width property (read only)

Declaration
property Width: double;

Category
BarCode

Component/Class
TRpBarsBase

Description
This property will return the calculated width of the entire bar code for the current value of
Text.

See also
BarWidth, Text, WideFactor

Example
get width of bar code for ABC123

Delphi
var BarCodeWidth: double;
 BarCode1.Text := 'ABC123';
 BarCodeWidth := BarCode1.Width;

C++Builder
double BarCodeWidth;
BarCode1->Text = "ABC123";
BarCodeWidth = BarCode1->Width;

Developers Guide

Page 295

WriteBCDData method

Declaration
function WriteBCDData(FormatData: String; NativeData: Currency): String;

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes the contents of a custom BCD field (of type dtBCD) inside of the
OnGetRow event of a data connection component. The data for custom fields must be written
in the same order as the fields were defined in the OnGetCols event.
 FormatData parameter defines the formatted value of the field, but can be

blank if no pre-formatted output is needed.
 NativeData parameter should contain the unmodified contents of the field
 Tutorial: see "customizing data connections" tutorial for more information.

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteBCDData(' ',InvoiceAmount);
C++Builder
Connection->WriteBCDData(" ",InvoiceAmount);

WriteBlobData method

Declaration
function WriteBlobData(var: Buffer; Len: Longint): String;

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes the contents of a custom blob field (of type dtBlob / dtGraphic / dtMemo)
inside of the OnGetRow event of a data connection component. The data for custom fields
must be written in the same order as the fields were defined in the OnGetCols event.

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteBlobData('',CustomerPict);
C++Builder
Connection->WriteBlobData("",CustomerPict);

Developers Guide

Page 296

WriteBoolData method

Declaration
function WriteBoolData(FormatData: String; NativeData: Boolean): String;

Category
Rave

Component/Class
TRvCustomConnection

Description
of the OnGetRow event of a data connection component. The data for custom fields must be
written in the same order as the fields were defined in the OnGetCols event.
FormatData parameter defines the formatted value of the field, but can be blank if no pre-
formatted output is needed.
NativeData parameter should contain the unmodified contents of the field

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteBoolData('',CustomerActive);
C++Builder
Connection->WriteBoolData("",CustomerActive);

WriteCurrData method

Declaration
function WriteCurrData(FormatData: String; NativeData: Currency): String;

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes the contents of a custom Currency field (of type dtFloat) inside of the
OnGetRow event of a data connection component. The data for custom fields must be written
in the same order as the fields were defined in the OnGetCols event.
FormatData parameter defines the formatted value of the field, but can be blank if no pre-
formatted output is needed.
NativeData parameter should contain the unmodified contents of the field

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteCurrData('',InvoiceAmount);
C++Builder
Connection->WriteCurrData("",InvoiceAmount);

Developers Guide

Page 297

WriteDateTime method

Declaration
function WriteDateTime(FormatData: String; NativeData: TDateTime);

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes the contents of a custom DateTime field (of type dtDate / dtTime /
dtDateTime) inside of the OnGetRow event of a data connection component. The data for
custom fields must be written in the same order as the fields were defined in the OnGetCols
event.
FormatData parameter defines the formatted value of the field, but can be blank if no pre-
formatted output is needed.
NativeData parameter should contain the unmodified contents of the field

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteDateTime('',Now);
C++Builder
Connection->WriteDateTime("",Now);

WriteFloatData method

Declaration
function WriteFloatData(FormatData: String; NativeData: Extended): String;

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes the contents of a custom BCD field (of type dtFloat) inside of the
OnGetRow event of a data connection component. The data for custom fields must be written
in the same order as the fields were defined in the OnGetCols event.
FormatData parameter defines the formatted value of the field, but can be blank if no pre-
formatted output is needed.
NativeData parameter should contain the unmodified contents of the field

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteFloatData('',CustomerBudget);
C++Builder
Connection->WriteFloatData("",CustomerBudget);

Developers Guide

Page 298

WriteIntData method

Declaration
function WriteIntData(FormatData: String; NativeData: Integer): String;

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes the contents of a custom integer field (of type dtInteger) inside of the
OnGetRow event of a data connection component. The data for custom fields must be written
in the same order as the fields were defined in the OnGetCols event.
FormatData parameter defines the formatted value of the field, but can be blank if no pre-
formatted output is needed.
NativeData parameter should contain the unmodified contents of the field

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteIntData('',CustomerCount);
C++Builder
Connection->WriteIntData("",CustomerCount);

WriteNullData method

Declaration
function WriteNullData(no parameters);

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes a null inside of the OnGetRow event of a data connection component.
The data for custom fields must be written in the same order as the fields were defined in the
OnGetCols event.

