Glossary

The following list defines many of the terms used in discussions about the Windows API. Please refer to this glossary whenever you are confused about the meaning of a term. A link to this glossary appears whenever one of the defined terms appears in the Windows API Guide.

Brush

A type of bitmap which is used to fill an area. Brushes are usually 8x8 pixel images, forming either a solid color or a pattern. Back

Callback Function

A function defined by the application which the Windows API will call. Callback functions are usually used whenever the program must process certain information itself at some time in the midst of the execution of an API function. In Visual Basic, all callback function must be declared Public and be defined in a module. Back

Common Dialog

One of the dialog boxes built into the Windows API designed to allow the user to select something. The common dialog boxes include the Open File, Save File, Choose Color, Choose Font, Print, Print Setup, Find Text, and Find & Replace Text boxes. Back

Current Point

A point on a device also known as the last point referenced. Almost all drawing function ending in -To usually use the current point as the implied point to begin drawing from; they also set the current point to the end point of whatever was drawn. Other drawing functions completely ignore the current point. Back

Device

An object which performs input or output operations (or both). Devices are used to communicate with the user and include such objects as the keyboard, mouse, and printers. Many windows are also considered to be devices. Devices are usually refered to using a device context. Back

Device Context

An object which both holds information about a device and provides a way to use the device. Device contexts refer to an internal data structure in Windows not accessible to applications; programs can only reference device context via a handle. Back

Handle

A four-byte integer used to identify a wide variety of objects. Handles refer to an internal data structure not accessible to Windows applications which contain information about an object. Back

Hook Function

A special type of callback function. Hook functions are used to process messages associated with an object such as a window or a dialog box. In general, hook functions are called to respond to some sort of message. Back

Logical

When used to describe a graphics object (such as a font or brush), this means that the object described is an "ideal" object. Information about the logical object is used by the system to create a physical object which may not exactly match the logical one. However, only physical objects can actually be used. Back

Message

A type of command sent to an object. Physically, a message is identified by a 32-bit integer. Most messages have two parameters associated with them. Most objects continually monitor for newly received messages and act on them. Back

Pen

An object which is used to draw lines and curves. Pens define the style, size, and shape of a line or curve. Pens are usually refered to using a handle. Back

Physical

When used to describe a graphics object (such as a font or brush), this means that the object described is an actual object. Physical objects can be used to actually draw on devices. Back

Pointer

A four-byte integer used to identify a physical location in memory (a memory address). Often when using the API in Visual Basic, an implicit pointer to a variable can be used by passing it ByRef (except for Strings, which are always ByVal) as a parameter. Pointers can also be stored in Long-type variables. Back

Thread

A path of execution in a program. Each application has at least one thread executing it, although it is possible to have more than one thread in the same instance of a program. Back

Window Class

Defines attributes common to a group of windows. Windows which are created as a member of a certain window class inherit many properties of that class. The window class largely determines the look of its associated windows. Back

Word

A portion of memory, usually a variable, which has a length of two bytes. The term word is given to anything which is two bytes in length. Back

Z-order

An internal list identifying the overlapping of windows. Basically, the Z-order determines which windows lie on top of other windows. The top of the Z-order is the window which is on top of all other windows. Back

Last Modified: August 15, 1999

This page is copyright © 1999 Paul Kuliniewicz. Copyright Information

Go to Paul Kuliniewicz's Home Page.

E-mail: rogue953@hotmail.com

This page is at http://skyscraper.fortunecity.com/transmission/45/api/help/glossary.html

Alphabetical Listing of the API Functions

A

AngleArc

Arc

ArcTo

B

Beep

BitBlt

BringWindowToTop

C

CharLower

CharUpper

ChooseColor

ChooseFont

Chord

ClipCursor

CloseHandle

CombineRgn

CommDlgExtendedError

CompareFileTime

CopyFile

CopyMemory

CopyRect

CreateCursor

CreateDC

CreateDirectory

CreateEllipticRgn

CreateEllipticRgnIndirect

CreateFile

CreateHatchBrush

CreatePolygonRgn

CreatePolyPolygonRgn

CreateRectRgn

CreateRectRgnIndirect

CreateRoundRectRgn

CreateSolidBrush

D

DeleteDC

DeleteFile

DeleteObject

DestroyCursor

DestroyIcon NEW

DrawIcon NEW

DrawIconEx NEW

E

Ellipse

EnableWindow

EnumChildWindows

EnumPrinters

EnumThreadWindows

EnumWindows

EqualRect

EqualRgn

ExitWindowsEx

ExtractIcon NEW

ExtractIconEx NEW

F

FileTimeToLocalFileTime

FileTimeToSystemTime

FillMemory

FillRect

FillRgn

FindClose

FindFirstFile

FindNextFile

FindWindow

FindWindowEx

FlashWindow

FrameRect

FrameRgn

G

GetActiveWindow

GetArcDirection

GetBrushOrgEx

GetClipCursor

GetComputerName

GetCursor

GetCursorPos

GetDC

GetDesktopWindow

GetDiskFreeSpace

GetDiskFreeSpaceEx

GetDoubleClickTime

GetDriveType

GetFileAttributes

GetFileInformationByHandle

GetFileSize

GetFileTime

GetForegroundWindow

GetFullPathName

GetKeyboardState

GetKeyState

GetLastError

GetLocalTime

GetLogicalDrives

GetLogicalDriveStrings

GetOpenFileName

GetParent

GetPolyFillMode

GetPrivateProfileInt

GetPrivateProfileString

GetProfileInt

GetProfileString

GetRgnBox

GetSaveFileName

GetShortPathName

GetStockObject

GetSystemDirectory

GetSystemMetrics

GetSystemTime

GetTempFileName

GetTempPath

GetTextAlign

GetTimeZoneInformation

GetTopWindow

GetUserName

GetVersionEx

GetWindow

GetWindowRect

GetWindowsDirectory

GetWindowText

GetWindowTextLength

GetWindowThreadProcessId

GlobalAlloc

GlobalFree

GlobalLock

GlobalUnlock

H

I

InflateRect

IntersectRect

InvertRect

InvertRgn

IsChild

IsIconic

IsRectEmpty

IsWindow

IsWindowEnabled

IsZoomed

J

joyGetDevCaps

joyGetNumDevs

joyGetPos

K

keybd_event NEW

L

LineTo

LoadCursor

LoadCursorFromFile

LocalFileTimeToFileTime

lstrcpy

lstrcpyn

lstrlen

M

MessageBeep

mouse_event NEW

MoveFile

MoveMemory

MoveToEx

MoveWindow

N

O

OffsetRect

OffsetRgn

P

Pie

PlaySound

Polygon

Polyline

PolylineTo

PolyPolygon

PolyPolyline

PrintDlg

PtInRect

PtInRegion

Q

R

ReadFile

Rectangle

RectInRegion

RegCloseKey

RegCreateKeyEx

RegDeleteKey

RegDeleteValue

RegEnumKeyEx

RegEnumValue

RegOpenKeyEx

RegQueryValueEx

RegSetValueEx

ReleaseDC

RemoveDirectory

RoundRect

S

SelectObject

SendInput NEW

SetActiveWindow

SetArcDirection

SetBrushOrgEx

SetCursor

SetCursorPos

SetDoubleClickTime

SetFileAttributes

SetFilePointer

SetForegroundWindow

SetParent

SetPolyFillMode

SetRect

SetRectEmpty

SetSystemCursor

SetTextAlign

SetWindowPos

SetWindowText

ShellExecute

ShowCursor

ShowWindow

Sleep

sndPlaySound

StretchBlt

SubtractRect

SwapMouseButton

SystemParametersInfo

SystemTimeToFileTime

T

TextOut

U

UnionRect

V

W

waveOutGetDevCaps

waveOutGetNumDevs

waveOutGetVolume

waveOutSetVolume

WindowFromPoint

WinHelp

WriteFile

WritePrivateProfileString

WriteProfileString

X

Y

Z

ZeroMemory

Accessibility

GetSystemMetrics

SystemParametersInfo

Audio

PlaySound

sndPlaySound

waveOutGetDevCaps

waveOutGetNumDevs

waveOutGetVolume

waveOutSetVolume

Bitmaps

BitBlt

StretchBlt

Brushes

CreateHatchBrush

CreateSolidBrush

GetBrushOrgEx

SetBrushOrgEx

Common Dialog

ChooseColor

ChooseFont

CommDlgExtendedError

GetOpenFileName

GetSaveFileName

PrintDlg

Cursor

ClipCursor

CreateCursor

DestroyCursor

GetClipCursor

GetCursor

GetCursorPos

LoadCursor

LoadCursorFromFile

SetCursor

SetCursorPos

SetSystemCursor

ShowCursor

Devices

CreateDC

DeleteDC

DeleteObject

GetDC

GetStockObject

ReleaseDC

SelectObject

Errors

Beep

GetLastError

MessageBeep

Files

CopyFile

CreateDirectory

CreateFile

DeleteFile

FindClose

FindFirstFile

FindNextFile

GetDiskFreeSpace

GetDiskFreeSpaceEx

GetDriveType

GetFileAttributes

GetFileInformationByHandle

GetFileSize

GetFileTime

GetFullPathName

GetLogicalDrives

GetLogicalDriveStrings

GetShortPathName

GetTempFileName

MoveFile

ReadFile

RemoveDirectory

SetFileAttributes

SetFilePointer

WriteFile

Filled Shapes

Chord

Ellipse

FillRect

FrameRect

InvertRect

Pie

Polygon

PolyPolygon

Rectangle

RoundRect

Fonts & Text

GetTextAlign

SetTextAlign

TextOut

Help

WinHelp

Icons

DestroyIcon NEW

DrawIcon NEW

DrawIconEx NEW

ExtractIcon NEW

ExtractIconEx NEW

INI Files

GetPrivateProfileInt

GetPrivateProfileString

GetProfileInt

GetProfileString

WritePrivateProfileString

WriteProfileString

Joysticks

joyGetDevCaps

joyGetNumDevs

joyGetPos

Keyboard

GetKeyboardState

GetKeyState

keybd_event NEW

SendInput NEW

Lines & Curves

AngleArc

Arc

ArcTo

GetArcDirection

LineTo

MoveToEx

Polyline

PolylineTo

PolyPolyline

SetArcDirection

Memory

CopyMemory

FillMemory

GlobalAlloc

GlobalFree

GlobalLock

GlobalUnlock

MoveMemory

ZeroMemory

Mouse

GetDoubleClickTime

mouse_event NEW

SetDoubleClickTime

SwapMouseButton

Hybrid: SendInput

Printers

EnumPrinters

Rectangles

CopyRect

EqualRect

InflateRect

IntersectRect

IsRectEmpty

OffsetRect

PtInRect

SetRect

SetRectEmpty

SubtractRect

UnionRect

Regions

CombineRgn

CreateEllipticRgn

CreateEllipticRgnIndirect

CreatePolygonRgn

CreatePolyPolygonRgn

CreateRectRgn

CreateRectRgnIndirect

CreateRoundRectRgn

EqualRgn

FillRgn

FrameRgn

GetPolyFillMode

GetRgnBox

InvertRgn

OffsetRgn

PtInRegion

RectInRegion

SetPolyFillMode

Registry

RegCloseKey

RegCreateKeyEx

RegDeleteKey

RegDeleteValue

RegEnumKeyEx

RegEnumValue

RegOpenKeyEx

RegQueryValueEx

RegSetValueEx

Shell

ShellExecute

Strings

CharLower

CharUpper

lstrcpy

lstrcpyn

lstrlen

System Information

GetComputerName

GetSystemDirectory

GetTempPath

GetUserName

GetVersionEx

GetWindowsDirectory

Time

CompareFileTime

FileTimeToLocalFileTime

FileTimeToSystemTime

GetLocalTime

GetSystemTime

GetTimeZoneInformation

LocalFileTimeToFileTime

SystemTimeToFileTime

Windows

BringWindowToTop

EnableWindow

EnumChildWindows

EnumThreadWindows

EnumWindows

FindWindow

FindWindowEx

FlashWindow

GetActiveWindow

GetDesktopWindow

GetForegroundWindow

GetParent

GetTopWindow

GetWindow

GetWindowRect

GetWindowText

GetWindowTextLength

GetWindowThreadProcessId

IsChild

IsIconic

IsWindow

IsWindowEnabled

IsZoomed

MoveWindow

SetActiveWindow

SetForegroundWindow

SetParent

SetWindowPos

SetWindowText

ShowWindow

WindowFromPoint

Other

CloseHandle

ExitWindowsEx

Sleep

AngleArc Function

Declare Function AngleArc Lib "gdi32.dll" (ByVal hdc As Long, ByVal x As Long, ByVal y As Long, ByVal dwRadius As Long, ByVal eStartAngle As Single, ByVal eSweepAngle As Single) As Long

Platforms

Windows 95: Not Supported

Windows 98: Not Supported

Windows NT: Requires Windows NT 3.1 or greater

Windows 2000: Supported

Windows CE: Not Supported

Description & Usage

AngleArc draws a circular arc on a device using the device's current pen. The circle which the arc lies on is determined by its center and radius. The start and end points of the arc are determined by angle measures in degrees, measured counterclockwise from the line parallel to the positive x-axis (i.e., from due right). The arc itself is drawn either clockwise or counterclockwise to connect the points, depending on the device's settings. AngleArc also draws a line connecting the device's current point to the beginning of the arc.

Return Value

If an error occurs, the function returns 0 (call GetLastError to get the error code). If the function succeeds, the function returns a non-zero value.

Visual Basic-Specific Issues

None

Parameters

hdc

A handle to a device context of the device to draw the arc on.

x

The x coordinate of the center of the circle.

y

The y coordinate of the center of the circle.

dwRadius

The radius of the circle.

eStartAngle

The angle (in degrees) identifying the starting point of the arc.

eSweepAngle

The angle (in degrees) identifying the ending point of the arc.

Example

' Draw an arc formed by the upper half of a circle (from 0 to 180

' degrees counterclockwise). The circle is centered at (100, 150) and has a radius

' of 50. The arc is drawn using the solid black stock pen.

Dim hpen As Long ' handle to the black stock pen

Dim holdpen As Long ' handle to Form1's previously selected pen

Dim retval As Long ' return value

' Get the solid black stock pen and select it for use in Form1.

hpen = GetStockObject(BLACK_PEN) ' get the pen's handle

holdpen = SelectObject(Form1.hDC, hpen) ' select the pen

' Make sure arcs are drawn going counterclockwise

retval = SetArcDirection(Form1.hDC, AD_COUNTERCLOCKWISE)

' Draw the arc

retval = AngleArc(Form1.hDC, 100, 150, 50, 0, 180)

' Select Form1's previous pen to restore the "defaults".

retval = SelectObject(Form1.hDC, holdpen) ' select the old pen

Related Functions

Arc, ArcTo, Ellipse, GetArcDirection, SetArcDirection

Category

Lines & Curves

Arc Function

Declare Function Arc Lib "gdi32.dll" (ByVal hdc As Long, ByVal nLeftRect As Long, ByVal nTopRect As Long, ByVal nRightRect As Long, ByVal nBottomRect As Long, ByVal nXStartArc As Long, ByVal nYStartArc As Long, ByVal nXEndArc As Long, ByVal nYEndArc As Long) As Long

Platforms

Windows 95: Supported

Windows 98: Supported

Windows NT: Requires Windows NT 3.1 or later

Windows 2000: Supported

Windows CE: Not Supported

Description & Usage

Arc draws an elliptical arc on a device using the device's current pen. The ellipse which the arc lies on is inscribed within the bounding rectangle coordinates passed to the function. The start and end points are determined by two radials. The radials begin at the center of the ellipse and extend through the given radial point (either the start or end one); where they intersect the ellipse is where the start and end points of the arc are. Windows 95/98: The arc is always drawn counterclockwise from the start point to the end point. Windows NT/2000: The direction the arc is drawn in depends on the device's current setting.

Return Value

If an error occured while attempting to draw the arc, the function returns 0 (Win NT/2000: call GetLastError to get the errror code). If the function completed successfully, it returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hdc

A handle to a device context of the device to draw the arc on.

nLeftRect

The x coordinate of the upper-left point of the ellipse's bounding rectangle.

nTopRect

The y coordinate of the upper-left point of the ellipse's bounding rectangle.

nRightRect

The x coordinate of the lower-right point of the ellipse's bounding rectangle.

nBottomRect

The y coordinate of the lower-right point of the ellipse's bounding rectangle.

nXStartArc

The x coordinate of the radial point that determines the arc's starting point.

nYStartArc

The y coordinate of the radial point that determines the arc's starting point.

nXEndArc

The x coordinate of the radial point that determines the arc's ending point.

nYEndArc

The y coordinate of the radial point that determines the arc's ending point.

Example

' Draw the arc that forms the top half of an ellipse. The ellipse

' is centered at (100, 100), has a width of 200, and has a height of 100. The arc is drawn

' on window Form1 using the black solid stock pen.

Dim hpen As Long ' handle to the black solid pen

Dim holdpen As Long ' handle to window Form1's previously selected pen

Dim retval As Long ' return value

' Get a handle to the solid black pen and set it as Form1's drawing pen.

hpen = GetStockObject(BLACK_PEN) ' get a handle to the pen

holdpen = SelectObject(Form1.hDC, hpen) ' set it as Form1's current pen

' The ellipse is determined by the bounding rectangle (0,50)-(200,150).

' The radial to (200, 100) is due right; the radial to (0, 100) is due left.

retval = Arc(Form1.hDC, 0, 50, 200, 150, 200, 100, 0, 100)

' Restore Form1's previous pen selection.

retval = SelectObject(Form1.hDC, holdpen) ' set the old pen back

Related Functions

AngleArc, ArcTo, Ellipse, GetArcDirection, SetArcDirection

Category

Lines & Curves

	

ArcTo Function

Declare Function ArcTo Lib "gdi32.dll" (ByVal hdc As Long, ByVal nLeftRect As Long, ByVal nTopRect As Long, ByVal nRightRect As Long, ByVal nBottomRect As Long, ByVal nXRadial1 As Long, ByVal nYRadial1 As Long, ByVal nXRadial2 As Long, ByVal nYRadial2 As Long) As Long

Platforms

Windows 95: Not Supported

Windows 98: Not Supported

Windows NT: Requires Windows NT 3.1 or later

Windows 2000: Supported

Windows CE: Not Supported

Description & Usage

ArcTo draws an elliptical arc on a device using the device's current pen. After drawing the arc, the device's current point is set to the end point of the arc. The ellipse which the arc lies on is inscribed within the bounding rectangle coordinates passed to the function. The start and end points are determined by two radials. The radials begin at the center of the ellipse and extend through the given radial point (either the start or end one); where they intersect the ellipse is where the start and end points of the arc are. The direction the arc is drawn in depends on the device's current setting.

Return Value

If an error occured while attempting to draw the arc, the function returns 0 (call GetLastError to get the error code). If the function completed successfully, it returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hdc

A handle to a device context of the device to draw the arc on.

nLeftRect

The x coordinate of the upper-left point of the ellipse's bounding rectangle.

nTopRect

The y coordinate of the upper-left point of the ellipse's bounding rectangle.

nRightRect

The x coordinate of the lower-right point of the ellipse's bounding rectangle.

nBottomRect

The y coordinate of the lower-right point of the ellipse's bounding rectangle.

nXRadial1

The x coordinate of the radial point that determines the arc's starting point.

nYRadial1

The y coordinate of the radial point that determines the arc's starting point.

nXRadial2

The x coordinate of the radial point that determines the arc's ending point.

nYRadial2

The y coordinate of the radial point that determines the arc's ending point.

Example

' Draw the arc that forms the top half of an ellipse. The ellipse

' is centered at (100, 100), has a width of 200, and has a height of 100. The arc is drawn

' on window Form1 using the black solid stock pen.

Dim hpen As Long ' handle to the black solid pen

Dim holdpen As Long ' handle to window Form1's previously selected pen

Dim retval As Long ' return value

' Get a handle to the solid black pen and set it as Form1's drawing pen.

hpen = GetStockObject(BLACK_PEN) ' get a handle to the pen

holdpen = SelectObject(Form1.hDC, hpen) ' set it as Form1's current pen

' The ellipse is determined by the bounding rectangle (0,50)-(200,150).