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteNullData();
C++Builder
Connection->WriteNullData();

Developers Guide

Page 299

WriteStrData method

Declaration
function WriteStrData(FormatData: String; NativeData: String): String;

Category
Rave

Component/Class
TRvCustomConnection

Description
This method writes the contents of a custom String field (of type dtString) inside of the
OnGetRow event of a data connection component. The data for custom fields must be written
in the same order as the fields were defined in the OnGetCols event.
FormatData parameter defines the formatted value of the field, but can be blank if no pre-
formatted output is needed.
NativeData parameter should contain the unmodified contents of the field

See also
OnGetCols, OnGetRow, other WriteXxxxData methods

Example
Delphi
Connection.WriteStrData('',CustomerName);
C++Builder
Connection->WriteStrData("",CustomerName);

XD2I method

Declaration
function XD2I(Pos: longint): double;

Category
Units

Component/Class
TRvRenderPreview

Description
This method will convert horizontal printer canvas measurements (dots) to inch
measurements.

See also
All other units conversion functions

Example
With Units currently set to unInch

Delphi
XPos := RvNDRWriter1.XD2I(LastXDots);
C++Builder
XPos = RvNDRWriter1->XD2I(LastXDots);

Developers Guide

Page 300

XD2U method

Declaration
function XD2U(Pos: longint): double;

Category
Units

Component/Class
TBaseReport

Description
This method will convert horizontal printer canvas measurements (dots) to unit
measurements (defined by Units and UnitsFactor).

See also
Units, UnitsFactor, All other units conversion functions

Example
Delphi
XPos := RvNDRWriter1.XD2U(LastXDots);
C++Builder
XPos = RvNDRWriter1->XD2U(LastXDots);

XDPI property (read only)

Declaration
property XDPI: integer;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the horizontal dots per inch for the current printer.

Example
Delphi
CurrXDPI := RvNDRWriter1.XDPI;
C++Builder
CurrXDPI = RvNDRWriter1->XDPI;

Developers Guide

Page 301

XI2D method

Declaration
function XI2D(Pos: double): longint;

Category
Units

Component/Class
TBaseReport

Description
This method will convert horizontal inch measurements to printer canvas measurements
(dots).

See also
All other units conversion functions

Example
With Units currently set to unInch

Delphi
CurrXDots := RvNDRWriter1.XI2D(RvNDRWriter1.XPos);
C++Builder
CurrXDots = RvNDRWriter1->XI2D(RvNDRWriter1->XPos);

XI2U method

Declaration
function XI2U(Pos: double): double;

Category
Units

Component/Class
TBaseReport

Description
This method will convert horizontal inch measurements to unit measurements (defined by
Units and UnitsFactor).

See also
Units, UnitsFactor, All other units conversion functions

Example
Delphi
XPos := RvNDRWriter1.XI2U(LastXInch);
C++Builder
XPos = RvNDRWriter1->XI2U(LastXInch);

Developers Guide

Page 302

XPos property (read/write)

Declaration
property XPos: double;

Default
0.0

Category
Position

Component/Class
TBaseReport

Description
This property sets or returns the horizontal text cursor position.

See also
CursorXPos, CursorYPos, YPos

Example
Delphi
XPos := 0.45;
YPos := 0.95;
Print('Text at (0.45, 0.95)');

C++Builder
rp->XPos = 0.45;
rp->YPos = 0.95;
rp->Print("Text at (0.45, 0.95)");

XU2D method

Declaration
function XU2D(Pos: double): longint;

Category
Units

Component/Class
TBaseReport

Description
This method will convert horizontal unit measurements (defined by Units and UnitsFactor) to
printer canvas measurements (dots).

See also
Units, UnitsFactor, All other units conversion functions

Example
Delphi
CurrXDots := RvNDRWriter1.XU2D(RvNDRWriter1.XPos);
C++Builder
CurrXDots = RvNDRWriter1->XU2D(RvNDRWriter1->XPos);

Developers Guide

Page 303

XU2I method

Declaration
function XU2I(Pos: double): double;

Category
Units

Component/Class
TBaseReport

Description
This method will convert horizontal unit measurements (defined by Units and UnitsFactor) to
inch measurements.

See also
Units, UnitsFactor, All other units conversion functions

Example
With units set to unCM

Delphi
CurrXInch := RvNDRWriter1.XU2I(RvNDRWriter1.XPos);
C++Builder
CurrXInch = RvNDRWriter1->XU2I(RvNDRWriter1->XPos);

YD2I method

Declaration
function YD2I(Pos: longint): double;

Category
Units

Component/Class
TBaseReport

Description
This method will convert vertical printer canvas measurements (dots) to inch measurements

See also
All other units conversion functions

Example
With Units currently set to unInch

Delphi
YPos := RvNDRWriter1.YD2I(LastYDots);
C++Builder
YPos = RvNDRWriter1->YD2I(LastYDots);

Developers Guide

Page 304

YD2U method

Declaration
function YD2U(Pos: longint): double;

Category
Units

Component/Class
TBaseReport

Description
This method will convert vertical printer canvas measurements (dots) to unit measurements
(defined by Units and UnitsFactor).

See also
Units, UnitsFactor, All other units conversion functions

Example
Delphi
RvNDRWriter1.YPos = RvNDRWriter1.YD2U(LastYDots);
C++Builder
RvNDRWriter1->YPos = RvNDRWriter1->YD2U(LastYDots);

YDPI property (read only)

Declaration
property YDPI: integer;

Category
Printer

Component/Class
TBaseReport

Description
This property returns the vertical dots per inch for the current printer.

See also
All other units conversion functions

Example
Delphi
CurrYDPI := RvNDRWriter1.YDPI;
C++Builder
CurrYDPI = RvNDRWriter1->YDPI;

Developers Guide

Page 305

YI2D method

Declaration
function YI2D(Pos: double): longint;

Category
Units

Component/Class
TBaseReport

Description
This method will convert vertical inch measurements to printer canvas measurements (dots).

See also
All other units conversion functions

Example
With Units currently set to unInch

Delphi
CurrYDots := RvNDRWriter1.YI2D(YPos);
C++Builder
CurrYDots = RvNDRWriter1->YI2D(RvNDRWriter1->YPos);

YI2U method

Declaration
function YI2U(Pos: double): double;

Category
Units

Component/Class
TBaseReport

Description
This method will convert vertical inch measurements to unit measurements (defined by Units
and UnitsFactor).

See also
Units, UnitsFactor, All other units conversion functions

Example
Delphi
RvNDRWriter1.YPos := RvNDRWriter1.YI2U(LastYInch);
C++Builder
RvNDRWriter1->YPos = RvNDRWriter1->YI2U(LastYInch);

Developers Guide

Page 306

YPos property (read/write)

Declaration
property YPos: double;

Default
0.0

Category
Position

Component/Class
TBaseReport

Description
This property sets or returns the vertical text cursor position.

See also
CursorXPos, CursorYPos, XPos

Example
Delphi
XPos := 0.45;
YPos := 0.95;
Print('Text at (0.45, 0.95)');

C++Builder
rp->XPos = 0.45;
rp->YPos = 0.95;
rp->Print("Text at (0.45, 0.95)");

YU2D method

Declaration
function YU2D(Pos: double): longint;

Category
Units

Component/Class
TBaseReport

Description
This method will convert vertical unit measurements (defined by Units and UnitsFactor) to
printer canvas measurements (dots).

See also
Units, UnitsFactor, All other units conversion functions

Example
Delphi
CurrYDots := RvNDRWriter1.YU2D(RvNDRWriter1.YPos);
C++Builder
CurrYDots = RvNDRWriter1->YU2D(RvNDRWriter1->YPos);

Developers Guide

Page 307

YU2I method

Declaration
function YU2I(Pos: double): double;

Category
Units

Component/Class
TBaseReport

Description
This method will convert vertical unit measurements (defined by Units and UnitsFactor) to
inch measurements.