' The radial to (200, 100) is due right; the radial to (0, 100) is due left.

retval = ArcTo(Form1.hDC, 0, 50, 200, 150, 200, 100, 0, 100)

' Restore Form1's previous pen selection.

retval = SelectObject(Form1.hDC, holdpen) ' set the old pen back

Related Functions

AngleArc, Arc, Ellipse, GetArcDirection, SetArcDirection

Category

Lines & Curves

Beep Function

Declare Function Beep Lib "kernel32.dll" (ByVal dwFreq As Long, ByVal dwDuration As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

Beep plays a sound, but its exact behavior varies between platforms. Windows 95/98: The function always plays the SystemDefault system sound, regardless of the values passed to the function. Windows NT/2000: The function plays a tone through the computer's internal speaker at the desired frequency for a specified duration.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None

Parameters

dwFreq

Windows NT/2000: The frequency, in hertz (Hz), of the tone to play. Windows 95/98: Ignored.

dwDuration

Windows NT/2000: The duration, in milliseconds, to play the desired tone. Windows 95/98: Ignored.

Example

' Attempt to play a note at 800 Hz for 2 seconds. This will only

' behave this way on Windows NT/2000; users of Windows 95/98 will only hear the

' default sound.

Dim retval As Long ' return value

retval = Beep(800, 2000) ' ideally, an 800 Hz tone for 2 seconds

Related Function

MessageBeep

Category

Errors

BitBlt Function

Declare Function BitBlt Lib "gdi32.dll" (ByVal hdcDest As Long, ByVal nXDest As Long, ByVal nYDest As Long, ByVal nWidth As Long, ByVal nHeight As Long, ByVal hdcSrc As Long, ByVal nXSrc As Long, ByVal nYSrc As Long, ByVal dwRop As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

BitBlt performs a bit-block transfer of a rectangular portion of an image from one device to another. The dimensions of the transfered rectangle are perfectly preserved. The function can perform a variety of raster operations to transfer the block from the source device to the target device.

Return Value

If an error occured, the function returns 0 (Windows NT, 2000: use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hdcDest

A handle to the device context of the device which receives the transfered image block.

nXDest

The x-coordinate of the point to position the upper-left corner of the transfered image block.

nYDest

The y-coordinate of the point to position the upper-left corner of the transfered image block.

nWidth

The width in pixels of the image block.

nHeight

The height in pixels of the image block.

hdcSrc

A handle to the device context of the device which contains the image block to transfer.

nXSrc

The x-coordinate of the upper-left corner of the image block to transfer.

nYSrc

The y-coordinate of the upper-left corner of the image block to transfer.

dwRop

One of the following flags identifying the raster operation to use to transfer the image block. Each raster operation uses the RGB color value of the source and/or target pixel to determine the new color of the target pixel.

BLACKNESS

Fill the destination rectangle with the color whose index is 0 in the physical palette (which is black by default).

CAPTUREBLT

Windows 98, 2000: Include any windows layered on top of the window being used in the resulting image.

DSTINVERT

Invert the colors in the destination rectangle.

MERGECOPY

Merge the colors of the source rectangle with the specified pattern using the bitwise AND operator.

MERGEPAINT

Merge the colors of the inverted source rectangle with the colors of the destination rectangle using the bitwise OR operator.

NOMIRRORBITMAP

Windows 98, 2000: Prevent the bitmap from being mirrored.

NOTSRCCOPY

Copy the inverted source rectangle to the destination rectangle.

NOTSRCERASE

Combine the colors of the source and destination rectangles using the bitwise OR operator and then invert the resulting color.

PATCOPY

Copy the specified pattern into the destination bitmap.

PATINVERT

Combine the colors of the specified pattern with the colors of the destination rectangle using the bitwise XOR operator.

PATPAINT

Combine the colors of the specified pattern with the colors of the inverted source rectangle using the bitwise OR operator. Combine the result of that operation with the colors of the destination rectangle using the bitwise OR operator.

SRCAND

Combine the colors of the source and destination rectangles using the bitwise AND operator.

SRCCOPY

Copy the source rectangle directly into the destination rectangle.

SRCERASE

Combine the inverted colors of the destination rectangle with the colors of the source rectange using the bitwise AND operator.

SRCINVERT

Combine the colors of the source and destination rectangles using the bitwise XOR operator.

SRCPAINT

Combine the colors of the source and destination rectangles using the bitwise OR operator.

WHITENESS

Fill the destination rectangle with the color whose index is 1 in the physical palette (which is white by default).

Constant Definitions

Const BLACKNESS = &H42

' Const CAPTUREBLT = ???

Const DSTINVERT = &H550009

Const MERGECOPY = &HC000CA

Const MERGEPAINT = &HBB0226

' Const NOMIRRORBITMAP = ???

Const NOTSRCCOPY = &H330008

Const NOTSRCERASE = &H1100A6

Const PATCOPY = &HF00021

Const PATINVERT = &H5A0049

Const PATPAINT = &HFB0A09

Const SRCAND = &H8800C6

Const SRCCOPY = &HCC0020

Const SRCERASE = &H440328

Const SRCINVERT = &H660046

Const SRCPAINT = &HEE0086

Const WHITENESS = &HFF0062

Example

' Copy a rectanglular image from window Form1 to window Form2

' exactly (using SRCCOPY). The rectangle has a width of 100 and a height of

' 50. The upper-left corner of the source block is (350, 250); the block

' is placed at (0,0) in Form2.

Dim retval As Long ' return value

' Transfer the image exactly as described above.

retval = BitBlt

BringWindowToTop Function

Declare Function BringWindowToTop Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

BringWindowToTop brings a specified window to the top of the Z-order, placing it above any windows previously on top of it. This function has the same effect as using SetWindowPos to place the window at the top of the Z-order.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None

Parameters

hwnd

A handle to the window to bring to the top of the Z-order.

Example

' Bring the window Form1 to the top of the Z-order.

Dim retval As Long ' return value

' Obviously, this will only do something if other windows are already on top of Form1.

retval = BringWindowToTop(Form1.hWnd)

Related Function

SetWindowPos

Category:

Windows

CharLower Function

Declare Function CharLower Lib "user32.dll" Alias "CharLowerA" (ByVal lpsz As String) As String

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

CharLower converts all of the upper-case letters in a string into lower-case. The function also sets the string passed to the function to the returned string; in reality they become the same thing.

Return Value

The function returns the string, with all upper-case letters converted to lower-case.

Visual Basic-Specific Issues

None.

Parameters

lpsz

The string to convert to lower-case.

Example

' Convert the string "Hello, World!" into lower-case.

Dim target As String ' target string

target = CharLower("Hello, World!") ' Convert to lower-case

Debug.Print target ' Output should be "hello, world!"

Related Function

CharUpper

Category

Strings

CharUpper Function

Declare Function CharUpper Lib "user32.dll" Alias "CharUpperA" (ByVal lpsz As String) As String

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

CharUpper converts all of the lower-case letters in a string into upper-case. The function also sets the string passed to the function to the returned string; in reality they become the same thing.

Return Value

The function returns the string, with all lower-case letters converted to upper-case.

Visual Basic-Specific Issues

None.

Parameters

lpsz

The string to convert to upper-case.

Example

' Convert the string "Hello, World!" into upper-case.

Dim target As String ' target string

target = CharUpper("Hello, World!") ' Convert to upper-case

Debug.Print target ' Output should be "HELLO, WORLD!"

Related Function

CharLower

Category

Strings

ChooseColor Function

Declare Function ChooseColor Lib "comdlg32.dll" Alias "ChooseColorA" (lpcc As CHOOSECOLOR_TYPE) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 2.0 or later.

Description & Usage

ChooseColor opens a Choose Color common dialog box. All the information needed to create the dialog box, as well as the data returned from it, is stored in the structure passed as lpcc.

Return Value

If an error occured or the user pressed the Cancel button, the function returns 0 (use CommDlgExtendedError to get the error code). If the user successfully selected a color, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

lpcc

All the information needed to create the Choose Color common dialog box. If successful, the function then stores the user's color selection and list of custom colors into this structure as well.

Example

' Display a Choose Color common dialog box. The background

' color of Form1 will be set to the color the user selects. Although the entire

' list of custom colors is initialized to black, this example stores the

' colors into an array which can be used again to save the user's custom

' color selections.

Dim cc As CHOOSECOLOR_TYPE ' structure to pass data

Dim hMem As Long ' handle to the memory block to store the custom color list

Dim pMem As Long ' pointer to the memory block to store the custom color list

Dim custcols(0 To 15) As Long ' holds list of the 16 custom colors

Dim c As Integer ' counter variable

Dim retval As Long ' return value

' Initialize the list of custom colors to black.

For c = 0 To 15 ' loop through each element

 custcols(c) = 0 ' set each element to RGB color 0 (black)

Next c

' Create a memory block and get a pointer to it.

hMem = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, 64) ' allocate sufficient memory block

pMem = GlobalLock(hMem) ' get a pointer to the block

' Copy the data inside the array into the memory block.

CopyMemory ByVal pMem, custcols(0), 64 ' 16 elements * 4 bytes

' Store the initial settings of the Choose Color box.

cc.lStructSize = Len(cc) ' size of the structure

cc.hwndOwner = Form1.hWnd ' Form1 is opening the Choose Color box

cc.hInstance = 0 ' not needed

cc.rgbResult = Form1.BackColor ' set default selected color to Form1's background color

cc.lpCustColors = pMem ' pointer to list of custom colors

cc.Flags = CC_ANYCOLOR Or CC_RGBINIT ' allow any color, use rgbResult as default selection

cc.lCustData = 0 ' not needed

cc.lpfnHook = 0 ' not needed

cc.lpTemplateName = "" ' not needed

' Open the Choose Color box. If the user chooses a color, set Form1's

' background color to that color.

retval = ChooseColor(cc)

If retval <> 0 Then ' success

 ' Copy the possibly altered contents of the custom color list

 ' back into the array.

 CopyMemory custcols(0), ByVal pMem, 64

 ' Set Form1's background color.

 Form1.BackColor = cc.rgbResult

End If

' Deallocate the memory blocks to free up resources.

retval = GlobalUnlock(hMem)

retval = GlobalFree(pMem)

Category

Common Dialog

ChooseFont Function

Declare Function ChooseFont Lib "comdlg32.dll" Alias "ChooseFontA" (pChooseFont As CHOOSEFONT_TYPE) As Long

Platforms: Win 32s, Win 95/98, Win NT ChooseFont opens the Choose Font common dialog box. All of the necessary information needed to create the dialog, as well as all of the information returned from it, is stored in the structure passed as pChooseFont. The font information is mostly stored in a LOGFONT structure, which can be used to access that font. The function returns 0 if either an error occured or the user pressed "Cancel", or 1 if the user pressed "OK".

pChooseFont

Passes information to and from the Choose Font dialog box. Initialize this before calling the function, and read the necessary information from it afterwards.

Example:

' Display a Choose Font dialog box. Print out the typeface name, point size,

' and style of the selected font. More detail about topics in this example can be found in

' the pages for CHOOSEFONT_TYPE and LOGFONT.

Dim cf As CHOOSEFONT_TYPE ' data structure needed for function

Dim lfont As LOGFONT ' receives information about the chosen font

Dim hMem As Long, pMem As Long ' handle and pointer to memory buffer

Dim fontname As String ' receives name of font selected

Dim c As Integer, retval As Long ' counter variable and return value

' Initialize the default selected font: Times New Roman, regular, black, 12 point.

' (Note that some of that information is in the CHOOSEFONT_TYPE structure instead.)

lfont.lfHeight = 0 ' determine default height

lfont.lfWidth = 0 ' determine default width

lfont.lfEscapement = 0 ' angle between baseline and escapement vector

lfont.lfOrientation = 0 ' angle between baseline and orientation vector

lfont.lfWeight = FW_NORMAL ' normal weight i.e. not bold

lfont.lfItalic = 0 ' not italic

lfont.lfUnderline = 0 ' not underline

lfont.lfStrikeOut = 0 ' not strikeout

lfont.lfCharSet = DEFAULT_CHARSET ' use default character set

lfont.lfOutPrecision = OUT_DEFAULT_PRECIS ' default precision mapping

lfont.lfClipPrecision = CLIP_DEFAULT_PRECIS ' default clipping precision

lfont.lfQuality = DEFAULT_QUALITY ' default quality setting

lfont.lfPitchAndFamily = DEFAULT_PITCH Or FF_ROMAN ' default pitch, proportional with serifs

For c = 0 to 14 ' load font name into byte array

 lfont.lfFaceName(c) = Asc(Mid("Times New Roman", c + 1, 1)) ' convert into ASCII codes

Next c

lfont.lfFaceName(15) = 0 ' terminating null

' Create the memory block which will act as the LOGFONT structure buffer.

hMem = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, Len(lfont))

pMem = GlobalLock(hMem) ' lock and get pointer

CopyMemory ByVal pMem, lfont, Len(lfont) ' copy structure's contents into block

' Initialize dialog box: Screen and printer fonts, point size between 10 and 72.

cf.lStructSize = Len(cf) ' size of structure

cf.hwndOwner = Form1.hWnd ' window Form1 is opening this dialog box

cf.hdc = Printer.hDC ' device context of default printer (using VB's mechanism)

cf.lfLogFont = pMem ' pointer to LOGFONT memory block buffer

cf.iPointSize = 120 ' 12 point font (in units of 1/10 point)

cf.flags = CF_BOTH Or CF_EFFECTS Or CF_FORCEFONTEXIST Or CF_INITTOLOGFONTSTRUCT Or CF_LIMITSIZE

cf.rgbColors = RGB(0, 0, 0) ' black

cf.lCustData = 0 ' we don't use this here...

cf.lpfnHook = 0 ' ...or this...

cf.lpTemplateName = "" ' ...or this...

cf.hInstance = 0 ' ...or this

cf.lpszStyle = "" ' we're not using this string

cf.nFontType = REGULAR_FONTTYPE ' regular font type i.e. not bold or anything

cf.nSizeMin = 10 ' minimum point size

cf.nSizeMax = 72 ' maximum point size

' Now, call the function. If successful, copy the LOGFONT structure back into the structure

' and then print out the attributes we mentioned earlier that the user selected.

retval = ChooseFont(cf) ' open the dialog box

If retval <> 0 Then ' success

 CopyMemory lfont, ByVal pMem, Len(lfont) ' copy memory back

 ' Now convert LOGFONT's byte array into a string naming the font face name

 fontname = ""

 For c = 0 To 31 ' entire range, but abort if the end of the string is found

 If lfont.lfFaceName(c) = 0 Then Exit For ' abort if end reached

 fontname = fontname & Chr(lfont.lfFaceName(c)) ' convert to character

 Next c

 ' Display font name and a few attributes.

 Debug.Print "FONT NAME: "; fontname

 Debug.Print "FONT SIZE (points):"; cf.iPointSize / 10 ' in units of 1/10 point!

 Debug.Print "FONT STYLE(S): ";

 If lfont.lfWeight >= FW_BOLD Then Debug.Print "Bold ";

 If lfont.lfItalic <> 0 Then Debug.Print "Italic ";

 If lfont.lfUnderline <> 0 Then Debug.Print "Underline ";

 If lfont.lfStrikeOut <> 0 Then Debug.Print "Strikeout";

 Debug.Print ' end the line

End If

' Deallocate the memory block we created earlier. Note that this must

' be done whether the function succeeded or not.

retval = GlobalUnlock(hMem) ' destroy pointer, unlock block

retval = GlobalFree(hMem) ' free the allocated memory

Category: Common Dialog

Chord Function

Declare Function Chord Lib "gdi32.dll" (ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long, ByVal X3 As Long, ByVal Y3 As Long, ByVal X4 As Long, ByVal Y4 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

Chord draws an elliptical chord on a device. The chord is drawn using the device's currently selected pen and is filled using its currently selected brush. The chord consists of a line segment connecting two points along an ellipse; the area between the chord and the ellipse's edge is filled (going counterclockwise around the ellipse). The first two sets of (x,y) coordinate pairs specify the bounding rectangle which determines the ellipse. The last two sets of (x,y) pairs determine the points along the ellipse; the start and endpoints are determined by the intersection of a ray from the ellipse's center through the (x,y) coordinate and the ellipse. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to draw the chord on.

X1

The x-coordinate of the upper-left corner of the ellipse's bounding rectangle.

Y1

The y-coordinate of the upper-left corner of the ellipse's bounding rectangle.

X2

The x-coordinate of the lower-right corner of the ellipse's bounding rectangle.

Y2

The y-coordinate of the lower-right corner of the ellipse's bounding rectangle.

X3

The x-coordinate of the point determining the starting point of the chord.

Y3

The y-coordinate of the point determining the starting point of the chord.

X4

The x-coordinate of the point determining the ending point of the chord.

Y4

The y-coordinate of the point determining the ending point of the chord.

Example:

' Draw a chord on window Form1. The ellipse has a bounding rectangle

' of (10,20)-(210,120). The chord will have endpoints on the ellipse of (210,70)

' and (110,20) -- i.e., the "upper-right" portion of the ellipse. Draw the chord using

' Form1's current brush and pen.

Dim retval As Long ' return value

' Draw the chord as specified above.

retval = Chord(Form1.hDC, 10, 20, 210, 120, 210, 70, 110, 20)

Related Calls: Ellipse, Pie

Category: Filled Shapes

ClipCursor Function

Declare Function ClipCursor Lib "user32.dll" (lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

ClipCursor confines the mouse cursor to a rectangular area of the screen. If the user tries to move the cursor outside of this bounding region or a call to SetCursorPos tells it to go outside the box, the cursor will immediately returned to the area. There is no way to get it out. This bounding effect will last in whatever program you switch to, and will remain even if the program that confined the cursor closes! The only way to "release" the cursor is to "confine" it to the entire screen (see example). It isn't usually a good idea to confine the cursor, since the user expects to move the cursor anywhere (not to mention the disasterous effect if your program quit before releasing the cursor!). The return value is 0 if an error occured, or 1 if it is successful.

lpRect

The rectangle (in screen coordinates) defining the confinement rectangle.

Example:

' Confine the cursor temporarily to inside of Form1

' ** Place the following code where you want to confine the cursor. **

Dim r As RECT ' confinement rectangle

Dim retval As Long ' return value

retval = GetWindowRect(Form1.hWnd, r) ' put window's coordinates into r

retval = ClipCursor(r) ' confine the cursor

' ** Place the following code where you want to release the cursor. **

Dim r As RECT, retval As Long

Dim deskhWnd As Long ' the handle of the desktop window

deskhWnd = GetDesktopWindow() ' get handle of the desktop window

retval = GetWindowRect(deskhWnd, r) ' put window's coordinates into r

retval = ClipCursor(r) ' "confine" the cursor to the entire screen

Related Call: GetClipCursor

Category: Cursor

CloseHandle Function

Declare Function CloseHandle Lib "kernel32.dll" (ByVal hObject As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CloseHandle closes a handle and the object associated with that handle. After being closed, the handle is of course no longer valid. This function can close objects such as files. The function returns 1 if successful, or 0 if an error occured.

hObject

The handle of the object to close.

Example:

' Read both a Long (32-bit) number and a String from the file

' C:\Test\myfile.txt. Note that alternate declares are used for both CreateFile and ReadFile -- see those

' functions' pages for reasons why.

Dim longbuffer As Long ' receives long read from file

Dim stringbuffer As String ' receives string read from file

Dim numread As Long ' receives number of bytes read from file

Dim hfile As Long ' handle of the open file

Dim retval As Long ' return value

' Use CreateFile's alternate declare because this isn't Win NT

hfile = CreateFileNS("C:\Test\myfile.txt", GENERAL_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' the file could not be opened

 Debug.Print "Unable to open the file -- probably does not exist."

 End ' abort the program

End If

' Read a Long-type number from the file

retval = ReadFileNO(hfile, longbuffer, Len(longbuffer), numread, 0)

If numread = 0 Then ' EOF reached

 Debug.Print "End of file encountered -- could not read any data."