See also
Units, UnitsFactor, All other units conversion functions

Example
With units set to unCM

Delphi
CurrYInch := RvNDRWriter1.YU2I(RvNDRWriter1.YPos);
C++Builder
CurrYInch = RvNDRWriter1->YU2I(RvNDRWriter1->YPos);

Developers Guide

Page 308

ZoomFactor property (read/write/published)

Declaration
property ZoomFactor: double;

Default
100.0

Category
Preview

Component/Class
TRvRenderPreview

Description
This property defines the current zoom percent. A value of 100.0 is normal size, 200.0 is
double normal size and 50.0 is half size.

See also
ZoomIn, ZoomOut

Example
This code updates the text in a field where the ZoomFactor can be edited by the user. It
would be important to keep these well synchronized if more than one event can change this
property.

Delphi
var S1: string[10];
begin
 Str(RvRenderPreview1.ZoomFactor:1:1,S1);
 ZoomEdit.Text := S1;
 RvRenderPreview1.RedrawPage;
end;

C++Builder
AnsiString S1;
 S1 = FloatToStrF(RvRenderPreview1->ZoomFactor, ffGeneral,1,1);
 ZoomEdit->Text = S1;
 RvRenderPreview1->RedrawPage();

Developers Guide

Page 309

ZoomIn method

Declaration
procedure ZoomIn;

Category
Preview

Component/Class
TRvRenderPreview

Description
This method will add ZoomInc to the current ZoomFactor and will make the image larger on
the screen. If an OnZoomChange event handler is defined, then that event handler will be
called and is responsible for redrawing the page otherwise the page is redrawn.

See also
ZoomOut, ZoomInc, ZoomFactor, OnZoomChange

Example
This code causes the ZoomFactor to be incremented by ZoomInc percent.

Delphi
RvRenderPreview1.ZoomIn;
C++Builder
RvRenderPreview1->ZoomIn();

ZoomInc property (read/write/published)

Declaration
property ZoomInc: integer;

Default
10

Category
Preview

Component/Class
TRvRenderPreview

Description
This property defines the amount that ZoomIn and ZoomOut modifies ZoomFactor.

See also
ZoomFactor, ZoomIn, ZoomOut

Example
This code causes the ZoomFactor property to be incremented by 10when ZoomIn and
ZoomOut are called.

Delphi
RvRenderPreview1.ZoomInc := 10;
C++Builder
RvRenderPreview1->ZoomInc = 10;

Developers Guide

Page 310

ZoomOut method

Declaration
procedure ZoomOut;

Category
Preview

Component/Class
TRvRenderPreview

Description
This method will subtract ZoomInc from the current ZoomFactor and will make the image
smaller on the screen.
If an OnZoomChange event handler is defined, then that event handler will be called and is
responsible for redrawing the page, otherwise the page is redrawn.

See also
ZoomIn, ZoomInc, ZoomFactor, OnZoomChange

Example
Delphi
RvRenderPreview1.ZoomOut;
C++Builder
RvRenderPreview1->ZoomOut();

Developers Guide

Page 311

ZoomPageFactor property (read only)

Declaration
property ZoomPageFactor: double;

Category
Preview

Component/Class
TRvRenderPreview

Description
This property will return the zoom factor that will zoom the current page so that the entire
page is visible. This value can then be assigned to ZoomFactor. You should consider the
extra width used by a shadow if you have assigned a value to the ShadowDepth preview
property.

See also
ShadowDepth, ZoomFactor, ZoomPageWidthFactor

Example
use an OnPreviewShow event with the following

Delphi
with Sender As TRvRenderPreview do begin
 ZoomFactor := ZoomPageFactor - (ShadowDepth + 5) / 10;
end; { with }

C++Builder
TRvRenderPreview* fp = dynamic_cast<TRvRenderPreview*>(Sender);
 fp->ZoomFactor = fp->ZoomPageFactor - (fp->ShadowDepth + 5) / 10;

Developers Guide

Page 312

ZoomPageWidthFactor property (read only)

Declaration
property ZoomPageWidthFactor: double;

Category
Preview

Component/Class
TRvRenderPreview

Description
This property will return the zoom factor that will zoom the current page so that the entire
page width is visible. This value can then be assigned to ZoomFactor. You should consider
the extra width used by a shadow if you have assigned a value to the ShadowDepth preview
property.

See also
ShadowDepth, ZoomFactor, ZoomPageFactor

Example
use an OnPreviewShow event with the following

Delphi
with Sender As TRvRenderPreview do begin
 ZoomFactor := ZoomPageWidthFactor - (ShadowDepth +3) / 10;
end; { with }

C++Builder
TRvRenderPreview* fp = dynamic_cast<TRvRenderPreview*>(Sender);
 fp->ZoomFactor = fp->ZoomPageWidthFactor - (fp->ShadowDepth + 3) /
10;

Developers Guide

Page 313

INDEX
A
AlphaNumeric Items...............................23
C
Controlling the Visibility of the connection 11
Custom Data Connections11
Customizing Data Connections13
D
Data Bridge ...11
Date / Time items24
Description..9, 17
E
Engine Property.....................................21
event

OnAfterClose...................................145
OnAfterOpen...................................146
OnAfterPrint146
OnBeforeClose................................147
OnBeforeOpen147
OnBeforePrint148
OnCreate ..149
OnDecodeImage150
OnDesignerSave151
OnDesignerSaveAs151
OnDesignerShow152
OnDestroy152
OnEOF ...153
OnFirst..153
OnGetCols153
OnGetRow154
OnGetSorts154
OnNewColumn155
OnNewPage....................................156
OnNext ...157
OnOpen ..157
OnPageChange...............................158
OnPreviewSetup..............................159
OnPreviewShow..............................160
OnPrint ...160
OnPrintFooter..................................161
OnPrintHeader162
OnPrintPage....................................163
OnRestore164
OnSetFilter164
OnSetSort165
OnValidateRow165

OnZoomChange..............................166
OverridePreview..............................170
OverrideSetup171
OverrideStatus171

Events ..10
F
Formatting...23
G
Getting Started ..3
I
Introduction to Rave5
K
Keyboard / Mouse Shortcuts...................27
L
Limited Warranty3
M
method

Abort ...29
AbortPage ...31
AdjustLine ...33
AllowAll ...34
AllowPreviewOnly35
AllowPrinterOnly35
Append ...36
AppendMemoBuf...............................36
Arc..37
AssignFont ..38
BrushCopy ..48
CalcGraphicHeight50
CalcGraphicWidth..............................51
Chord..53
Clear...54
ClearAllTabs......................................54
ClearColumns55
ClearRaveBlob55
ClearTabs ...56
Close ..56
ConstraintHeightLeft63
CopyRect ..64
CR ..65
Create.. 66, 67
CreateBrush......................................68
CreateFont ..69
CreatePen...70
CreatePoint70

Developers Guide

Page 314

CreateRect..71
Delete...74
Design ..75
DesignReport76
Destroy ...76
Draw...80
DrawFocusRect.................................79
Ellipse...83
Empty ...83
Execute...................................... 84, 85
ExecuteCustom85
ExecuteReport...................................86
FillRect..89
Finish..89
FinishTabBox90
FloodFill ..91
FrameRect102
FreeSaved102
GetMemoLine..................................103
GetNextLine103
GetReportCategoryList.....................104
GetReportList104
GetTab..105
GotoFooter105
GotoHeader106
GotoXY ...106
GraphicFieldToBitmap107
Home..111
Insert ..113
InsertMemoBuf113
IsValidChar114
LF 119
LinesLeft ...123
LineTo ..124
LoadFromFile126
LoadFromStream.............................127
LoadRaveBlob.................................128
Macro ...129
MemoHeightLeft137
MemoLines138
MemoLinesLeft137
MoveTo ...139
NewColumn140
NewLine..140
NewPage ..141
NextPage..141