Else

 Debug.Print "Number read from file:"; longbuffer

End If

' Read a 10-character string from the file

stringbuffer = Space(11) ' make more than enough room in the buffer

retval = ReadFileNO(hfile, ByVal stringbuffer, 10, numread, 0)

If numread = 0 Then ' EOF reached

 Debug.Print "End of file encountered -- could not read any data."

Else

 Debug.Print "String read from file: "; string buffer

End If

retval = CloseHandle(hfile) ' close the file

Related Call: CreateFile

Category: Other

CombineRgn Function

Declare Function CombineRgn Lib "gdi32.dll" (ByVal hDestRgn As Long, ByVal hSrcRgn1 As Long, ByVal hSrcRgn2 As Long, ByVal nCombineMode As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CombineRgn combines two regions to form a third region. The two regions can be combined using a variety of logical operators. Note that the region that receives the combined regions must already be a region -- the function will not create a new one. The function returns 0 if an error occured, or exactly one of the following flags identifying the shape of the newly formed region if successful:

COMPLEXREGION = 3

The combined region is not empty but is not a rectangle.

NULLREGION = 1

The combined region is empty, i.e., null.

SIMPLEREGION = 2

The combined region forms a rectangle.

hDestRgn

A handle to the region which is set to the combination of the two source regions. This region of course must already have been created, although its form when passed to the function is irrelevant.

hSrcRgn1

The first of the two source regions.

hSrcRgn2

The second of the two source regions.

nCombineMode

Exactly one of the following flags specifying the logical operation to use to combine the two regions:

RGN_AND = 1

The combined region is the overlapping area of the two source regions.

RGN_COPY = 5

The combined region is identical to the first source region. The second source region is ignored.

RGN_DIFF = 4

The combined region is all the area of the first source region except for the portion also included in the second source region.

RGN_OR = 2

The combined region is all the area contained in either of the two source regions, including any overlap.

RGN_XOR = 3

The combined region is all of the area contained in either of the two source regions, excluding any overlap.

Example:

' On window Form1, create overlapping elliptical and rectangular regions.

' Fill the overlapped region with a dark gray brush; fill the nonoverlapping regions with

' a light gray brush.

Dim hRgn1 As Long, hRgn2 As Long ' elliptical and rectangular source regions.

Dim hXorRgn As Long, hAndRgn As Long ' regions set to the non-intersection and intersection

Dim hLightBrush As Long, hDarkBrush As Long ' handles to light gray and dark gray brushes

Dim retval As Long ' return value

' Create the four regions. The initial settings of hXorRgn and hAndRgn are irrelevant.

hRgn1 = CreateEllipticRgn(100, 50, 200, 100) ' bounding rect (100,50)-(200,100)

hRgn2 = CreateRectRgn(150, 75, 300, 200) ' rectangle (150,75)-(300,200)

hXorRgn = CreateRectRgn(0, 0, 0, 0) ' meaningless initialization

hAndRgn = CreateRectRgn(0, 0, 0, 0) ' meaningless initialization

' Now set hAndRgn to the intersection of the two source regions and hXorRgn to

' the non-intersection of the two source regions.

retval = CombineRgn(hXorRgn, hRgn1, hRgn2, RGN_XOR) ' non-intersection

retval = CombineRgn(hAndRgn, hRgn1, hRgn2, RGN_AND) ' intersection

' Now get the necessary stock brushes and fill in the two combined regions.

hLightBrush = GetStockObject(LTGRAY_BRUSH) ' light gray solid brush

hDarkBrush = GetStockObject(DKGRAY_BRUSH) ' dark gray solid brush

retval = FillRgn(Form1.hDC, hXorRgn, hLightBrush) ' fill non-intersection

retval = FillRgn(Form1.hDC, hAndRgn, hDarkBrush) ' fill intersection

' Delete the four regions to free up resources.

retval = DeleteObject(hRgn1)

retval = DeleteObject(hRgn2)

retval = DeleteObject(hXorRgn)

retval = DeleteObject(hAndRgn)

Category: Regions

CommDlgExtendedError Function

Declare Function CommDlgExtendedError Lib "comdlg32.dll" () As Long

Platforms: Win 32s, Win 95/98, Win NT

CommDlgExtendedError returns the error code from the last common dialog box function. This function does not return error codes for any other API function; for that, use GetLastError instead. The function's return value is undefined if the last common dialog function call was successful. If an error with a common dialog function did occur, the return value is exactly one of the following common dialog error flags:

CDERR_DIALOGFAILURE = &HFFFF

The function could not open the dialog box.

CDERR_FINDRESFAILURE = &H6

The function failed to find the desired resource.

CDERR_GENERALCODES = &H0

The error involved a general common dialog box property.

CDERR_INITIALIZATION = &H2

The function failed during initialization (probably insufficient memory).

CDERR_LOADRESFAILURE = &H7

The function failed to load the desired resource.

CDERR_LOADSTRFAILURE = &H5

The function failed to load the desired string.

CDERR_LOCKRESFAILURE = &H8

The function failed to lock the desired resource.

CDERR_MEMALLOCFAILURE = &H9

The function failed to allocate sufficient memory.

CDERR_MEMLOCKFAILURE = &HA

The function failed to lock the desired memory.

CDERR_NOHINSTANCE = &H4

The function was not provided with a valid instance handle (if one was required).

CDERR_NOHOOK = &HB

The function was not provided with a valid hook function handle (if one was required).

CDERR_NOTEMPLATE = &H3

The function was not provided with a valid template (if one was required).

CDERR_REGISTERMSGFAIL = &HC

The function failed to successfully register a window message.

CDERR_STRUCTSIZE = &H1

The function was provided with an invalid structure size.

CFERR_CHOOSEFONTCODES = &H2000

The error involved the Choose Font common dialog box.

CFERR_MAXLESSTHANMIN = &H2002

The function was provided with a maximum font size value smaller than the provided minimum font size.

CFERR_NOFONTS = &H2001

The function could not find any existing fonts.

FNERR_BUFFERTOOSMALL = &H3003

The function was provided with a filename buffer which was too small.

FNERR_FILENAMECODES = &H3000

The error involved the Open File or Save File common dialog box.

FNERR_INVALIDFILENAME = &H3002

The function was provided with or received an invalid filename.

FNERR_SUBCLASSFAILURE = &H3001

The function had insufficient memory to subclass the list box.

FRERR_BUFFERLENGTHZERO = &H4001

The function was provided with an invalid buffer.

FRERR_FINDREPLACECODES = &H4000

The error involved the Find or Replace common dialog box.

PDERR_CREATEICFAILURE = &H100A

The function failed to create an information context.

PDERR_DEFAULTDIFFERENT = &H100C

The function was told that the information provided described the default printer, but the default printer's actual settings were different.

PDERR_DNDMMISMATCH = &H1009

The data in the two data structures describe different printers (i.e., they hold conflicting information).

PDERR_GETDEVMODEFAIL = &H1005

The printer driver failed to initialize the DEVMODE structure.

PDERR_INITFAILURE = &H1006

The function failed during initialization.

PDERR_LOADDRVFAILURE = &H1004

The function failed to load the desired device driver.

PDERR_NODEFAULTPRN = &H1008

The function could not find a default printer.

PDERR_NODEVICES = &H1007

The function could not find any printers.

PDERR_PARSEFAILURE = &H1002

The function failed to parse the printer-related strings in WIN.INI.

PDERR_PRINTERCODES = &H1000

The error involved the Print common dialog box.

PDERR_PRINTERNOTFOUND = &H100B

The function could not find information in WIN.INI about the requested printer.

PDERR_RETDEFFAILURE = &H1003

The handles to the data structures provided were nonzero even though the function was asked to return information about the default printer.

PDERR_SETUPFAILURE = &H1001

The function failed to load the desired resources.

Example:

' Give the Open File dialog box an insufficient buffer size.

' Then display the error code provided.

Dim filebox As OPENFILENAME ' structure that sets the dialog box

Dim fname As String ' will receive selected file's name

Dim retval As Long ' return value

Dim errcode As long ' receives the error code

' Configure how the dialog box will look

filebox.lStructSize = Len(filebox) ' the size of the structure

filebox.hwndOwner = Form1.hWnd ' handle of the form calling the function

filebox.lpstrTitle = "Open File" ' text displayed in the box's title bar

' The next line sets up the file types drop-box

filebox.lpstrFilter = "Text Files" & vbNullChar & "*.txt" & vbNullChar & "All Files" & vbNullChar & "*.*" & vbNullChar & vbNullChar

filebox.lpstrFile = "" ' ERROR: an empty buffer!

filebox.nMaxFile = 0 ' length of file and pathname buffer

filebox.lpstrFileTitle = Space(255) ' initialize buffer that receives filename of file

filebox.nMaxFileTitle = 255 ' length of filename buffer

' Allow only existing files and hide the read-only check box

filebox.flags = OFN_PATHMUSTEXIST Or OFN_FILEMUSTEXIST Or OFN_HIDEREADONLY

' Execute the dialog box

retval = GetOpenFileName(filebox)

If retval = 0 Then ' some error occured, or Cancel was pressed

 errcode = CommDlgExtendedError() ' get the error code for GetOpenFileName

 If errcode = FNERR_BUFFERTOOSMALL Then

 Debug.Print "The buffer provided was too small to hold the filename."

 If errcode = FNERR_INVALIDFILENAME Then

 Debug.Print "An invalid filename was provided."

 ' etc.

 End If

End If

Related Call: GetLastError

Category: Common Dialog

CompareFileTime Function

Declare Function CompareFileTime Lib "kernel32.dll" (lpFileTime1 As FILETIME, lpFileTime2 As FILETIME) As Long

Platforms: Win 32s, Win 95/98, Win NT

CompareFileTime compares two times stored in FILETIME format. The function determines which of the two times, if any, comes before the other chronologically. If the first time is earlier than the second time, the function returns -1. If the two times are equal, the function returns 0. If the first time is later than the second time, the function returns 1.

lpFileTime1

The first of the two times to compare.

lpFileTime2

The second of the two times to compare.

Example:

' Determine if file C:\MyProgram\datafile.txt was created before

' Jan 5, 1999. Note how CreateFile's alternate declare must be used under Win 95/98 --

' see that function's page for more information.

Dim hfile As Long ' receives the handle to the file

Dim ctime As FILETIME ' receives creation date and time of the file

Dim atime As FILETIME ' receives last access date and time of the file

Dim wtime As FILETIME ' receives last write-to date and time of the file

Dim jantime As SYSTEMTIME ' will be set to Jan 5, 1999

Dim janfiletime As FILETIME ' will receive analogous time as jantime

Dim comptimes As Long ' receives comparison of ctime and janfiletime

Dim retval As Long ' return value

' Get a handle to the file (note how the alternate declare is used):

hfile = CreateFileNS("C:\MyProgram\datafile.txt", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' if the file could not be opened

 Debug.Print "Could not open the file C:\MyProgram\datafile.txt."

 End ' abort the program

End If

' Get the various times and dates associated with the file:

retval = GetFileTime(hfile, ctime, atime, wtime)

' Load jantime with the date January 5, 1999 at midnight:

jantime.wMonth = 1: jantime.wDay = 5: jantime.wYear = 1999

jantime.wHour = 0: jantime.wMinute = 0: jantime.wSecond = 0

' Convert jantime into FILETIME format so it can be compared with ctime:

retval = SystemTimeToFileTime(jantime, janfiletime)

' Compare the two times and display the relation:

comptimes = CompareFileTime(ctime, janfiletime)

If comptimes = -1 Then Debug.Print "File was created before midnight, January 5, 1999."

If comptimes = 0 Then Debug.Print "File was created at midnight, January 5, 1999."

If comptimes = 1 Then Debug.Print "File was created after midnight, January 5, 1999."

' Close the file

retval = CloseHandle(hfile)

Category: Time

CopyFile Function

Declare Function CopyFile Lib "kernel32.dll" Alias "CopyFileA" (ByVal lpExistingFileName As String, ByVal lpNewFileName As String, ByVal bFailIfExists As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CopyFile copies a file from one location to another, just like copying a file in Windows Explorer or in some other way. Depending on the value for bFailIfExists, it will either overwrite the target file if it already exists, or will fail. The function retuns 1 if successful, or 0 if an error occured.

lpExistingFileName

The source file; i.e., the file to copy from.

lpNewFileName

The target file; i.e., the new file to create that will be the copy.

bFailIfExists

If 0, the function will overwrite lpNewFileName if it already exists. If non-zero, the function will instead fail.

Example:

' Copy the file C:\MyStuff\temp.txt to C:\Junk\buffer.txt.

' Do not overwrite C:\Junk\buffer.txt if it already exists.

Dim retval As Long ' return value

' copy the file

retval = CopyFile("C:\MyStuff\temp.txt", "C:\Junk\buffer.txt", 1)

If retval = 0 Then ' failure

 Debug.Print "Copy failed -- C:\Junk\buffer.txt already exists.

Else ' success

 Debug.Print "Copy succeeded."

End If

Related Call: MoveFile

Category: Files

CopyMemory Function

Declare Sub CopyMemory Lib "kernel32.dll" Alias "RtlMoveMemory" (Destination As Any, Source As Any, ByVal Length As Long)

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

CopyMemory, as far as the Windows API is concerned, is perfectly identical to the MoveMemory function; in fact, they actually are the same function! CopyMemory moves the contents of a portion of memory from one location to another. The two locations are identified by pointers to the memory addresses. After the copy, the original contents in the source are set to zeros.

Return Value

CopyMemory does not return a value.

Visual Basic-Specific Issues

A pointer to any variable can be automatically generated merely be passing that variable as either Destination or Source. However, if either a String or a Long holding the desired memory address is passed, the ByVal keyword must preceed it.

Parameters

Destination

A pointer to the memory address to use as the target, which receives the transfered data.

Source

A pointer to the memory address to use as the source, which initially holds the data to be transfered.

Length

The number of bytes of data to copy from the source memory location to the target memory location.

Example

' Transfer the contents of one byte array to another. After the "copy",

' the contents of the source array are set to 0.

Dim source(0 To 9) As Byte ' source array of 10 bytes

Dim target(0 To 9) As Byte ' similarly sized target array

Dim c As Integer ' counter variable

' Fill the source array with some information.

For c = 0 To 9 ' loop through each element

 source(c) = c ' set each element's value to its index

Next c

' Transfer the data from the target array to the source array. Note how pointers

' are implied merely by passing the arrays as usual.

CopyMemory target(0), source(0), 10 ' copy all 10 bytes

' Verify that the contents were transfered.

For c = 0 To 9

 Debug.Print target(c); ' this will now contain the information

Next c

Related Function

MoveMemory

Category

Memory

CopyRect Function

Declare Function CopyRect Lib "user32.dll" (lpDestRect As RECT, lpSourceRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

CopyRect sets one rectangle equal to another. This is done by duplicating all of the source rectangle's member values to the corresponding ones in the target rectangle. This is faster than setting all four values manually in your code. The function returns 0 if an error occured, or 1 if successful.

lpDestRect

The target rectangle to set.

lpSourceRect

The source rectangle.

Example:

' Set the source and target rectangels equal to the rectangle

' of the window by copying the source to the target

Dim source As RECT, target As RECT ' source & target rectangles

Dim retval As Long ' return value

' Get the rectangle of Form1 into source

retval = GetWindowRect(Form1.hWnd, source)

' Copy source into target

retval = CopyRect(target, source)

Related Call: EqualRect

Category: Rectangles

CreateCursor Function

Declare Function CreateCursor Lib "user32.dll" (ByVal hInstance As Long, ByVal nXhotspot As Long, ByVal nYhotspot As Long, ByVal nWidth As Long, ByVal nHeight As Long, lpANDbitPlane As Any, lpXORbitPlane As Any) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateCursor creates a new cursor. Its image is formed by using an AND mask and a XOR mask provided by the function, which are used to place the cursor's image wherever it appears. The AND and XOR masks can be provided using any numeric array, such as a Byte array (as the example below uses). The function also specifies the cursor's hotspot, the exact pixel which is considered to be the location of the cursor (such as the exact tip of the arrow cursor). Note that it is usually a better idea to put cursors into some sort of resource or separate file and load them instead of hard-wiring the cursors into the application code via this function. (This is because this function relies on creating a cursor compatible with the display device, instead of generating one from a file or resource which is.) Of course, the cursor size must be one supported by the system; use GetSystemMetrics to check. The cursor created by this function must later be destroyed by using DestroyCursor. The function returns 0 if an error occured, or a handle to the newly created cursor if successful.

hInstance

The instance handle of the application which is calling the function.

nXhotspot

The x-coordinate of the cursor's hotspot, relative to the cursor's upper-left corner.

nYhotspot

The y-coordinate of the cursor's hotspot, relative to the cursor's upper-left corner.

nWidth

The width in pixels of the cursor.

nHeight

The height in pixels of the cursor.

lpANDbitPlane

An array holding the AND mask for the cursor's image.

lpXORbitPlane

An array holding the XOR mask for the cursor's image.

Example:

' Create a 32x32 color cursor shaped somewhat like a yin-yang symbol.

' (The bit masks come from Microsoft's documentation on the API cursors function, just to

' give them their due credit.) Note how the masks are loaded into the arrays. The new

' cursor is then set to be the cursor for 10 seconds.

Dim hnewcursor As Long ' newly created cursor

Dim holdcursor As Long ' receives handle of default cursor

Dim andbuffer As String, xorbuffer As String ' buffers for masks

Dim andbits(0 To 127) As Byte ' stores the AND mask

Dim xorbits(0 To 127) As Byte ' stores the XOR mask

Dim c As Integer, retval As Long ' counter and return value

' Unfortunately, VB does not provide a nice way to load lots of information into an array.

' To load the AND and XOR masks, we put the raw hex values into the string buffers

' and use a loop to convert the hex values into numeric values and load them into

' the elements of the array. Yes, it's ugly, but there's no better way. Note the

' use of the line-continuation character here. Each sequence of eight hex

' characters represents one line in the 32x32 cursor.

andbuffer = "FFFC3FFF" & "FFC01FFF" & "FF003FFF" & "FE00FFFF" & _

 "F701FFFF" & "F003FFFF" & "F003FFFF" & "E007FFFF" & _

 "C007FFFF" & "C00FFFFF" & "800FFFFF" & "800FFFFF" & _

 "8007FFFF" & "8007FFFF" & "0003FFFF" & "0000FFFF" & _

 "00007FFF" & "00001FFF" & "00000FFF" & "80000FFF" & _

 "800007FF" & "800007FF" & "C00007FF" & "C0000FFF" & _

 "E0000FFF" & "F0001FFF" & "F0001FFF" & "F8003FFF" & _

 "FE007FFF" & "FF00FFFF" & "FFC3FFFF" & "FFFFFFFF"

xorbuffer = "00000000" & "0003C000" & "003F0000" & "00FE0000" & _

 "0EFC0000" & "07F80000" & "07F80000" & "0FF00000" & _

 "1FF00000" & "1FE00000" & "3FE00000" & "3FE00000" & _

 "3FF00000" & "7FF00000" & "7FF80000" & "7FFC0000" & _

 "7FFF0000" & "7FFF8000" & "7FFFE000" & "3FFFE000" & _

 "3FC7F000" & "3F83F000" & "1F83F000" & "1F83E000" & _

 "0FC7E000" & "07FFC000" & "07FFC000" & "01FF8000" & _

 "00FF0000" & "003C0000" & "00000000" & "00000000"

' Now load these hex values into the proper arrays.

For c = 0 To 127

 andbits(c) = "&H" & Mid(andbuffer, 2 * c + 1)

 xorbits(c) = "&H" & Mid(xorbuffer, 2 * c + 1)

Next c

' Finally, create this cursor! The hotspot is at (19,2) on the cursor.

hnewcursor = CreateCursor(App.hInstance, 19, 2, 32, 32, andbits(0), xorbits(0))

' Set the new cursor as the current cursor for 10 seconds and then switch back.

holdcursor = SetCursor(hnewcursor) ' change cursor

Sleep 10000 ' wait for 10 seconds

retval = SetCursor(holdcursor) ' change cursor back

' Destroy the new cursor.

retval = DestroyCursor(hnewcursor)

Related Call: DestroyCursor

Category: Cursor

CreateDC Function

Declare Function CreateDC Lib "gdi32.dll" Alias "CreateDCA" (ByVal lpDriverName As String, ByVal lpDeviceName As String, ByVal lpOutput As String, lpInitData As DEVMODE) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateDC creates a device context (DC) which references a given object. The object is identified by its name. When you are finished using the device context in your program, use the DeleteDC function to destroy it. Do not use ReleaseDC with device contexts created by this function! The function returns the device context if successful, or 0 if an error occured.

lpDriverName

This string should normally be empty, except for using "DISPLAY" to reference the display driver. Under Windows NT, this could also be "WINSPOOL" to reference the print spooler.

lpDeviceName

The name of the device to create a device context for.

lpOutput

Reserved -- set to an empty string.

lpInitData

A collection of information to use to initialize the device context.

Example:

' Get a device context for the default printer.

Dim printdc As Long ' receives the printer's device context

' The following variables and alternate declares are needed for EnumPrinters.

Declare Function lstrcpy Lib "kernel32.dll" Alias "lstrcpyA" (ByVal lpString1 As String, ByVal lpString2 As Long) As Long

Declare Function lstrlen Lib "kernel32.dll" Alias "lstrlenA" (ByVal lpString As Long) As Long

Dim longbuffer() As Long ' resizable array receives information from the function

Dim printinfo() As PRINTER_INFO_2 ' values inside longbuffer() will be put into here

Dim numbytes As Long ' size in bytes of longbuffer()

Dim numneeded As Long ' receives number of bytes necessary if longbuffer() is too small

Dim numprinters As Long ' receives number of printers found

Dim c As Integer, retval As Long ' counter variable & return value

' ** This block of code uses the EnumPrinters function to get the name and DEVMODE structure

' ** of the default printer. See the EnumPrinters page of this guide for an explanation of

' ** why the following code is necessary.

' Get information about the local printers

numbytes = 3076 ' should be sufficiently big, but it may not be

ReDim longbuffer(0 To numbytes / 4) As Long ' resize array -- note how 1 Long = 4 bytes

retval = EnumPrinters(PRINTER_ENUM_LOCAL Or PRINTER_ENUM_DEFAULT, "", 2, longbuffer(0), numbytes, numneeded, numprinters)

If retval = 0 Then ' try enlarging longbuffer() to receive all necessary information

 numbytes = numneeded

 ReDim longbuffer(0 To numbytes / 4) As Long ' make it large enough

 retval = EnumPrinters(PRINTER_ENUM_LOCAL Or PRINTER_ENUM_DEFAULT, "", 2, longbuffer(0), numbytes, numneeded, numprinters)

 If retval = 0 ' failed again!

 Debug.Print "Could not successfully enumerate the printes."

 End ' abort program

 End If

End If

' Convert longbuffer() data into printinfo()

ReDim printinfo(0 To 0) As PRINTER_INFO_2 ' room for each printer

For c = 0 To numprinters - 1 ' loop, putting each set of information into each element

 ' longbuffer(21 * c) = .pServerName, longbuffer(21 * c + 1) = .pPrinterName, etc.

 ' For each string, the string is first buffered to provide enough room, and then the string is copied.

 ' For each structure, the memory of it is directly copied via CopyMemory using the pointer.

 printinfo(c).pPrinterName = Space(lstrlen(longbuffer(21 * c + 1)))

 retval = lstrcpy(printinfo(c).pPrinterName, longbuffer(21 * c + 1))

 CopyMemory printinfo(c).pDevMode, longbuffer(21 * c + 7), Len(printinfo(c).pDevMode)

Next c

' ** Now printinfo(0).pPrinterName is the device name, and printinfo(0).pDevMode is the

' ** default DEVMODE structure.

' Get a device context for the specified printer

printdc = CreateDC("", printinfo(0).pPrinterName, "", printinfo(0).pDevMode)

' printdc can now be used to print something using the printer. You could put that code here....

' Delete the device context after using it.

retval = DeleteDC(printdc)

Related Calls: DeleteDC, GetDC

Category: Devices

CreateDirectory Function

Declare Function CreateDirectory Lib "kernel32.dll" Alias "CreateDirectoryA" (ByVal lpPathName As String, lpSecurityAttributes As SECURITY_ATTRIBUTES) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateDirectory creates a new directory on a disk. It will also set the directory's security attributes if the operating system supports it (Windows NT does, but Windows 95/98 doesn't). The function returns 1 if successful, or 0 if an error occured.

lpPathName

The name of the new directory to create.

lpSecurityAttributes

The security attributes to give to the new directory, if the operating system supports it.

Example:

' Create the new directory C:\Dummy\NewDir and

' give it default security attributes (If Win 95/98, they'll be ignored anyway.)

Dim secattr As SECURITY_ATTRIBUTES ' security attributes structure

Dim retval As Long ' return value

' Set the desired security attributes

secattr.nLength = Len(secattr) ' size of the structure

secattr.lpSecurityDescriptor = 0 ' default (normal) level of security

secattr.bInheritHandle = True ' this is the default setting

' Create the directory

retval = CreateDiectory("C:\Dummy\NewDir", secattr)

Related Call: RemoveDirectory

Category: Files

CreateEllipticRgn Function

Declare Function CreateEllipticRgn Lib "gdi32.dll" (ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateEllipticRgn creates an elliptically-shaped region. The ellipse which forms the region is specified by the bounding rectangle defined by the coordinates passed to the function. The bounding rectangle is the smallest possible rectangle which can fit around the ellipse. The function returns a handle to the newly created region if successful, or 0 if an error occured.

X1

The x-coordinate of the upper-left corner of the ellipse's bounding rectangle.

Y1

The y-coordinate of the upper-left corner of the ellipse's bounding rectangle.

X2

The x-coordinate of the lower-right corner of the ellipse's bounding rectangle.

Y2

The y-coordinate of the lower-right corner of the ellipse's bounding rectangle.

Example:

' Invert the pixels within an elliptical region on window Form1. The

' elliptical region has a bounding rectangle of (20,30)-(150,110).

Dim hrgn As Long ' handle to the region to invert

Dim retval As Long ' return value

' Create the elliptical region to invert and get a handle to it.

hrgn = CreateEllipticRgn(20,30,150,110) ' bounding rectangle (20,30)-(150,110)

' Invert that region in window Form1.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Call: CreateEllipticRgnIndirect

Category: Regions

CreateEllipticRgnIndirect Function

Declare Function CreateEllipticRgnIndirect Lib "gdi32.dll" (lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateEllipticRgn creates an elliptically-shaped region. The ellipse which forms the region is specified by the bounding rectangle defined by the rectangle structure passed to the function. The bounding rectangle is the smallest possible rectangle which can fit around the ellipse. The function returns a handle to the newly created region if successful, or 0 if an error occured.

lpRect

The bounding rectangle of the ellipse which forms the region.

Example:

' Invert the pixels within an elliptical region within window Form1. The

' elliptical region has a bounding rectangle of (20,30)-(150,110)

Dim hrgn As Long ' handle to the elliptical region

Dim bounding As RECT ' bounding rectangle

Dim retval As Long ' return value

' Load the coordinates of the bounding rectangle into the structure.

retval = SetRect(bounding, 20, 30, 150, 110) ' bounding = (20,30)-(150,110)

' Create the elliptical region from this bounding rectangle.

hrgn = CreateEllipticRgnIndirect(bounding)

' Invert the pixels on Form1 within the region.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Call: CreateEllipticRgn

Category: Regions

CreateFile Function

Declare Function CreateFile Lib "kernel32.dll" Alias "CreateFileA" (ByVal lpFileName As String, ByVal dwDesiredAccess As Long, ByVal dwShareMode As Long, lpSecurityAttributes As SECURITY_ATTRIBUTES, ByVal dwCreationDisposition As Long, ByVal dwFlagsAndAttributes As Long, ByVal hTemplateFile As Long) As Long

Alternate Declare for use in Win 95/98 or Win 32s (instead of Win NT):

Declare Function CreateFileNS Lib "kernel32.dll" Alias "CreateFileA" (ByVal lpFileName As String, ByVal dwDesiredAccess As Long, ByVal dwShareMode As Long, ByVal lpSecurityAttributes As Long, ByVal dwCreationDisposition As Long, ByVal dwFlagsAndAttributes As Long, ByVal hTemplateFile As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateFile creates or opens a file on a disk for later access. The file handle the function returns is necessary for all later file access done to the file. The numerous parameters to the function specify the levels and types of access to the file to allow. If you don't use Windows NT, 0 must be passed instead of the SECURITY_ATTRIBUTES structure because platforms other than Win NT do not support it. To do that in Visual Basic, because it does not let you pass a NULL in place of a variable, the alternate Declare must be used so you can pass 0 instead of the structure. The function returns the handle to the created/opened file if successful, or -1 if an error occured.

lpFileName

The name of the file to create or open.

dwDesiredAccess

Zero or more of the following flags specifying the amounts of read/write access to the file.

GENERIC_READ = &H80000000

Allow the program to read data from the file.

GENERIC_WRITE = &H40000000

Allow the program to write data to the file.

dwShareMode

Zero or more of the following flags specifying the amounts of read/write access to grant other programs attempting to access the file while your program still has it open:

FILE_SHARE_READ = &H1

Allow other programs to read data from the file.

FILE_SHARE_WRITE = &H2

Allow other programs to write data to the file.

lpSecurityAppributes

The security attributes to give the created or opened file. In Windows 95, a value of 0 must be passed instead or else the function will fail (VB users must use the alternate Declare).

dwCreationDisposition

Exactly one of the following flags specifying how and when to create or open the file depending if it already does or does not exist:

CREATE_ALWAYS = 2

Create a new file. Overwrite the file (i.e., delete the old one first) if it already exists.

CREATE_NEW = 1

Create a new file. The function fails if the file already exists.

OPEN_ALWAYS = 4

Open an existing file. If the file does not exist, it will be created.

OPEN_EXISTING = 3

Open an existing file. The function fails if the file does not exist.

TRUNCATE_EXISTING = 5

Open an existing file and delete its contents. The function fails if the file does not exist.

dwFlagsAndAttributes

The combination of the following flags specifying both the file attributes of a newly created file and other options for creating or opening the file. One flag specifying the file attributes must be included. (The file attributes that can only be set by the operating system are not listed here.)

FILE_ATTRIBUTE_ARCHIVE = &H20

An archive file (which most files are).

FILE_ATTRIBUTE_HIDDEN = &H2

A hidden file, not normally visible to the user.

FILE_ATTRIBUTE_NORMAL = &H80

An attribute-less file (cannot be combined with other attributes).

FILE_ATTRIBUTE_READONLY = &H1

A read-only file.

FILE_ATTRIBUTE_SYSTEM = &H4

A system file, used exclusively by the operating system.

FILE_FLAG_DELETE_ON_CLOSE = &H4000000

Delete the file once it is closed.

FILE_FLAG_NO_BUFFERING = &H20000000

Do not use any buffers or caches. If used, the following things must be done: access to the file must begin at whole number multiples of the disk's sector size; the amounts of data accessed must be a whole number multiple of the disk's sector size; and buffer addresses for I/O operations must be aligned on whole number multiples of the disk's sector size.

FILE_FLAG_OVERLAPPED = &H40000000

Allow asynchronous I/O; i.e., allow the file to be read from and written to simultaneously. If used, functions that read and write to the file must specify the OVERLAPPED structure identifying the file pointer. Windows 95 does not support overlapped disk files, although Windows NT does.

FILE_FLAG_POSIX_SEMANTICS = &H1000000

Allow file names to be case-sensitive.

FILE_FLAG_RANDOM_ACCESS = &H10000000

Optimize the file cache for random access (skipping around to various parts of the file).

FILE_FLAG_SEQUENTIAL_SCAN = &H8000000

Optimize the file cache for sequential access (starting at the beginning and continuing to the end of the file).

FILE_FLAG_WRITE_THROUGH = &H80000000

Bypass any disk cache and instead read and write directly to the file.

hTemplateFile

The handle of an open file to copy the attributes of, or 0 to not copy the attributes of any file.

Example:

' Read both a Long (32-bit) number and a String from the file

' C:\Test\myfile.txt. Since this is under Win 95/98, the alternate declare for the function is used.

' The two calls of ReadFile use an alternate declare. See that function's page for more information.

Dim longbuffer As Long ' receives long read from file

Dim stringbuffer As String ' receives string read from file

Dim numread As Long ' receives number of bytes read from file

Dim hfile As Long ' handle of the open file

Dim retval As Long ' return value

' Use CreateFile's alternate declare because this isn't Win NT

hfile = CreateFileNS("C:\Test\myfile.txt", GENERAL_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' the file could not be opened

 Debug.Print "Unable to open the file -- probably does not exist."

 End ' abort the program

End If

' Read a Long-type number from the file

retval = ReadFileNO(hfile, longbuffer, Len(longbuffer), numread, 0)

If numread = 0 Then ' EOF reached

 Debug.Print "End of file encountered -- could not read any data."

Else

 Debug.Print "Number read from file:"; longbuffer

End If

' Read a 10-character string from the file

stringbuffer = Space(11) ' make more than enough room in the buffer

retval = ReadFileNO(hfile, ByVal stringbuffer, 10, numread, 0)

If numread = 0 Then ' EOF reached

 Debug.Print "End of file encountered -- could not read any data."

Else

 Debug.Print "String read from file: "; string buffer

End If

retval = CloseHandle(hfile) ' close the file

Related Call: CloseHandle

Category: Files

CreateHatchBrush Function

Declare Function CreateHatchBrush Lib "gdi32.dll" (ByVal nIndex As Long, ByVal crColor As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateHatchBrush creates a hatched brush object. When used to fill an area or shape, this brush produces a pattern of lines (a "hatch pattern") in a single color using an 8x8 unit cell. After the program finishes using the hatched brush, it should use DeleteObject to delete the brush and free system resources. The function returns a handle to the newly created hatched brush if successful, or 0 if an error occured.

nIndex

Exactly one of the following flags specifying which hatch pattern to use to make the brush:

HS_BDIAGONAL = 3

Diagonal lines from the bottom-left to the upper-right.

HS_CROSS = 4

Cross pattern of horizontal and vertical lines.

HS_DIAGCROSS = 5

Cross pattern of perpendicular diagonal lines.

HS_FDIAGONAL = 2

Diagonal lines from the upper-left to the bottom-right.

HS_HORIZONTAL = 0

Horizontal lines.

HS_VERTICAL = 1

Vertical lines.

crColor

The RGB value of the color to give the hatched brush. Visual Basic users can use the RGB() function to generate this value.

Example:

' Draw a rectangle with corners (10,20) and (175,100)

' on window Form1. Use a yellow brush with a diagonal cross pattern to fill the rectangle.

Dim hbrush As Long ' receives handle to the hatched yellow brush

Dim holdbrush As Long ' receives handle to Form1's default brush

Dim retval As Long ' return value

hbrush = CreateHatchBrush(HS_DIAGCROSS, RGB(255, 255, 0)) ' create a hatched yellow brush

' Save Form1's default brush so we can restore it after the program is finished

holdbrush = SelectObject(Form1.hDC, hbrush) ' select the brush

' Draw the rectangle filled using the hatched yellow brush

retval = Rectangle(Form1.hDC, 10, 20, 175, 100)

' Restore Form1's previous brush before destroying the created one

retval = SelectObject(Form1.hDC, holdbrush) ' select old brush

retval = DeleteObject(hbrush) ' destroy the hatched yellow brush

Related Call: CreateSolidBrush

Category: Brushes

CreatePolygonRgn Function

Declare Function CreatePolygonRgn Lib "gdi32.dll" (lpPoint As POINT_TYPE, ByVal nCount As Long, ByVal nPolyFillMode As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreatePolygonRgn creates a polygonal region and provides a handle to it. The polygon is defined by an array of points specifying its vertices. Note that the polygon fill mode must explictly be specified, instead of using the one set for whatever device the region is used with. The function returns the handle to the newly created region if successful, or 0 if an error occured.

lpPoint

An array holding the vertices of the polygonal region. Specify each point in order only once.

nCount

The number of elements in the array passed as lpPoint.

nPolyFillMode

Exactly one of the following flags specifying the polygon fill mode to use for the polygonal region:

ALTERNATE = 1

Alternates between filling and not filling contiguous sections whose boundaries are determined by the edge(s) of the polygon crossing through the polygon's interior.

WINDING = 2

Any section inside the polygon is filled, regardless of any intra-polygonal boundaries and edges.

Example:

' Invert the pixels within a triangular region on window Form1. The triangular

' region has vertices (150,150), (250, 200), and (100, 200). Note how the points are loaded

' into the array of vertices.

Dim vertex(0 To 2) As POINT_TYPE ' array of region's vertices

Dim hrgn As Long ' handle to the triangular region

Dim retval As Long ' return value

' Load the vertices of the triangular region into the array.

vertex(0).x = 150: vertex(0).y = 150 ' 1st point: (150,150)

vertex(1).x = 250: vertex(1).y = 200 ' 2nd point: (250,200)

vertex(2).x = 100: vertex(2).y = 200 ' 3rd point: (100,200)

' Create the polygonal region based on the array of vertices.

hrgn = CreatePolygonRgn(vertex(0), 3, ALTERNATE) ' for a triangle, fill mode is irrelevant

' Invert the pixels within the triangular region on Form1.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Call: CreatePolyPolygonRgn

Category: Regions

CreatePolyPolygonRgn Function

Declare Function CreatePolyPolygonRgn Lib "gdi32.dll" (lpPoint As POINT_TYPE, lpPolyCounts As Long, ByVal nCount As Long, ByVal nPolyFillMode As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreatePolyPolygonRgn creates a region consisting of multiple polygons. The vertices of all the polygons are passed to the function in the array passed as lpPoint. Another array specifies how many points within that array belong to each polygon. The individual polygons are not joined in any way, forming a region of multiple unconnected polygonal areas. Note that the fill mode for the multi-polygonal region must be specified explicitly, instead of using the filling mode set for whatever device the region is used on. The function returns the handle to the newly created region if successful, or 0 if an error occured.

lpPoint

An array holding the vertices of every polygon making up the new region. Specify each point for each polygon only once. See the example for a demonstration of how to load multiple polygons into this array.

lpPolyCounts

An array specifying how many vertices in the array passed as lpPoint belong to each polygon.

nCount

The number of elements in the array passed as lpPolyCounts.

nPolyFillMode

Exactly one of the following flags specifying the fill mode used for each polygon within the region:

ALTERNATE = 1

Alternates between filling and not filling contiguous sections whose boundaries are determined by the edge(s) of the polygon crossing through the polygon's interior.

WINDING = 2

Any section inside the polygon is filled, regardless of any intra-polygonal boundaries and edges.

Example:

' Invert the points lying within a multi-polygonal region on window Form1. The

' region is made up of a triangle and a diamond. The triangle has vertices (25,25), (50,50),

' and (25,50). The diamond has vertices (150,150), (200,200), (150,250), and (100,200).

Dim vertex(0 To 6) As POINT_TYPE ' holds vertices of each polygon

Dim numvertices(0 To 1) As Long ' holds how many vertices belong to each polygon

Dim hrgn As Long ' handle to the multi-polygonal region

Dim retval As Long ' return value

' Load the vertices of the triangle into the vertex array.

vertex(0).x = 25: vertex(0).y = 25 ' 1st point: (25,25)

vertex(1).x = 50: vertex(1).y = 50 ' 2nd point: (50,50)

vertex(2).x = 25: vertex(2).y = 50 ' 3rd point: (25,50)

numvertices(0) = 3 ' three vertices for the triangle

' Load the vertices of the diamond into the vertex array.

vertex(3).x = 150: vertex(3).y = 150 ' 1st point: (150,150)

vertex(4).x = 200: vertex(4).y = 200 ' 2nd point: (200,200)

vertex(5).x = 150: vertex(5).y = 250 ' 3rd point: (150,250)

vertex(6).x = 100: vertex(6).y = 200 ' 4th point: (100,200)

numvertices(1) = 4 ' four vertices for the triangle

' Create the multi-polygonal region and get a handle to it.

hrgn = CreatePolyPolygonRgn(vertex(0), numvertices(0), 2, ALTERNATE)

' Invert the pixels within this region on Form1.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Call: CreatePolygonRgn

Category: Regions

CreateRectRgn Function

Declare Function CreateRectRgn Lib "gdi32.dll" (ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateRectRgn creates a rectangularly-shaped region and provides a handle to it. The rectangle defining the region is specified by passing its upper-left and lower-right corners to the function. Note that the bottom and right edges of the rectangle are not considered to be part of the region. The function returns a handle to the newly created region if successful, or 0 if an error occured.