NoPrinters145
Open ..167
Pie..175
Polygon...177
Polyline ...178
PopFont ..179
PopPos ...180
PopTabs ...180
PrevPage..182
Print ..183
PrintBitmap184
PrintBitmapRect...............................185
PrintBlock..185
PrintCenter186
PrintCharJustify186
PrintData...187
PrintDataStream..............................188
PrintFimA ..190
PrintFimB ..191
PrintFimC..191
PrintFooter192
PrintHeader192
PrintHeight193
PrintImageRect................................194
PrintJustify196
PrintLeft ..196
PrintLines ..197
PrintLn ..197
PrintMemo.......................................198
PrintPage..199
PrintRight ..200
PrintTab ..201
PrintXY ...202
PushFont ..203
PushPos ...204
PushTabs ..204
RecoverPrinter206
Rectangle..207
RedrawPage207
RegisterGraphic...............................208
ReleasePrinter.................................209
ReplaceAll.......................................210
ReportDescToMemo211
Reset213, 214
ResetLineHeight214
ResetPrinter215

Developers Guide

Page 315

ResetSection215
ResetTabs216
RestoreBuffer216
RestoreFont217
RestorePos217
RestoreState218
RestoreTabs....................................218
ReuseGraphic219
RoundRect221
RTFLoadFromFile............................222
RTFLoadFromStream222
Save ...224
SaveBuffer225
SaveFont ..225
SavePos ...226
SaveRaveBlob.................................226
SaveState227
SaveTabs ..227
SaveToFile228
SaveToStream228, 229
SearchFirst......................................231
SearchNext232
SelectBin...236
SelectPaper238
SelectPrinter....................................238
SelectReport239
SetBrush...240
SetColumns241
SetColumnWidth..............................242
SetData...242
SetFont ...243
SetPaperSize243
SetParam ..244
SetPen..244
SetPIVar ...245
SetTab ..246
SetTopOfPage.................................247
ShadeToColor247
ShowPrintDialog..............................248
ShowPrinterSetupDialog249
Start..250
StretchDraw256
SupportBin258
SupportCollate.................................259
SupportDuplex.................................259
SupportOrientation...........................259

SupportPaper260
Tab ...264
TabEnd...265
TabStart ..268
TabWidth ..268
TextRect ...272
TextWidth..273
UnregisterGraphic............................289
UpdateStatus290
WriteBCDData.................................295
WriteBlobData295
WriteBoolData296
WriteCurrData296
WriteDateTime297
WriteFloatData297
WriteIntData298
WriteNullData298
WriteStrData....................................299
XD2I ...299
XD2U..300
XI2D ...301
XI2U ...301
XU2D..302
XU2I ...303
YD2I ...303
YD2U..304
YI2D ...305
YI2U ...305
YU2D..306
YU2I ...307
ZoomIn ...309
ZoomOut ...310

N
Naming the Data Connection11
O
OnEOF event ..15
OnFirst Event ..14
OnGetCols Event14
OnGetRow event15
OnNext event ..15
OnOpen event14
OnRestore event16
OnValidateRow event16
Output Components.................................5
Overview...21

Developers Guide

Page 316

P
Page Designer Only...............................27
Page Designer or Project Tree................27
Project Tree Only...................................27
Properties ...9
Properties and Events............................17
property

Aborted...30
AccuracyMethod31
Active ..32
AscentHeight37
BarBottom ...38
BarCodeJustify39
BarCodeRotation40
BarHeight ..41
BarTop..41
BarWidth...42
BaseReport42, 43, 44
Bins ..45
BKColor ..45
Bold ..46
Bottom ..46
BottomWaste.....................................47
BoxLineColor.....................................47
Buffer..48
BufferInc ...49
CacheDir...49
Canvas ...52
Center...52
CheckSum ..53
CodePage ...57
Collate ..58
ColumnEnd59
ColumnLinesLeft60
ColumnNum61
Columns ...61
ColumnStart62
ColumnWidth.....................................62
Copies ..64
CurrentPage......................................71
CurrentPass72
CursorXPos72
CursorYPos73
DataSet ...73
DefaultDest74
DescentHeight75
DeviceName......................................77