X1

The x-coordinate of the upper-left corner of the rectangle.

Y1

The y-coordinate of the upper-left corner of the rectangle.

X2

The x-coordinate of the lower-right corner of the rectangle.

Y2

The y-coordinate of the lower-right corner of the rectangle.

Example:

' Invert the pixels within a rectangular region on window Form1. The region

' has corners (20,30)-(150,110).

Dim hrgn As Long ' handle to the rectangular region

Dim retval As Long ' return value

' Create the rectangular region and get a handle to it.

hrgn = CreateRectRgn(20, 30, 150, 110) ' has corners (20,30)-(150,110)

' Invert the pixels on Form1 within this region.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Calls: CreateRectRgnIndirect, CreateRoundRectRgn

Category: Regions

CreateRectRgnIndirect Function

Declare Function CreateRectRgnIndirect Lib "gdi32.dll" (lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateRectRgnIndirect creates a rectangularly-shaped region and provides a handle to it. The rectangle defining the region is specified by the rectangle passed to the function. Note that the bottom and right edges of the rectangle are not considered to be part of the region. The function returns a handle to the newly created region if successful, or 0 if an error occured.

lpRect

The rectangle which defines the rectangular region to create.

Example:

' Invert the pixels within a rectangular region on window Form1. The region

' has corners (20,30)-(150,110).

Dim therect As RECT ' rectangle used to create region

Dim hrgn As Long ' handle to the rectangular region

Dim retval As Long ' return value

' Set the rectangle to use to create the region.

retval = SetRect(therect, 20, 30, 150, 110) ' therect = (20,30)-(150,110)

' Create the rectangular region based on this rectangle.

hrgn = CreateRectRgnIndirect(therect)

' Invert the pixels within this region on Form1.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Calls: CreateRectRgn, CreateRoundRectRgn

Category: Regions

CreateRoundRectRgn Function

Declare Function CreateRoundRectRgn Lib "gdi32.dll" (ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long, ByVal X3 As Long, ByVal Y3 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateRoundRectRgn creates a rounded rectangular region and provides a handle to it. The region is shaped like a rectangle with rounded corners. The region is specified by the coordinate of a non-rounded rectangle followed by the width and height of the rounded corners. The function returns a handle to the newly created region if successful, or 0 if an error occured.

X1

The x-coordinate of the upper-left corner of the rectangle.

Y1

The y-coordinate of the upper-left corner of the rectangle.

X2

The x-coordinate of the lower-right corner of the rectangle.

Y2

The y-coordinate of the lower-right corner of the rectangle.

X3

The width of the portion of each corner to round.

Y3

The height of the portion of each corner to round.

Example:

' Invert the pixels within a rounded rectangular region on window Form1. The

' equivalent non-rounded rectangle has corners (20,30)-(150,110). The rounded corners have

' a width of 15 and a height of 10.

Dim hrgn As Long ' handle to the created rounded rectangular region

Dim retval As Long ' return value

' Create the rounded rectangular region and get a handle to it.

hrgn = CreateRoundRectRgn(20, 30, 150, 110, 15, 10)

' Invert the pixels in Form1 within this region.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Calls: CreateRectRgn, CreateRectRgnIndirect

Category: Regions

CreateSolidBrush Function

Declare Function CreateSolidBrush Lib "gdi32.dll" (ByVal crColor As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

CreateSolidBrush creates a solid brush object. When used to fill an area or shape, this brush creates a solid fill of a single color. After it is finished using the brush, the program should use DeleteObject to delete the brush and free up system resources. The function returns a handle to the newly created solid brush if successful, or 0 if an error occured.

crColor

The RGB value of the color to give the solid brush. Visual Basic users can use the intrinsic RGB() function to calculate this value.

Example:

' Draw a rectangle with corners (10,20) and (175,100)

' on window Form1. Use a solid yellow brush to fill the rectangle.

Dim hbrush As Long ' receives handle to the solid yellow brush

Dim holdbrush As Long ' receives handle to Form1's default brush

Dim retval As Long ' return value

hbrush = CreateSolidBrush(RGB(255, 255, 0)) ' create a solid yellow brush

' Save Form1's default brush so we can restore it after the program is finished

holdbrush = SelectObject(Form1.hDC, hbrush) ' select the brush

' Draw the rectangle filled using the solid yellow brush

retval = Rectangle(Form1.hDC, 10, 20, 175, 100)

' Restore Form1's previous brush before destroying the created one

retval = SelectObject(Form1.hDC, holdbrush) ' select old brush

retval = DeleteObject(hbrush) ' destroy the solid yellow brush

Related Call: CreateHatchBrush

Category: Brushes

DeleteDC Function

Declare Function DeleteDC Lib "gdi32.dll" (ByVal hdc As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

DeleteDC destroys a device context (DC) which was created by CreateDC. Your program should delete a device context once it has finished using it in order to conserve resources. Do not use this function to close a device context gotten from GetDC -- for those, use ReleaseDC instead.

hdc

The device context to delete.

Example:

' Get a device context for the default printer.

Dim printdc As Long ' receives the printer's device context

' The following variables and alternate declares are needed for EnumPrinters.

Declare Function lstrcpy Lib "kernel32.dll" Alias "lstrcpyA" (ByVal lpString1 As String, ByVal lpString2 As Long) As Long

Declare Function lstrlen Lib "kernel32.dll" Alias "lstrlenA" (ByVal lpString As Long) As Long

Dim longbuffer() As Long ' resizable array receives information from the function

Dim printinfo() As PRINTER_INFO_2 ' values inside longbuffer() will be put into here

Dim numbytes As Long ' size in bytes of longbuffer()

Dim numneeded As Long ' receives number of bytes necessary if longbuffer() is too small

Dim numprinters As Long ' receives number of printers found

Dim c As Integer, retval As Long ' counter variable & return value

' ** This block of code uses the EnumPrinters function to get the name and DEVMODE structure

' ** of the default printer. See the EnumPrinters page of this guide for an explanation of

' ** why the following code is necessary.

' Get information about the local printers

numbytes = 3076 ' should be sufficiently big, but it may not be

ReDim longbuffer(0 To numbytes / 4) As Long ' resize array -- note how 1 Long = 4 bytes

retval = EnumPrinters(PRINTER_ENUM_LOCAL Or PRINTER_ENUM_DEFAULT, "", 2, longbuffer(0), numbytes, numneeded, numprinters)

If retval = 0 Then ' try enlarging longbuffer() to receive all necessary information

 numbytes = numneeded

 ReDim longbuffer(0 To numbytes / 4) As Long ' make it large enough

 retval = EnumPrinters(PRINTER_ENUM_LOCAL Or PRINTER_ENUM_DEFAULT, "", 2, longbuffer(0), numbytes, numneeded, numprinters)

 If retval = 0 ' failed again!

 Debug.Print "Could not successfully enumerate the printes."

 End ' abort program

 End If

End If

' Convert longbuffer() data into printinfo()

ReDim printinfo(0 To 0) As PRINTER_INFO_2 ' room for each printer

For c = 0 To numprinters - 1 ' loop, putting each set of information into each element

 ' longbuffer(21 * c) = .pServerName, longbuffer(21 * c + 1) = .pPrinterName, etc.

 ' For each string, the string is first buffered to provide enough room, and then the string is copied.

 ' For each structure, the memory of it is directly copied via CopyMemory using the pointer.

 printinfo(c).pPrinterName = Space(lstrlen(longbuffer(21 * c + 1)))

 retval = lstrcpy(printinfo(c).pPrinterName, longbuffer(21 * c + 1))

 CopyMemory printinfo(c).pDevMode, longbuffer(21 * c + 7), Len(printinfo(c).pDevMode)

Next c

' ** Now printinfo(0).pPrinterName is the device name, and printinfo(0).pDevMode is the

' ** default DEVMODE structure.

' Get a device context for the specified printer

printdc = CreateDC("", printinfo(0).pPrinterName, "", printinfo(0).pDevMode)

' printdc can now be used to print something using the printer. You could put that code here....

' Delete the device context after using it.

retval = DeleteDC(printdc)

Related Calls: CreateDC, ReleaseDC

Category: Devices

DeleteFile Function

Declare Function DeleteFile Lib "kernel32.dll" Alias "DeleteFileA" (ByVal lpFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

DeleteFile deletes a file completely -- it does not send it to the Recycle Bin. It also doesn't prompt to confirm the deletion, so use it carefully. The function returns 1 if successful, or 0 if an error occured (most likely the file doesn't exist).

lpFileName

The name of the file to delete.

Example:

' Delete the file C:\Dummy\thefile.txt

Dim retval As Long ' return value

retval = DeleteFile("C:\Dummy\thefile.txt")

If retval = 1 Then Debug.Print "File deleted successfully."

Category: Files

DeleteObject Function

Declare Function DeleteObject Lib "gdi32.dll" (ByVal hObject As Long) As Long

DeleteObject deletes an object after the program has finished using it. These objects include bitmaps, brushes, fonts, palettes, pens, and regions. Of course the object should never be deleted until it is no longer in use by any devices (see the example for a demonstration). Deleting the object frees up system resources associated with it. The function returns 1 if successful, or 0 if an error occured.

hObject

A handle to the bitmap, brush, font, palette, pen, or region to delete.

Example:

' Draw a rectangle with corners (10,20) and (175,100)

' on window Form1. Use a solid yellow brush to fill the rectangle.

Dim hbrush As Long ' receives handle to the solid yellow brush

Dim holdbrush As Long ' receives handle to Form1's default brush

Dim retval As Long ' return value

hbrush = CreateSolidBrush(RGB(255, 255, 0)) ' create a solid yellow brush

' Save Form1's default brush so we can restore it after the program is finished

holdbrush = SelectObject(Form1.hDC, hbrush) ' select the brush

' Draw the rectangle filled using the solid yellow brush

retval = Rectangle(Form1.hDC, 10, 20, 175, 100)

' Restore Form1's previous brush before destroying the created one

retval = SelectObject(Form1.hDC, holdbrush) ' select old brush

retval = DeleteObject(hbrush) ' destroy the solid yellow brush

Category: Devices

DestroyCursor Function

Declare Function DestroyCursor Lib "user32.dll" (ByVal hCursor As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

DestroyCursor destroys a cursor and deletes its handle. The cursor must have been created using the CreateCursor functions. Do not use this function with a cursor handle obtained in any other manner! The function returns 1 if successful, or 0 if an error occured.

hCursor

A handle to the cursor to delete.

Example:

' Create a 32x32 color cursor shaped somewhat like a yin-yang symbol.

' (The bit masks come from Microsoft's documentation on the API cursors function, just to

' give them their due credit.) Note how the masks are loaded into the arrays. The new

' cursor is then set to be the cursor for 10 seconds.

Dim hnewcursor As Long ' newly created cursor

Dim holdcursor As Long ' receives handle of default cursor

Dim andbuffer As String, xorbuffer As String ' buffers for masks

Dim andbits(0 To 127) As Byte ' stores the AND mask

Dim xorbits(0 To 127) As Byte ' stores the XOR mask

Dim c As Integer, retval As Long ' counter and return value

' Unfortunately, VB does not provide a nice way to load lots of information into an array.

' To load the AND and XOR masks, we put the raw hex values into the string buffers

' and use a loop to convert the hex values into numeric values and load them into

' the elements of the array. Yes, it's ugly, but there's no better way. Note the

' use of the line-continuation character here. Each sequence of eight hex

' characters represents one line in the 32x32 cursor.

andbuffer = "FFFC3FFF" & "FFC01FFF" & "FF003FFF" & "FE00FFFF" & _

 "F701FFFF" & "F003FFFF" & "F003FFFF" & "E007FFFF" & _

 "C007FFFF" & "C00FFFFF" & "800FFFFF" & "800FFFFF" & _

 "8007FFFF" & "8007FFFF" & "0003FFFF" & "0000FFFF" & _

 "00007FFF" & "00001FFF" & "00000FFF" & "80000FFF" & _

 "800007FF" & "800007FF" & "C00007FF" & "C0000FFF" & _

 "E0000FFF" & "F0001FFF" & "F0001FFF" & "F8003FFF" & _

 "FE007FFF" & "FF00FFFF" & "FFC3FFFF" & "FFFFFFFF"

xorbuffer = "00000000" & "0003C000" & "003F0000" & "00FE0000" & _

 "0EFC0000" & "07F80000" & "07F80000" & "0FF00000" & _

 "1FF00000" & "1FE00000" & "3FE00000" & "3FE00000" & _

 "3FF00000" & "7FF00000" & "7FF80000" & "7FFC0000" & _

 "7FFF0000" & "7FFF8000" & "7FFFE000" & "3FFFE000" & _

 "3FC7F000" & "3F83F000" & "1F83F000" & "1F83E000" & _

 "0FC7E000" & "07FFC000" & "07FFC000" & "01FF8000" & _

 "00FF0000" & "003C0000" & "00000000" & "00000000"

' Now load these hex values into the proper arrays.

For c = 0 To 127

 andbits(c) = "&H" & Mid(andbuffer, 2 * c + 1)

 xorbits(c) = "&H" & Mid(xorbuffer, 2 * c + 1)

Next c

' Finally, create this cursor! The hotspot is at (19,2) on the cursor.

hnewcursor = CreateCursor(App.hInstance, 19, 2, 32, 32, andbits(0), xorbits(0))

' Set the new cursor as the current cursor for 10 seconds and then switch back.

holdcursor = SetCursor(hnewcursor) ' change cursor

Sleep 10000 ' wait for 10 seconds

retval = SetCursor(holdcursor) ' change cursor back

' Destroy the new cursor.

retval = DestroyCursor(hnewcursor)

Related Call: CreateCursor

Category: Cursor

DestroyIcon Function

Declare Function DestroyIcon Lib "user32.dll" (ByVal hIcon As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

DestroyIcon destroys an icon and frees the memory which contained the icon. Some functions which provide an icon (sometimes but not necessarily creating it) require programs to use this function after using an icon, while others do not. Check the icon function in question to determine whether or not the icon must be destroyed. An icon cannot be in use when the program destroys it, whether it is used by the program or other programs.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hIcon

A handle to the icon to destroy.

Example

' Display the first icon (index 0) stored in the executable file

' C:\MyApp\Prog.exe on window Form1. The icon must be destroyed after the

' program finishes using it.

Dim hIcon As Long ' handle to the function gotten from the executable file

Dim retval As Long ' return value

' Extract the first icon stored in the aforementioned executable file.

hIcon = ExtractIcon(App.hInstance, "C:\MyApp\Prog.exe", 0)

' Only attempt to display the icon if we successfully extracted it.

If hIcon = 0 Then

 Debug.Print "Failed to extract the icon -- aborting."

 End ' terminate the program

Else

 ' Display the icon at coordinates (100, 75) on window Form1.

 retval = DrawIcon(Form1.hDC, 100, 75, hIcon)

 ' Although the icon's image is still visible, the icon itself is not in use.

 ' Therefore we destroy it to free up resources.

 retval = DestroyIcon(hIcon)

End If

Category

Icons

DrawIcon Function

Declare Function DrawIcon Lib "user32.dll" (ByVal hDC As Long, ByVal x As Long, ByVal y As Long, ByVal hIcon As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

DrawIcon displays an icon on a device. The icon's position is determined by a coordinate pair passed to the function identifying the coordinates of the upper-left corner of the icon. The icon is always drawn in its normal dimensions.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hDC

A handle to a device context to the device to draw the icon on.

x

The x-coordinate of the point to position the upper-left corner of the icon's image at.

y

The y-coordinate of the point to position the upper-left corner of the icon's image at.

hIcon

A handle to the icon to display.

Example

' Display the first icon (index 0) stored in the executable file

' C:\MyApp\Prog.exe on window Form1. The icon must be destroyed after the

' program finishes using it.

Dim hIcon As Long ' handle to the function gotten from the executable file

Dim retval As Long ' return value

' Extract the first icon stored in the aforementioned executable file.

hIcon = ExtractIcon(App.hInstance, "C:\MyApp\Prog.exe", 0)

' Only attempt to display the icon if we successfully extracted it.

If hIcon = 0 Then

 Debug.Print "Failed to extract the icon -- aborting."

 End ' terminate the program

Else

 ' Display the icon at coordinates (100, 75) on window Form1.

 retval = DrawIcon(Form1.hDC, 100, 75, hIcon)

 ' Although the icon's image is still visible, the icon itself is not in use.

 ' Therefore we destroy it to free up resources.

 retval = DestroyIcon(hIcon)

End If

Related Functions

DrawIconEx

Category

Icons

DrawIconEx Function

Declare Function DrawIconEx Lib "user32.dll" (ByVal hdc As Long, ByVal xLeft As Long, ByVal yTop As Long, ByVal hIcon As Long, ByVal cxWidth As Long, ByVal cyWidth As Long, ByVal istepIfAniCur As Long, ByVal hbrFlickerFreeDraw As Long, ByVal diFlags As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.5 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

DrawIconEx displays either an icon or a cursor (or a single frame of an animated cursor) on a device. The image's position is determined by passing the coordinates of the upper-left corner of the image. The function can stretch the image in either direction as well as specify other display parameters.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hdc

A handle to a device context to the device to draw the icon or cursor on.

xLeft

The x-coordinate of the point to position the upper-left corner of the icon's or cursor's image at.

yTop

The y-coordinate of the point to position the upper-left corner of the icon's or cursor's image at.

hIcon

A handle to the icon or cursor to draw.

cxWidth

The width in pixels to stretch the icon's or cursor's image to. If this is 0, the image is drawn using either the icon's or cursor's width or the default width of the system, depending on the flags passed as diFlags.

cyWidth

The height in pixels to stretch the icon's or cursor's image to. If this is 0, the image is drawn using either the icon's or cursor's height or the default height of the system, depending on the flags passed as diFlags.

istepIfAniCursor

If hIcon is a handle to an animated cursor, this specifies the index of the particular frame to draw. Otherwise, this parameter is ignored.

hbrFlickerFreeDraw

A handle to the brush to use as the icon's or cursor's background. The background is added to the icon's or cursor's image using a flicker-free method. If this parameter is 0, the image is drawn directly onto the device without first adding a background.

diFlags

A combination of the following flags specifying how to draw the icon or cursor:

DI_COMPAT

Draw the icon or cursor using the system default image instead of the user-specified image.

DI_DEFAULTSIZE

If cxWidth and cyWidth are set to 0, draw the icon or cursor using the height and width settings defined by the system metrics. If this flag is not specified and the two parameters are set to 0, the icon or cursor is drawn using its own dimensions.

DI_IMAGE

Draw the icon's or cursor's image data onto the device.

DI_MASK

Draw the icon's or cursor's mask data onto the device.

DI_NORMAL

Draw the icon or cursor using both its image and mask, as usual.

Constant Definitions

Const DI_COMPAT = &H4

Const DI_DEFAULTSIZE = &H8

Const DI_IMAGE = &H2

Const DI_MASK = &H1

Const DI_NORMAL = &H3

Example

' Extract all of the regular-sized icons from the file

' C:\MyApp\Prog.exe. Display them in a row, stretching or shrinking them to

' a width of 32 and a height of 64. Note how dynamically allocated arrays

' are used to receive the icon handles. Draw all icons on a light-gray

' background on the window Form1.

Dim hIcons() As Long ' dynamic array to receive handles to the icons

Dim numicons As Long ' number of regular icons in the file

Dim hBrush As Long ' handle to the background brush to use

Dim c As Long ' counter variable

Dim retval As Long ' return value

' Determine how many regular icons exist in the file and resize

' the array accordingly.

numicons = ExtractIconEx("C:\MyApp\Prog.exe", -1, ByVal 0, ByVal 0, 0)

If numicons = 0 Then

 Debug.Print "No icons found in the file -- aborting."

 End ' abort the program if failure occurs

End If

ReDim hIcons(0 To numicons - 1) As Long ' resize the array to hold all the handles

' Get a handle to the stock solid light gray brush to use for the background.

hBrush = GetStockObject(LTGRAY_BRUSH) ' handle to the brush

' Extract all of the icons to display.

retval = ExtractIconEx("C:\MyApp\Prog.exe", numicons, hIcons(0), ByVal 0, 0)

' Loop through each icon, displaying it as previously mentioned.

For c = 0 To numicons - 1

 ' The x coordinate equals 32 * c. The y coordinate is always 0.

 ' Display this particular icon.

 retval = DrawIconEx(Form1.hDC, 32 * c, 0, hIcons(c), 32, 64, 0, hBrush,

Ellipse Function

Declare Function Ellipse Lib "gdi32.dll" (ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As Long

Platforms: Win32s, Win 95/98, Win NT

Ellipse draws an ellipse on a device. The two coordinate pairs passed to the function are not part of the ellipse itself, but define its bounding rectangle. The bounding rectangle is the smallest possible rectangle containing the ellipse. The ellipse is drawn using the device's current drawing color and is filled using the current filling color and brush, if any. The function returns 0 if it fails, or 1 if it succeeds.

hdc

The device context of the object to draw on.

X1

The x coordinate of the bounding rectangle's upper-left corner.

Y1

The y coordinate of the bounding rectangle's upper-left corner.

X2

The x coordinate of the bounding rectangle's lower-right corner.

Y2

The y coordinate of the bounding rectangle's lower-right corner.

Example:

' Draw a red ellipse with bounding rectangle (25,30)-(100,75)

' on PictureBox1

Dim retval As Long ' return value

PictureBox1.ForeColor = RGB(255, 0, 0) ' set color to draw in to red

retval = Ellipse(PictureBox1.hdc, 25, 30, 100, 75)

Related Calls: AngleArc, Arc, ArcTo, Chord, Pie

Category: Filled Shapes

EnableWindow Function

Declare Function EnableWindow Lib "user32.dll" (ByVal hwnd As Long, ByVal fEnable As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

EnableWindow enables or disables a window. If a window is disabled, it cannot receive the focus and will ignore any attempted input. Some types of windows, such as buttons and other controls, will appear grayed when disabled, although any window can be enabled or disabled. The function returns 0 if the window had previously been enabled, or a non-zero value if the window had been disabled.

hwnd

A handle to the window to enable or disable.

fEnable

If 0, the window will be disabled. If non-zero, the window will be enabled.

Example:

' Reverse the enabled status of window Command1. If the window is

' disabled, enable it; if it is enabled, disable it.

Dim wasenabled As Long ' receives enabled/disabled status of Command1

Dim retval As Long ' return value

' Determine if the window Command1 is currently enabled or not.

wasenabled = IsWindowEnabled(Command1.hWnd)

If wasenabled = 0 Then ' if not enabled, enable it

 retval = EnableWindow(Command1.hWnd, 1)

Else ' if enabled, disable it

 retval = EnableWindow(Command1.hWnd, 0)

End If

Related Call: IsWindowEnabled

Category: Windows

EnumChildWindows Function

Declare Function EnumChildWindows Lib "user32.dll" (ByVal hWndParent As Long, ByVal lpEnumFunc As Long, ByVal lParam As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

EnumChildWindows enumerates and provides handles to all of the child windows of a given window. This function will also enumerate any children of the child windows. Each time a child window is located, the function passes that handle to a program-defined callback function. The function continues doing so until all child windows have been enumerated, or until the process has been aborted.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hWndParent

A handle to the parent window to enumerate the child windows of.

lpEnumFunc

A pointer to the application-defined callback function EnumChildProc.

lParam

An additional value to pass to the application-defined callback function.

Example:

' Display the window title of all children of window MDIForm1. This

' task is given to the callback function, which will receive each handle individually.

' *** Place this code in a module. This is the callback function. ***

' This function displays the title bar text of the window identified by hwnd.

Public Function EnumChildProc (ByVal hwnd As Long, ByVal lParam As Long) As Long

 Dim slength As Long, wintext As String ' window title text length and buffer

 Dim retval As Long ' return value

 Static winnum As Integer ' counter keeps track of how many windows have been enumerated

 winnum = winnum + 1 ' one more window enumerated....

 slength = GetWindowTextLength(hwnd) + 1 ' get length of title bar text

 buffer = Space(slength) ' make room in the buffer

 retval = GetWindowText(hwnd, buffer, slength) ' get title bar text

 Debug.Print "Window #"; winnum; " : "; ' display number of enumerated window

 Debug.Print Left(buffer, slength - 1) ' display title bar text of enumerated window

 EnumChildProc = 1 ' nonzero return value means continue enumeration

End Function

' *** Place this code wherever you want to enumerate the windows. ***

Dim retval As Long ' return value

' Use the above callback function to list all of the enumerated windows. Note that lParam is

' set to 0 because we don't need to pass any additional information to the function.

retval = EnumChildWindows(MDIForm1.hWnd, AddressOf EnumChildProc, 0)

Related Functions

EnumThreadWindows, EnumWindows

Category

Windows

EnumPrinters Function

Declare Function EnumPrinters Lib "winspool.drv" Alias "EnumPrintersA" (ByVal flags As Long, ByVal name As String, ByVal Level As Long, pPrinterEnum As Long, ByVal cdBuf As Long, pcbNeeded As Long, pcReturned As Long) As Long

Platforms: Win 95/98, Win NT

EnumPrinters finds and returns information about one or more printers which the computer has access to. These include both local printers (physically connected to the machine) and network printers (accessible via the network). Under Win 95/98, the information can be passed in a PRINTER_INFO_1, PRINTER_INFO_2, or PRINTER_INFO_5 structure. Under Win NT, the information can be passed in a PRINTER_INFO_1, PRINTER_INFO_2, or PRINTER_INFO_4 structure. Note that structures 4 and 5 are the quickest ones to use. The attributes of the chosen structure determine what kinds of information about the printer(s) is returned. The information itself is put into the array passed as pPrinterEnum, which can then be copied into an array of data structures. The function returns 1 if successful, or 0 if an error occured.

Note for Visual Basic users: Due to limitations in the Visual Basic language, it is impossible to pass an array of PRINTER_INFO_* structures as pPrinterEnum -- the array must be of Long-type elements. Also, for some reason the CopyMemory function cannot be used to successfully transfer the array information into the structure. Instead, each individual member of the data structure must be set manually. Look at the two examples for details how. In order to convert a Long-type string pointer (in the array) to a string, variants of the lstrcpy and lstrlen function must be used. Again, see the examples. CopyMemory, however, can be used to copy the data structures which make up parts of the PRINTER_INFO_2 data structure.

flags

One or more of the following flags specifying which printers to find information about (note that PRINTER_ENUM_LOCAL and PRINTER_ENUM_CONNECTIONS are the only valid flags when using PRINTER_INFO_4):

PRINTER_ENUM_CONNECTIONS = &H4

Win NT only: Get information about the network printers which the computer has made connections to.

PRINTER_ENUM_DEFAULT = &H1

Win 95/98 only: Get information about the computer's default printer.

PRINTER_ENUM_LOCAL = &H2

Get information about local printers (the ones directly connected to the system). Win 95/98 for some reason also considers network printers to be local.

PRINTER_ENUM_NAME = &H8

Get information about all the printers under the network domain specified by name.

PRINTER_ENUM_NETWORK = &H40

Win NT only: Get information about all the printers under the computer's domain in the network. This only works with the PRINTER_INFO_1 structure.

PRINTER_ENUM_REMOTE = &H10

Win NT only: Same as PRINTER_ENUM_NETWORK.

PRINTER_ENUM_SHARED = &H20

Get information about all the printers with the shared attribute.

name

The name of the network domain to look under, if applicable. See flags to see when this would be used. If not used, set this parameter to an empty string.

Level

Specifies which PRINTER_INFO_* structure to use. For Win 95/98, this can be 1, 2, or 5. For Win NT, this can be 1, 2, or 4.

pPrinterEnum

An array which receives all of the information found by the function. This needs to be copied manually into the PRINTER_INFO_* structure.

cdBuf

The size in bytes of the array passed as pPrinterEnum.

pcbNeeded

If successful, receives the number of bytes of information the function found. If unsuccessful, receives the number of bytes that pPrinterEnum must have in order to receive all of the information.

pcReturned

Receives the number of printers found by the function.

Example #1:

' Get information about all of the local printers using structure 1. Note how

' the elements of the array are loaded into an array of data structures manually. Also

' note how the following special declares must be used to allow numeric string pointers

' to be used in place of strings:

Declare Function lstrcpy Lib "kernel32.dll" Alias "lstrcpyA" (ByVal lpString1 As String, ByVal lpString2 As Long) As Long

Declare Function lstrlen Lib "kernel32.dll" Alias "lstrlenA" (ByVal lpString As Long) As Long

Dim longbuffer() As Long ' resizable array receives information from the function

Dim printinfo() As PRINTER_INFO_1 ' values inside longbuffer() will be put into here

Dim numbytes As Long ' size in bytes of longbuffer()

Dim numneeded As Long ' receives number of bytes necessary if longbuffer() is too small

Dim numprinters As Long ' receives number of printers found

Dim c As Integer, retval As Long ' counter variable & return value

' Get information about the local printers

numbytes = 3076 ' should be sufficiently big, but it may not be

ReDim longbuffer(0 To numbytes / 4) As Long ' resize array -- note how 1 Long = 4 bytes

retval = EnumPrinters(PRINTER_ENUM_LOCAL, "", 1, longbuffer(0), numbytes, numneeded, numprinters)

If retval = 0 Then ' try enlarging longbuffer() to receive all necessary information

 numbytes = numneeded

 ReDim longbuffer(0 To numbytes / 4) As Long ' make it large enough

 retval = EnumPrinters(PRINTER_ENUM_LOCAL, "", 1, longbuffer(0), numbytes, numneeded, numprinters)

 If retval = 0 ' failed again!

 Debug.Print "Could not successfully enumerate the printes."

 End ' abort program

 End If

End If

' Convert longbuffer() data into printinfo()

ReDim printinfo(0 To numprinters - 1) As PRINTER_INFO_1 ' room for each printer

For c = 0 To numprinters - 1 ' loop, putting each set of information into each element

 ' longbuffer(4 * c) = .flags, longbuffer(4 * c + 1) = .pDescription, etc.

 ' For each string, the string is first buffered to provide enough room, and then the string is copied.

 printinfo(c).flags = longbuffer(4 * c)

 printinfo(c).pDescription = Space(lstrlen(longbuffer(4 * c + 1)))

 retval = lstrcpy(printinfo(c).pDescription, longbuffer(4 * c + 1))

 printinfo(c).pName = Space(lstrlen(longbuffer(4 * c + 2)))

 retval = lstrcpy(printinfo(c).pName, longbuffer(4 * c + 2))

 printinfo(c).pComment = Space(lstrlen(longbuffer(4 * c + 3)))

 retval = lstrcpy(printinfo(c).pComment, longbuffer(4 * c + 3))

Next c

' Display name of each printer

For c = 0 To numprinters - 1

 Debug.Print "Name of printer"; c + 1; " is: "; printinfo(c).pName

Next c

Example #2:

' Get information about all of the local printers using structure 2. Note how

' the elements of the array are loaded into an array of data structures manually. Also

' note how the following special declares must be used to allow numeric string pointers

' to be used in place of strings:

Declare Function lstrcpy Lib "kernel32.dll" Alias "lstrcpyA" (ByVal lpString1 As String, ByVal lpString2 As Long) As Long

Declare Function lstrlen Lib "kernel32.dll" Alias "lstrlenA" (ByVal lpString As Long) As Long

Dim longbuffer() As Long ' resizable array receives information from the function

Dim printinfo() As PRINTER_INFO_2 ' values inside longbuffer() will be put into here

Dim numbytes As Long ' size in bytes of longbuffer()

Dim numneeded As Long ' receives number of bytes necessary if longbuffer() is too small

Dim numprinters As Long ' receives number of printers found

Dim c As Integer, retval As Long ' counter variable & return value

' Get information about the local printers

numbytes = 3076 ' should be sufficiently big, but it may not be

ReDim longbuffer(0 To numbytes / 4) As Long ' resize array -- note how 1 Long = 4 bytes

retval = EnumPrinters(PRINTER_ENUM_LOCAL, "", 2, longbuffer(0), numbytes, numneeded, numprinters)

If retval = 0 Then ' try enlarging longbuffer() to receive all necessary information

 numbytes = numneeded

 ReDim longbuffer(0 To numbytes / 4) As Long ' make it large enough

 retval = EnumPrinters(PRINTER_ENUM_LOCAL, "", 2, longbuffer(0), numbytes, numneeded, numprinters)

 If retval = 0 ' failed again!

 Debug.Print "Could not successfully enumerate the printes."

 End ' abort program

 End If

End If

' Convert longbuffer() data into printinfo()

ReDim printinfo(0 To numprinters - 1) As PRINTER_INFO_2 ' room for each printer

For c = 0 To numprinters - 1 ' loop, putting each set of information into each element

 ' longbuffer(21 * c) = .pServerName, longbuffer(21 * c + 1) = .pPrinterName, etc.

 ' For each string, the string is first buffered to provide enough room, and then the string is copied.

 ' For each structure, the memory of it is directly copied via CopyMemory using the pointer.

 printinfo(c).pServerName = Space(lstrlen(longbuffer(21 * c)))

 retval = lstrcpy(printinfo(c).pServerName, longbuffer(21 * c))

 printinfo(c).pPrinterName = Space(lstrlen(longbuffer(21 * c + 1)))

 retval = lstrcpy(printinfo(c).pPrinterName, longbuffer(21 * c + 1))

 printinfo(c).pShareName = Space(lstrlen(longbuffer(21 * c + 2)))

 retval = lstrcpy(printinfo(c).pShareName, longbuffer(21 * c + 2))

 printinfo(c).pPortName = Space(lstrlen(longbuffer(21 * c + 3)))

 retval = lstrcpy(printinfo(c).pPortName, longbuffer(21 * c + 3))

 printinfo(c).pDriverName = Space(lstrlen(longbuffer(21 * c + 4)))

 retval = lstrcpy(printinfo(c).pDriverName, longbuffer(21 * c + 4))

 printinfo(c).pComment = Space(lstrlen(longbuffer(21 * c + 5)))

 retval = lstrcpy(printinfo(c).pComment, longbuffer(21 * c + 5))

 printinfo(c).pLocation = Space(lstrlen(longbuffer(21 * c + 6)))

 retval = lstrcpy(printinfo(c).pLocation, longbuffer(21 * c + 6))

 CopyMemory printinfo(c).pDevMode, longbuffer(21 * c + 7), Len(printinfo(c).pDevMode)

 printinfo(c).pSepFile = Space(lstrlen(longbuffer(21 * c + 8)))

 retval = lstrcpy(printinfo(c).pSepFile, longbuffer(21 * c + 8))

 printinfo(c).pPrintProcessor = Space(lstrlen(longbuffer(21 * c + 9)))

 retval = lstrcpy(printinfo(c).pPrintProcessor, longbuffer(21 * c + 9))

 printinfo(c).pDatatype = Space(lstrlen(longbuffer(21 * c + 10)))

 retval = lstrcpy(printinfo(c).pDatatype, longbuffer(21 * c + 10))

 printinfo(c).pParameters = Space(lstrlen(longbuffer(21 * c + 11)))

 retval = lstrcpy(printinfo(c).pParameters, longbuffer(21 * c + 11))

 CopyMemory printinfo(c).pSecurityDescriptor, longbuffer(21 * c + 12), Len(printinfo(c).pSecurityDescriptor)

 printinfo(c).Attributes = longbuffer(21 * c + 13)

 printinfo(c).Priority = longbuffer(21 * c + 14)

 printinfo(c).DefaultPriority = longbuffer(21 * c + 15)

 printinfo(c).StartTime = longbuffer(21 * c + 16)

 printinfo(c).UntilTime = longbuffer(21 * c + 17)

 printinfo(c).Status = longbuffer(21 * c + 18)

 printinfo(c).cJobs = longbuffer(21 * c + 19)

 printinfo(c).AveragePPM = longbuffer(21 * c + 20)

Next c

' Display the name of each printer and its average page per minute (ppm) rate

For c = 0 To numprinters - 1

 Debug.Print printinfo(c).pPrinterName; " prints an average of"; printinfo(c).AveragePPM; "pages per minute."

Next c

Category: Printers

EnumThreadWindows Function

Declare Function EnumThreadWindows Lib "user32.dll" (ByVal dwThreadId As Long, ByVal lpfn As Long, ByVal lParam As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

EnumThreadWindows enumerates and provides handles to all of the windows owned and controlled by a given thread. (Note that these windows include many windows not visible to the user.) Each time a window is located, the function passes that handle to an application-defined callback function. The function continues doing so until all windows have been enumerated, or until the process has been aborted.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

dwThreadId

An identifier to the thread to enumerate the windows of.

lpfn

A pointer to the application-defined callback function EnumThreadWndProc.

lParam

An additional value to pass to the application-defined callback function.

Example

' Display the window title of all windows controlled by the thread

' which the window Form1 is in. This task is given to the callback function, which

' will receive each handle individually. Note that if the window has no title bar

' text, it will not be displayed (for clarity's sake).

' *** Place this code in a module. This is the callback function. ***

' This function displays the title bar text of the window identified by hwnd.

Public Function EnumThreadWndProc (ByVal hwnd As Long, ByVal lParam As Long) As Long

 Dim slength As Long, wintext As String ' title bar text length and buffer

 Dim retval As Long ' return value

 Static winnum As Integer ' counter keeps track of how many windows have been enumerated

 winnum = winnum + 1 ' one more window enumerated....

 slength = GetWindowTextLength(hwnd) + 1 ' get length of title bar text

 If slength > 1 ' if return value refers to non-empty string

 buffer = Space(slength) ' make room in the buffer

 retval = GetWindowText(hwnd, buffer, slength) ' get title bar text

 Debug.Print "Window #"; winnum; " : "; ' display number of enumerated window

 Debug.Print Left(buffer, slength - 1) ' display title bar text of enumerated window

 End If

 EnumThreadWndProc = 1 ' return value of 1 means continue enumeration

End Function

' *** Place this code wherever you want to enumerate the windows. ***

Dim threadid As Long, processid As Long ' receive id to thread and process of Form1

Dim retval As Long ' return value

' Determine the thread which owns the window Form1.

threadid = GetWindowThreadProcessId(Form1.hWnd, processid)

' Use the callback function to list all of the enumerated thrad windows. Note that lParam

' is set to 0 because we don't need to pass any additional information to the function.

retval = EnumThreadWindows(threadid, AddressOf EnumThreadWndProc, 0)

Related Functions

EnumChildWindows, EnumWindows

Category

Windows

EnumWindows Function

Declare Function EnumWindows Lib "user32.dll" (ByVal lpEnumFunc As Long, ByVal lParam As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

EnumWindows enumerates and provides handles to all of the currently open top-level windows. This function will ignore child windows. (Note that the top-level windows include many windows not visible to the user.) Each time a window is located, the function passes that handle to an application-defined callback function. The function continues doing so until all windows have been enumerated, or until the process has been aborted.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

lpEnumFunc

A pointer to the application-defined callback function EnumWindowsProc.

lParam

An additional value to pass to the application-defined callback function.

Example:

' Display the title bar text of all top-level windows. This

' task is given to the callback function, which will receive each handle individually.

' Note that if the window has no title bar text, it will not be displayed (for clarity's sake).

' *** Place this code in a module. This is the callback function. ***

' This function displays the title bar text of the window identified by hwnd.