DevMode ..77
DisplayName78
DLLFile ...78
DriverName81
Duplex ..82
Engine ..84
Extended...86
ExtendedText87
Field ...87
FieldAliasList88
FileName ..88
FirstPage ..91
FontAlign...92
FontBaseline93
FontBottom93
FontCharset94
FontColor..94
FontHandle95
FontHeight ..95
FontName ...96
FontPitch...96
FontRotation......................................97
Fonts ..98
FontSize ...99
FontTop ..100
FontWidth100
FrameMode.....................................101
GridHoriz...108
GridPen ..108
GridVert ..109
Height ...110
IgnoreFileSettings112
ImageQuality112
Italic..114
Justify ...115
LastPage...116
Left ...117
LeftWaste..118
LineBottom......................................119
LineHeight120
LineHeightMethod............................120
LineMiddle121
LineNum ...122
LinesPerInch123
LineTop...125
LoadDesigner125

Developers Guide

Page 317

LocalFilter128
MacroData130
MarginBottom131
MarginLeft132
MarginMethod133
MarginPercent133
MarginRight134
MarginTop.......................................134
MaxCopies135
MaxSize..136
Memo ...136
MetafileDPI138
Monochrome139
NoBufferLine142
NoCRLF..142
NoNewLine143
NoNTColorFix..................................143
NoPrinterPageHeight144
NoPrinterPageWidth........................144
OnCompress149
Orientation167
OriginX..168
OriginY..168
OutputFileName169
OutputInvalid...................................169
OutputName....................................170
PageHeight172
PageInc ..172
PageInvalid173
Pages ...173
PageWidth174
Papers ..174
PIVar ..176
Port...181
Pos ...182
Position...181
PrintChecksum187
PrintEnd ..189
PrinterIndex189
Printers ...190
Printing ...195
PrintReadable199
PrintStart ...200
PrintTop ..201
ProjectFile203
Query..205

RaveBlobDateTime..........................205
ReadableHeight206
ReportDateTime210
ReportDesc211
ReportDest......................................212
ReportFullName212
ReportName....................................213
RichEdit ..219
Right ...220
RightWaste220
RTFField...221
RTFText..222
RulerType223
RuntimeVisibility224
ScaleX..229
ScaleY ..230
ScrollBox...230
SectionBottom233
SectionLeft234
SectionRight235
SectionTop236
Selection ...237
ServerMode239
ShadowDepth..................................248
Size ..249
StatusFormat251
StatusLabel252
StatusText.......................................252
StoreRAV..253
Stream ..254
StreamMode....................................255
Strikeout ...256
Subscript ...257
Superscript258
SystemFiler260
SystemOptions261
SystemPreview................................262
SystemPrinter..................................262
SystemSetups263
TabColor...265
TabJustify266
Table ..266
TabShade267
Text ..270
TextBKMode271
TextJustify271

Developers Guide

Page 318

Title ..274
TitlePreview274
TitleSetup..275
TitleStatus275
Top ...278
TopWaste279
TotalPasses280
TransparentBitmaps281
TruncateText282
Underline ..287
Units ...288
UnitsFactor......................................289
UseChecksum291
UseCompression291
UseSetRange292
Version ...292
WideFactor......................................293
Width ..294
XDPI...300
XPos ...302
YDPI...304
YPos...306
ZoomFactor.....................................308
ZoomInc ..309
ZoomPageFactor311
ZoomPageWidthFactor312

Property Descriptions29
Q
Quick Start with Rave...............................7
R
Rave Classes ..6
Rave Data Connection11
Rave Toolbar...5
Rendering components19
S
Single User License Agreement3
Structure of Rave.....................................7

T
Technical Support4
TRvNDRWriter component17
TRvProject Component21
TRvRenderHTML Description20
TRvRenderPDF Description19
TRvRenderPreview Description19
TRvRenderPreview Events.....................19
TRvRenderPreview Properties19
TRvRenderPrinter Description19
TRvRenderPrinter Properties and Events 19
TRvRenderRTF Description20
TRvRenderText Description20
TRvSystem Component9
type

TAccuracyMethod............................269
TBKMode ..269
TFontAlign273
TLineHeightMethod..........................276
TMacroID..277
TMarginMethod278
TOrientation279
TPrintJustify280
TPrintUnits281
TReportDest....................................282
TStreamMode283
TSystemOption................................283
TSystemOptions284
TSystemSetup285
TSystemSetups286
TTabJustify286

U
Using Events to Customize your Data

Connection ..13
Using TRvProject...................................21
W
Welcome to RAVE!7