Public Function EnumWindowsProc (ByVal hwnd As Long, ByVal lParam As Long) As Long

 Dim slength As Long, wintext As String ' title bar text length and buffer

 Dim retval As Long ' return value

 Static winnum As Integer ' counter keeps track of how many windows have been enumerated

 winnum = winnum + 1 ' one more window enumerated....

 slength = GetWindowTextLength(hwnd) + 1 ' get length of title bar text

 If slength > 1 ' if return value refers to non-empty string

 buffer = Space(slength) ' make room in the buffer

 retval = GetWindowText(hwnd, buffer, slength) ' get title bar text

 Debug.Print "Window #"; winnum; " : "; ' display number of enumerated window

 Debug.Print Left(buffer, slength - 1) ' display title bar text of enumerated window

 End If

 EnumWindowsProc = 1 ' return value of 1 means continue enumeration

End Function

' *** Place this code wherever you want to enumerate the windows. ***

Dim retval As Long ' return value

' Use the above callback function to list all of the enumerated windows. Note that lParam is

' set to 0 because we don't need to pass any additional information to the function.

retval = EnumWindows(AddressOf EnumWindowsProc, 0)

Related Functions

EnumChildWindows, EnumThreadWindows

Category

Windows

EqualRect Function

Declare Function EqualRect Lib "user32.dll" (lpRect1 As RECT, lpRect2 As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

EqualRect determines if two rectangles are equal. Rectangles are considered equal if and only if the upper-left and lower-right corners (the points that define the rectangles) of one rectangle are equal to those of another. The function returns 1 if the two rectangles are equal and 0 if they are unequal.

lpRect1

The first of the two rectangles to check.

lpRect2

The second of the two rectangles to check.

Example:

' Demonstrate equal and unequal rectangles

Dim r As RECT, s As RECT ' rectangles to use

Dim areequal As Long ' receives whether the rectangles are equal or not

Dim retval As Long ' return value

' Initialize the two rectangles using the API

retval = SetRect(r, 15, 20, 100, 110) ' r = (15,20)-(100,110)

retval = SetRect(s, 15, 20, 100, 110) ' s = (15,20)-(100,110)

areequal = EqualRect(r, s) ' compare the rectangles

If areequal = 1 Then Debug.Print "Are Equal" Else Debug.Print "Are Not Equal"

' Change the second rectangle

retval = SetRect(s, 30, 45, 200, 250) ' s = (30,45)-(200,250)

areequal = EqualRect(r, s) ' compare the rectangles

If areequal = 1 Then Debug.Print "Are Equal" Else Debug.Print "Are Not Equal"

' The first time is Are Equal, the second is Are Not Equal.

Related Call: CopyRect

Category: Rectangles

EqualRgn Function

Declare Function EqualRect Lib "gdi32.dll" (ByVal hSrcRgn1 As Long, ByVal hSrcRgn2 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

EqualRgn determines if two regions contain the exact same area. Although the region handles will of course be different, they could still refer to regions of identical size, shape, and position. The function returns a non-zero value if the two regions refer to identical areas, or 0 if they refer to different areas.

hSrcRgn1

The first of the two regions to compare.

hSrcRgn2

The second of the two regions to compare.

Example:

' Illustrate equal and unequal regions. Three different regions are

' compared, two of them equal and the third not equal to the others.

Dim hRgn1 As Long, hRgn2 As Long, hRgn3 As Long ' the three regions

Dim areequal As Long ' receives equal/unequal indicator

Dim retval As Long ' generic return value

' Define all three regions as elliptical.

hRgn1 = CreateEllipticRgn(20, 30, 120, 80)

hRgn2 = CreateEllipticRgn(20, 30, 120, 80)

hRgn3 = CreateEllipticRgn(50, 50, 200, 150) ' this is different

' Compare regions 1 and 2 (they should be equal).

areequal = EqualRgn(hRgn1, hRgn2) ' areequal will be nonzero

If areequal = 0 Then Debug.Print "Not Equal" Else Debug.Print "Equal"

' Compare regions 1 and 3 (they should not be equal).

areequal = EqualRgn(hRgn1, hRgn3) ' areequal will be zero

If areequal = 0 Then Debug.Print "Not Equal" Else Debug.Print "Equal"

' Delete the three regions to free up resources.

retval = DeleteObject(hRgn1)

retval = DeleteObject(hRgn2)

retval = DeleteObject(hRgn3)

Category: Regions

ExitWindowsEx Function

Declare Function ExitWindowsEx Lib "user32.dll" (ByVal uFlags As Long, ByVal dwReserved As Long) As Long

Platforms: Win 95/98, Win NT

ExitWindowsEx shuts down or reboots the user's computer. Of course, since the shutdown/reboot process will begin once the function is called, there won't normally be much left for your program to do. The function returns 0 if an error occured, or 1 if successful.

uFlags

One or more of the following flags specifying how to shut down or reboot the computer:

EWX_FORCE = 4

Force any applications to quit instead of prompting the user to close them.

EWX_LOGOFF = 0

Log off the network.

EWX_POWEROFF = 8

Shut down the system and, if possible, turn the computer off.

EWX_REBOOT = 2

Perform a full reboot of the system.

EWX_SHUTDOWN = 1

Shut down the system.

dwReserved

Reserved for future versions of Windows. Always set to 0.

Example:

' Reboot the computer, forcing any open programs to close

Dim retval As Long ' return value

retval = ExitWindowsEx(EWX_REBOOT Or EWX_FORCE, 0)

If retval = 0 Then Debug.Print "Reboot attempt failed."

Category: Other

ExtractIcon Function

Declare Function ExtractIcon Lib "shell32.dll" Alias "ExtractIconA" (ByVal hInst as Long, ByVal lpszExeFileName As String, ByVal nIconIndex As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

ExtractIcon extracts a single icon from a file. This file can be an executable (.exe) file, a dynamic link library (.dll), or an icon file (.ico). Alternately, this function can also determine how many icons are stored in such a file. The icon generated by this function must be destroyed using DestroyIcon after the program has finished using it.

Return Value

If the function failed because the specified file was not found, the function returns 1. If the function failed because the icon requested by the function did not exist, the function returns 0. If the function succeeded and the number of icons in the file was requested, the function returns the number of icons stored in the file. If the function succeeded and an icon was specified, the function returns a handle to the extracted icon.

Visual Basic-Specific Issues

None.

Parameters

hInst

A handle to the instance of the application calling the function.

lpszExeFileName

The name of an .exe, .dll, or .ico to extract an icon from.

nIconIndex

If this is -1, the function returns the number of icons stored in the specified file. If this is a non-negative number, the function extracts the icon using this value as the zero-based index (an index of 0 identifies the first icon, etc.). Windows 95, 98, NT 4.0 or later, 2000: If this is negative and not -1, the function extracts the icon whose resource identifier equals the absolute value of this parameter. (To extract an icon with a resource identifier of 1, ExtractIconEx must be used instead.)

Example

' Display the first icon (index 0) stored in the executable file

' C:\MyApp\Prog.exe on window Form1. The icon must be destroyed after the

' program finishes using it.

Dim hIcon As Long ' handle to the function gotten from the executable file

Dim retval As Long ' return value

' Extract the first icon stored in the aforementioned executable file.

hIcon = ExtractIcon(App.hInstance, "C:\MyApp\Prog.exe", 0)

' Only attempt to display the icon if we successfully extracted it.

If hIcon = 0 Then

 Debug.Print "Failed to extract the icon -- aborting."

 End ' terminate the program

Else

 ' Display the icon at coordinates (100, 75) on window Form1.

 retval = DrawIcon(Form1.hDC, 100, 75, hIcon)

 ' Although the icon's image is still visible, the icon itself is not in use.

 ' Therefore we destroy it to free up resources.

 retval = DestroyIcon(hIcon)

End If

Related Function

ExtractIconEx

Category

ExtractIconEx Function

Declare Function ExtractIconEx Lib "shell32.dll" Alias "ExtractIconExA" (ByVal lpszFile As String, ByVal nIconIndex As Long, phiconLarge As Long, phiconSmall As Long, ByVal nIcons As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 4.0 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

ExtractIconEx extracts multiple icons from a file. This file can be an executable file (.exe), a dynamic link library (.dll), or an icon file (.ico). This function can extract both large and small icons, whose handles are placed into two arrays. Optionally, this function can also determine how many large/small icon pairs are stores in such a file. Each icon which this function extracts must be destroyed using DestroyIcon after the program has finished using it.

Return Value

If nIconIndex is set to -1, phiconLarge is set to 0, and phiconSmall is set to 0, the function returns the number of icons stored in the file specified. Otherwise, the function returns the number of icons successfully extracted from the file.

Visual Basic-Specific Issues

When passing 0 explicitly as phiconLarge or phiconSmall, the 0 must be preceeded by the ByVal keyword. See the example for a demonstration.

Parameters

lpszFile

The name of the .exe, .dll, or .ico file to extract the icons from.

nIconIndex

The zero-based index of the first icon to extract from the file. If this is -1 and both phiconLarge and phiconSmall are 0, the function returns the number of icons stored in the file. Windows 95, 98, NT 4.0 or later, 2000: If this is a negative integer and at least either phiconLarge or phiconSmall (or both) are not zero, the function first extracts the icon whose resource identifier equals the absolute value of this parameter.

phiconLarge

An array which receives the handles of the large icons extracted from the file. To not extract any large icons, pass 0 as this parameter.

phiconSmall

An array which receives the handles of the small icons extracted from the file. To not extract any small icons, pass 0 as this parameter.

nIcons

The number of icons to extract from the file. Icons are extracted sequentially, beginning with the icon identified by nIconIndex.

Example

' Extract all of the regular-sized icons from the file

' C:\MyApp\Prog.exe. Display them in a row, stretching or shrinking them to

' a width of 32 and a height of 64. Note how dynamically allocated arrays

' are used to receive the icon handles. Draw all icons on a light-gray

' background on the window Form1.

Dim hIcons() As Long ' dynamic array to receive handles to the icons

Dim numicons As Long ' number of regular icons in the file

Dim hBrush As Long ' handle to the background brush to use

Dim c As Long ' counter variable

Dim retval As Long ' return value

' Determine how many regular icons exist in the file and resize

' the array accordingly.

numicons = ExtractIconEx("C:\MyApp\Prog.exe", -1, ByVal 0, ByVal 0, 0)

If numicons = 0 Then

 Debug.Print "No icons found in the file -- aborting."

 End ' abort the program if failure occurs

End If

ReDim hIcons(0 To numicons - 1) As Long ' resize the array to hold all the handles

' Get a handle to the stock solid light gray brush to use for the background.

hBrush = GetStockObject(LTGRAY_BRUSH) ' handle to the brush

' Extract all of the icons to display.

retval = ExtractIconEx("C:\MyApp\Prog.exe", numicons, hIcons(0), ByVal 0, 0)

' Loop through each icon, displaying it as previously mentioned.

For c = 0 To numicons - 1

 ' The x coordinate equals 32 * c. The y coordinate is always 0.

 ' Display this particular icon.

 retval = DrawIconEx(Form1.hDC, 32 * c, 0, hIcons(c), 32, 64, 0, hBrush, DI_NORMAL)

 ' Now destroy this icon since we no longer are using it.

 retval = DestroyIcon(hIcons(c))

Next c

Related Functions

ExtractIcon

Category

Icons

FileTimeToLocalFileTime Function

Declare Function FileTimeToLocalFileTime Lib "kernel32.dll" (lpFileTime As FILETIME, lpLocalFileTime As FILETIME) As Long

Platforms: Win32s, Win 95/98, Win NT

FileTimeToLocalFileTime converts a time from UTC time (also known as Greenwich Mean Time) to "local time" (inside the computer's selected time zone). The source and target times are stored in FILETIME structures. The function returns 1 if successful, or 0 if an error occurs.

lpFileTime

The source time and date, which are in UTC time.

lpLocalFileTime

Receives the time and date stored in lpFileTime converted into the computer's current time zone time.

Example:

' Search for all files that match "C:\MyProgram\user*.*". Display

' the creation time of each file. Since the file search functions give the file times in UTC

' time, they must be converted to local time before they are displayed.

Dim hsearch As Long ' handle to the file search

Dim findinfo As WIN32_FIND_DATA ' receives info about matching files

Dim success As Long ' will be 1 if successive searches are successful, 0 if not

Dim localtime As FILETIME ' receives local creation time

Dim systime As SYSTEMTIME ' receives creation time

Dim retval As Long ' generic return value

' Begin a file search:

hsearch = FindFirstFile("C:\MyProgram\user*.*", findinfo)

If hsearch = -1 Then ' no files match the search string

 Debug.Print "(no files matched search parameter)"

 End ' abort program

End If

' Display creation date of each file that matches the search. Note that the name

' is displayed, the next file (if any) is found, and then the loop restarts.

' This way the first file (found above) will also be displayed.

Do ' begin loop

 ' Convert UTC FILETIME to local SYSTEMTIME and display the date:

 retval = FileTimeToLocalFileTime(findinfo.ftCreationTime, localtime)

 retval = FileTimeToSystemTime(localtime, systime)

 Debug.Print "Date:"; systime.wMonth; "-"; systime.wDay; "-"; systime.wYear

 ' Get the next matching file and loop if it exists:

 success = FindNextFile(hsearch, findinfo)

Loop Until success = 0 ' keep looping until no more matching files are found

' Close the file search handle

retval = FindClose(hsearch)

Related Call: LocalFileTimeToFileTime

Category: Time

FileTimeToSystemTime Function

Declare Function FileTimeToSystemTime Lib "kernel32.dll" (lpFileTime As FILETIME, lpSystemTime As SYSTEMTIME) As Long

Platforms: Win 32s, Win 95/98, Win NT

FileTimeToSystemTime converts a time and date stored in a FILETIME structure to an identical time and date stored in a SYSTEMTIME structure. The latter structure provides a easier way to access a date and time, whereas the former is used by Windows to identify times and dates associated with files. The data put into the SYSTEMTIME structure identifies the same time and date as the source structure does. The function returns 0 if an error occured, or 1 if successful.

lpFileTime

The date and time, in FILETIME form, to convert.

lpSystemTime

Receives the date and time converted into SYSTEMTIME format.

Example:

' Display the date when file C:\MyProgram\datafile.txt was

' created. Note how CreateFile's alternate declare must be used under Win 95/98 --

' see that function's page for more information. Also note how the times returned by GetFileTime

' need to be converted so the program can figure out what the date actually is.

Dim hfile As Long ' receives the handle to the file

Dim ctime As FILETIME ' receives creation date and time of the file

Dim atime As FILETIME ' receives last access date and time of the file

Dim wtime As FILETIME ' receives last write-to date and time of the file

Dim createtime As SYSTEMTIME ' receives a converted form of ctime

Dim retval As Long ' return value

' Get a handle to the file (note how the alternate declare is used):

hfile = CreateFileNS("C:\MyProgram\datafile.txt", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' if the file could not be opened

 Debug.Print "Could not open the file C:\MyProgram\datafile.txt."

 End ' abort the program

End If

' Get the various times and dates associated with the file:

retval = GetFileTime(hfile, ctime, atime, wtime)

' Convert the creation time from a FILETIME structure to a SYSTEMTIME structure (for usability):

retval = FileTimeToSystemTime(ctime, createtime)

' Display the creation date of the file:

Debug.Print "Creation Date:"; createtime.wMonth; "-"; createtime.wDay; "-"; createtime.wYear

' Close the file

retval = CloseHandle(hfile)

Related Call: SystemTimeToFileTime

Category: Time

FillMemory Function

Declare Sub FillMemory Lib "kernel32.dll" Alias "RtlFillMemory" (Destination As Any, ByVal Length As Long, ByVal Fill As Byte)

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

FillMemory fills a location in memory with a certain value. The function does this by setting each byte starting at the given memory location to the desired value. The memory location is identified by a pointer to the memory address.

Return Value

FillMemory does not return a value.

Visual Basic-Specific Issues

A pointer to any variable can be automatically generated merely by passing that variable as Destination. However, if either a String or a Long holding the desired memory address is passed, the ByVal keyword must preceed it. See the example below for a demonstration.

Parameters

Destination

A pointer to the location in memory (often the memory address of a variable) to begin filling with a certain value.

Length

The number of memory bytes, beginning with the address identified by Destination, to fill.

Fill

The byte value to set each byte in the desired memory location to.

Example

' Initialize all the elements in an array of bytes to the value 76. Also

' set each character in a 20-character string to the character "X".

Dim bytearray(0 To 9) As Byte ' array of 10 bytes

Dim bytestring As String ' string to fill

Dim c As Integer ' counter variable

' Fill the memory at bytearray() in order to initialize its members to 76. Note that, to

' identify the pointer to bytearray()'s memory, it is passed as normal.

FillMemory bytearray(0), 10, 76 ' fill 10 bytes to the byte value 76

' Display the results to verify that it worked.

For c = 0 To 9 ' loop through each element

 Debug.Print bytearray(c); ' each value displayed will be 76

Next c

' Now fill a 20-character string with "X" (using its ASCII code). Note how, in Visual

' Basic, the ByVal keyword must preceed the string in this case.

bytestring = Space(20) ' make the string 20 characters long

FillMemory ByVal bytestring, 20, Asc("X") ' set the contents to a bunch of "X"'s

' Display the results to verify that it worked.

Debug.Print bytestring ' will be twenty X's

Related Function

ZeroMemory

Category

Memory

FillRect Function

Declare Function FillRect Lib "user32.dll" (ByVal hdc As Long, lpRect As RECT, ByVal hBrush As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

FillRect fills a rectangular area on a device using the specified brush. The outline of the rectangular area is not drawn, and the bottom and right edges of the given rectangle are not filled in (they are not considered to be part of the interior of the rectangle). Note that this function uses the brush passed to the function, so it is not necessary to use SelectObject to have the device select the brush first. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to fill a rectangular area of.

lpRect

The coordinates of the rectangular area to fill.

hBrush

A handle to the brush to use to fill in the rectangular area.

Example:

' Use a blue diagonal-cross hatched brush to fill in a rectangular

' area on window Form1. The rectangular area has coordinates (20,25)-(200,175).

Dim hbrush As Long ' receives handle to the blue hatched brush to use

Dim r As RECT ' rectangular area to fill

Dim retval As Long ' return value

' Set the coordinates of the rectangle r

retval = SetRect(r, 20, 25, 200, 175) ' now r = (20,25)-(200,175)

' Create a blue diagonal-cross hatched brush

hbrush = CreateHatchBrush(HS_DIAGCROSS, RGB(0, 0, 255))

' Fill in the desired rectangular area

retval = FillRect(Form1.hDC, r, hbrush) ' fill the rectangle using the brush

' Delete the brush we created in order to free up resources

retval = DeleteObject(hbrush)

Related Calls: FillRgn, FrameRect

Category: Filled Shapes

FillRgn Function

Declare Function FillRgn Lib "gdi32.dll" (ByVal hdc As Long, ByVal hRgn As Long, ByVal hBrush As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

FillRgn fills the area defined by a region on a device. Instead of using the device's currently selected brush, the region is filled using a brush passed to the function. The boundary of the region is not drawn; only its area is filled. The function returns 0 if an error occured, or a non-zero value if successful.

hdc

A device context to the device to fill a region of.

hRgn

A handle to the region on the device to fill.

hBrush

A handle to the brush to use to fill the region.

Example:

' Use the light-gray solid stock brush to fill an elliptical region on window

' Form1. The bounding rectangle of the ellipse is (30,20)-(150,110).

Dim hrgn As Long ' handle to the region to fill

Dim hbrush As Long ' handle to the brush to fill the region with

Dim retval As Long ' return value

' First, get a handle to the stock light-gray solid brush.

hbrush = GetStockObject(LTGRAY_BRUSH)

' Next, create the elliptical region and get a handle to it.

hrgn = CreateEllipticRgn(30, 20, 150, 110)

' Fill the region using the light-gray brush.

retval = FillRgn(Form1.hDC, hrgn, hbrush)

' Delete the region to free resources. The stock brush does not need to be deleted.

retval = DeleteObject(hrgn)

Related Call: FillRect, FrameRgn

Category: Regions

FindClose Function

Declare Function FindClose Lib "kernel32.dll" (ByVal hFindFile As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

FindClose terminates a file-search operation initiated by FindFirstFile. This function closes the file search handle.

hFindFile

The search handle of the file-search operation to end.

Example:

' Search for all files that match "C:\MyProgram\user*.*". Display

' the filename of each file that matches the string.

Dim hsearch As Long ' handle to the file search

Dim findinfo As WIN32_FIND_DATA ' receives info about matching files

Dim success As Long ' will be 1 if successive searches are successful, 0 if not

Dim buffer As Long ' string buffer to use to process the filename(s)

Dim retval As Long ' generic return value

' Begin a file search:

hsearch = FindFirstFile("C:\MyProgram\user*.*", findinfo)

If hsearch = -1 Then ' no files match the search string

 Debug.Print "(no files matched search parameter)"

 End ' abort program

End If

' Display name of each file that matches the search. Note that the name is displayed, the

' next file (if any) is found, and then the loop restarts. This way the first file

' (found above) will also be displayed.

Do ' begin loop

 ' Extract the filename from the fixed-length string:

 buffer = Left(findinfo.cFileName, InStr(findinfo.cFileName, vbNullChar) - 1)

 Debug.Print buffer ' display this filename

 ' Get the next matching file and loop if it exists:

 success = FindNextFile(hsearch, findinfo)

Loop Until success = 0 ' keep looping until no more matching files are found

' Close the file search handle

retval = FindClose(hsearch)

Related Calls: FindFirstFile, FindNextFile

Category: Files

FindFirstFile Function

Declare Function FindFirstFile Lib "kernel32.dll" Alias "FindFirstFileA" (ByVal lpFileName As String, lpFindFileData As WIN32_FIND_DATA) As Long

Platforms: Win 32s, Win 95/98, Win NT

FindFirstFile begins a file search and provides information about the first matching file. The function searches for files based only on a filename with wildcards (* or ?). The search only looks in a single directory for the file(s), but it will identify any directory names in that directory that match the search string. Identifying information about the file is put into the variable passed as lpFindFileData. The function returns a "search handle" which can be used to look for additional matching files (via FindNextFile), or -1 if no files match the search (or if an error occured).

lpFileName

The file search string to look for, including the complete path. It can contain the wildcards * or ?.

lpFindFileData

Receives identifying information about the first file that matches the search string.

Example:

' Search for all files that match "C:\MyProgram\user*.*". Display

' the filename of each file that matches the string.

Dim hsearch As Long ' handle to the file search

Dim findinfo As WIN32_FIND_DATA ' receives info about matching files

Dim success As Long ' will be 1 if successive searches are successful, 0 if not

Dim buffer As Long ' string buffer to use to process the filename(s)

Dim retval As Long ' generic return value

' Begin a file search:

hsearch = FindFirstFile("C:\MyProgram\user*.*", findinfo)

If hsearch = -1 Then ' no files match the search string

 Debug.Print "(no files matched search parameter)"

 End ' abort program

End If

' Display name of each file that matches the search. Note that the name is displayed, the

' next file (if any) is found, and then the loop restarts. This way the first file

' (found above) will also be displayed.

Do ' begin loop

 ' Extract the filename from the fixed-length string:

 buffer = Left(findinfo.cFileName, InStr(findinfo.cFileName, vbNullChar) - 1)

 Debug.Print buffer ' display this filename

 ' Get the next matching file and loop if it exists:

 success = FindNextFile(hsearch, findinfo)

Loop Until success = 0 ' keep looping until no more matching files are found

' Close the file search handle

retval = FindClose(hsearch)

Related Calls: FindClose, FindNextFile

Category: Files

FindNextFile Function

Declare Function FindNextFile Lib "kernel32.dll" Alias "FindNextFileA" (ByVal hFindFile As Long, lpFindFileData As WIN32_FIND_DATA) As Long

Platforms: Win 32s, Win 95/98, Win NT

FindNextFile continues a file search began by FindFirstFile. It finds and provides identifying information about the next file that matches the search string. This information is put into the variable passed as lpFindFileData. The function returns 1 if another matching file was found, or 0 if no more matching files exist (or if an error occured).

hFindFile

The handle to the file search initiated by FindFirstFile.

lpFindFileData

Receives identifying information about the next matching file that was found.

Example:

' Search for all files that match "C:\MyProgram\user*.*". Display

' the filename of each file that matches the string.

Dim hsearch As Long ' handle to the file search

Dim findinfo As WIN32_FIND_DATA ' receives info about matching files

Dim success As Long ' will be 1 if successive searches are successful, 0 if not

Dim buffer As Long ' string buffer to use to process the filename(s)

Dim retval As Long ' generic return value

' Begin a file search:

hsearch = FindFirstFile("C:\MyProgram\user*.*", findinfo)

If hsearch = -1 Then ' no files match the search string

 Debug.Print "(no files matched search parameter)"

 End ' abort program

End If

' Display name of each file that matches the search. Note that the name is displayed, the

' next file (if any) is found, and then the loop restarts. This way the first file

' (found above) will also be displayed.

Do ' begin loop

 ' Extract the filename from the fixed-length string:

 buffer = Left(findinfo.cFileName, InStr(findinfo.cFileName, vbNullChar) - 1)

 Debug.Print buffer ' display this filename

 ' Get the next matching file and loop if it exists:

 success = FindNextFile(hsearch, findinfo)

Loop Until success = 0 ' keep looping until no more matching files are found

' Close the file search handle

retval = FindClose(hsearch)

Related Calls: FindClose, FindFirstFile

Category: Files

FindWindow Function

Declare Function FindWindow Lib "user32.dll" Alias "FindWindowA" (ByVal lpClassName As Any, ByVal lpWindowName As Any)

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

FindWindow searches all windows for one which matches the window class name and/or window name. The function's searching mechanism is not case-sensitive. If you do not wish to specify either a class name or window name, you must pass a 0 for that parameter -- passing merely an empty string does not work.

Return Value

If an error occured or a matching window could not be found, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a handle to the window which it found.

Visual Basic-Specific Issues

When explicitly passing a 0 as either parameter, you must use the CLng function on it to explicitly make the parameter a Long. Visual Basic does not allow ordinary numeric literals to be passed as Any data type.

Parameters

lpClassName

The name of the window class of the window to find. Pass 0 to allow the window to be of any class.

lpWindowName

The name of the title bar text of the window to find. Pass 0 to allow the window to have any name.

Example

' Search for a window called Minesweeper and flash its title bar

' once. We don't need to know the name of that window's class in order to

' find it, but we could include it if we wanted.

Dim hwnd As Long ' receives handle to the found window

Dim retval As Long ' generic return value

' Attempt to locate a window called Minesweeper. Note how the CLng function

' must be used to force 0 as a Long data type.

hwnd = FindWindow(CLng(0), "Minesweeper") ' look for the window

If hwnd = 0 Then ' could not find the window

 Debug.Print "Minesweeper is not currently running." ' if it were, there'd be a window!

Else

 ' Flash the window's title bar on and off once.

 retval = FlashWindow(hwnd, 1)

 Sleep 500 ' pause for half a second

 retval = FlashWindow(hwnd, 0)

End If

Related Function

FindWindowEx

Category

Windows

FindWindowEx Function

Declare Function FindWindowEx Lib "user32.dll" Alias "FindWindowExA" (ByVal hwndParent As Long, ByVal hwndChildAfter As Long, ByVal lpszClass As Any, ByVal lpszWindow As Any) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 4.0 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

FindWindowEx searches for a window matching a specified window class name and/or window name. The function searches all of the child windows of a given window (if desired), beginning with the windows below a specified child window. If you do not wish to specify a window class name or a window name, you must pass 0 for those parameters -- merely passing an empty string does not work.

Return Value

If an error occured or no matching windows could be found, the function returns 0 (use GetLastError to get the error code). If the function finds the window, the function returns a handle to that window.

Visual Basic-Specific Issues

When explicitly passing a 0 as lpszClass or lpszWindow, you must use the CLng function on it to explicitly make the parameter a Long. Visual Basic does not allow ordinary numeric literals to be passed as Any data type.

Parameters

hWndParentA handle to the parent window to search the child windows of. To search all windows, specify 0 for this parameter.

hWndChildAfterA handle to the child window specifying a place to begin searching. Searching begins with the child window immediately after this window in the Z-order. If this is 0, searching begins with the child window at the top of the Z-order.

lpszClass

The name of the window class of the window to find. Pass 0 to allow the window to be of any class.

lpszWindow

The name of the title bar text of the window to find. Pass 0 to allow the window to have any name.

Example

' Display the name of the command button at the top of the Z-order

' (which doesn't make much sense in this context) on window Form1. The command

' button is considered a child window of Form1. In Visual Basic 5, the class name

' of command buttons is "ThunderCommandButton". Remember, command buttons

' are just another type of window!

Dim hwnd As Long ' handle to the found window (the command button)

Dim slength As Long ' length of the found window's text

Dim wintext As String ' holds the window's text

Dim retval As Long ' return value

' Find the "topmost" command button on Form1. Begin searching at the top.

' (Note how the CLng function must be used to force 0 to be a Long.)

hwnd = FindWindowEx(Form1.hWnd, 0, "ThunderCommandButton", CLng(0))

If hwnd = 0 Then ' if no such windows exist

 Debug.Print "No command buttons of class ThunderCommandButton were found."

Else

 ' Display the name (text) of the found window.

 slength = GetWindowTextLength(hwnd) ' get length of text

 wintext = Space(slength + 1) ' make enough room in the buffer, including the trailing null

 retval = GetWindowText(hwnd, wintext, slength + 1) ' get text

 wintext = Left(wintext, slength) ' remove the trailing null character

 Debug.Print "The command button's name is: "; wintext ' display the result

End If

Related Function

FindWindow

Category

Windows

FlashWindow Function

Declare Function FlashWindow Lib "user32.dll" (ByVal hwnd As Long, ByVal bInvert As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

FlashWindow flashes a window one step. Flashing is where the title bar of the window is switched from an active to inactive look (or vice versa) to get the user's attention. Normally this is done multiple times, instead of just once. When you are done flashing, be sure to call the function again, this time with bInvert set to 0. The function returns 0 if the window's look was inactive before flashing, or 1 if its look was active.

hwnd

The handle of the window to flash one step.

bInvert

Specifies how to flash. If non-zero, switches the title bar from an active to inactive look (or vice versa). If zero, restores the window to its normal look.

Example:

' Flash Form1 five times to get the user's attention

Dim c As Integer, retval As Long ' counter variable & return value

For c = 1 To 10 ' flash on five times, off five times

 retval = FlashWindow(Form1.hWnd, 1) ' toggle the look of the window

 Sleep 500 ' halt execution for 500 milliseconds (1/2 minute)

Next c

retval = FlashWindow(Form1.hWnd, 0) ' make sure the window looks normal

Category: Windows

FrameRect Function

Declare Function FrameRect Lib "user32.dll" (ByVal hdc As Long, lpRect As RECT, ByVal hBrush As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

FrameRect draws a one-pixel-wide frame around a rectangle on a device using a given brush. This frame is equivalent to what the edge of a filled rectangle (using FillRect) would be. Note that this function uses the brush passed to the function, so it is not necessary to use SelectObject to have the device select the brush first. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to draw the rectangular frame on.

lpRect

The rectangle that defines the rectangular frame to draw.

hBrush

A handle to the brush to use to draw the rectangular frame.

Example:

' Use a blue diagonal-cross hatched brush to draw a rectangular

' frame on window Form1. The rectangular frame has coordinates (20,25)-(200,175).

Dim hbrush As Long ' receives handle to the blue hatched brush to use

Dim r As RECT ' rectangular area to frame

Dim retval As Long ' return value

' Set the coordinates of the rectangle r

retval = SetRect(r, 20, 25, 200, 175) ' now r = (20,25)-(200,175)

' Create a blue diagonal-cross hatched brush

hbrush = CreateHatchBrush(HS_DIAGCROSS, RGB(0, 0, 255))

' Fill in the desired rectangular area

retval = FrameRect(Form1.hDC, r, hbrush) ' frame the rectangle using the brush

' Delete the brush we created in order to free up resources

retval = DeleteObject(hbrush)

Related Call: FillRect, FrameRgn

Category: Filled Shapes

FrameRgn Function

Declare Function FrameRgn Lib "gdi32.dll" (ByVal hdc As Long, ByVal hRgn As Long, ByVal hBrush As Long, ByVal nWidth As Long, ByVal nHeight As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

FrameRgn draws a frame (border) around a given region on a device using the specified brush. The device's currently selected brush is not used. The width and height of the drawn frame are also specified by the function. The function returns 0 if an error occured, or a non-zero value if successful.

hdc

A device context to the device to draw on.

hRgn

A handle to the region to draw the frame of.

hBrush

A handle to the brush to use to draw the frame.

nWidth

The width in pixels of vertical brush strokes to use to draw the frame.

nHeight

The height in pixels of horizontal brush strokes to use to draw the frame.

Example:

' Draw a frame around an elliptical region on window Form1. The frame will

' have a width of 5 and a height of 3. The region has bounding rectangle (20,30)-(220,180).

' A green diagonally cross-hatched brush is used.

Dim hRgn As Long ' handle to the region to frame

Dim hBrush As Long ' handle to the green diagonally cross-hatched brush

Dim retval As Long ' generic return value

' Create the elliptical region and the brush.

hRgn = CreateEllipticRgn(20, 30, 220, 180) ' elliptical region

hBrush = CreateHatchBrush(HS_DIAGCROSS, RGB(0, 255, 0)) ' brush

' Frame the region using the created brush.

retval = FrameRgn(Form1.hDC, hRgn, hBrush, 5, 3) ' frame width = 5, height = 3

' Delete the region and brush to free up resources.

retval = DeleteObject(hRgn)

retval = DeleteObject(hBrush)

Related Call: FillRgn, FrameRect

Category: Regions

GetActiveWindow Function

Declare Function GetActiveWindow Lib "user32.dll" () As Long

Platforms: Win 32s, Win 95/98, Win NT

GetActiveWindow returns a handle to your program's currently active window. This only works with windows created by your application -- in other words, it won't find the active window of other programs. If your program is in the background, the function will get the window that would be active if the program were active. If an error occurs, or if there is no active window to your program, the function instead returns 0.

Example:

' Use FlashWindow to flash the title bar of the program's

' currently active window once.

Dim hactive As Long ' handle to the active window

Dim retval As Long ' return value

hactive = GetActiveWindow() ' get the handle of the program's active window

' The next three lines flash the window's title bar

retval = FlashWindow(hactive, 1): Sleep 250

retval = FlashWindow(hactive, 1): Sleep 250

retval = FlashWindow(hactive, 0)

Related Calls: GetForegroundWindow, GetWindow, SetActiveWindow

Category: Windows

GetArcDirection Function

Declare Function GetArcDirection Lib "gdi32.dll" (ByVal hdc As Long)

Platforms: Win 32s, Win 95/98, Win NT

GetArcDirection determines the direction in which arcs are drawn on a graphics-capable device. Arcs can be drawn either clockwise or counterclockwise from the starting point to the ending point. Although this function is supported in Win 95/98, that platform ignores the setting and always draws arcs counterclockwise! The function returns 0 if an error occured, or exactly one of the following flags specifying which direction arcs on the device will be drawn:

AD_CLOCKWISE = 2

Arcs are drawn clockwise from the starting point to the ending point.

AD_COUNTERCLOCKWISE = 1

Arcs are drawn counterclockwise from the starting point to the ending point.

hdc

The device context of the device to find the arc-drawing direction of.

Example:

' Display which direction window Form1 draws arcs.

Dim arcdir As Long ' receives arc direction

arcdir = GetArcDirection(Form1.hDC) ' get the arc direction for Form1

If arcdir = AD_CLOCKWISE Then

 Debug.Print "Form1 draws arcs clockwise."

ElseIf arcdir = AD_COUNTERCLOCKWISE Then

 Debug.Print "Form1 draws arcs counterclockwise."

End If

Related Calls: AngleArc, Arc, ArcTo, SetArcDirection

Category: Lines & Curves

GetBrushOrgEx Function

Declare Function GetBrushOrgEx Lib "gdi32.dll" (ByVal hdc As Long, lpPoint As POINT_TYPE) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetBrushOrgEx determines the origin point for using a brush on a given device is. All brushes are stored as an 8x8 pixel block, but Windows can offset the "origin" point determining the adjustment of the brush fill is. For example, an origin of (2,3) would shift the fill pattern design 2 pixels right and 3 pixels down. The current brush origin is put into the variable passed as lpPoint. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to find the brush origin point of.

lpPoint

Receives the (x,y) coordinate pair of the device's brush origin point.

Example:

' Display the brush origin point for window Form1.

Dim brushorg As POINT_TYPE ' receives brush origin point

Dim retval As Long ' return value

' Determine the brush origin and display its coordinates:

retval = GetBrushOrgEx(Form1.hDC, brushorg)

Debug.Print "All brush designs are offset"; brushorg.x; "pixels right ";

Debug.Print "and"; brushorg.y; "pixels downward."

Related Call: SetBrushOrgEx

Category: Brushes

GetClipCursor Function

Declare Function GetClipCursor Lib "user32.dll" (lprc As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetClipCursor finds the current confinement rectangle of the mouse cursor. The mouse cursor is confined by using ClipCursor. The cursor is confined inside this rectangle -- even SetCursorPos cannot free it. If there is no apparent confinement rectangle, it is actually the size of the screen. The coordinates of the rectangle is put into lprc. The function returns 0 if an error occured, or 1 if it succeeded.

lprcReceives the coordinates of the confinement rectangle.

Example:

' Display the coordinates of the confinement rectangle.

Dim r As RECT ' receives coordinates of rectangle

Dim retval As Long ' return value

retval = GetClipCursor(r) ' read the coordinates and put them into r

Debug.Print r.Left; r.Top ' display upper-left (x,y) pair

Debug.Print r.Right; r.Bottom ' display lower-right (x,y) pair

Related Call: ClipCursor

Category: Cursor

GetComputerName Function

Declare Function GetComputerName Lib "kernel32.dll" Alias "GetComputerNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Platforms: Win 95/98, Win NT

GetComputerName reads the name of the user's computer. The name is put into the string variable passed as lpBuffer. The function returns 0 if an error occured or 1 if successful.

lpBuffer

A string large enough to hold the returned computer name terminated by a null character.

nSize

The length in characters of lpBuffer.

Example:

' Display the computer's name

Dim compname As String, retval As Long ' string to use as buffer & return value

compname = Space(255) ' set a large enough buffer for the computer name

retval = GetComputerName(compname, 255) ' get the computer's name

' Remove the trailing null character from the strong

compname = Left(compname, InStr(compname, vbNullChar) - 1)

Debug.Print compname ' display name

Category: System Information

GetCursor Function

Declare Function GetCursor Lib "user32.dll" () As Long

Platforms: Win 32s, Win 95/98, Win NT

GetCursor finds the handle to the mouse cursor currently in use. This is the cursor that is being used to represent the mouse pointer on the screen. The function returns a handle to the cursor picture if successful, or returns 0 if an error occurs.

Example:

' Display the hourglass for three seconds, then restore

' the mouse cursor to whatever it was originally.

Dim holdcursor As Long ' receives handle to the original cursor

Dim hcursor As Long ' receives handle to the hourglass (wait) cursor

Dim retval As Long ' throw-away return value

holdcursor = GetCursor() ' get the handle of the current mouse cursor

hcursor = LoadCursor(0, IDC_WAIT) ' load the hourglass cursor

retval = SetCursor(hcursor) ' set the cursor to the hourglass

Sleep 3000 ' wait for three seconds

retval = SetCursor(holdcursor) ' restore the original cursor

Related Call: SetCursor

Category: Cursor

GetCursorPos Function

Declare Function GetCursorPos Lib "user32.dll" (lpPoint As POINT_TYPE) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetCursorPos reads the current position of the mouse cursor. The x and y coordinates of the cursor (relative to the screen) are put into the variable passed as lpPoint. The function returns 0 if an error occured or 1 if it is successful.

lpPoint

Receives the x and y coordinates of the mouse cursor.

Example:

' Display the coordinates of the mouse cursor

Dim coord As POINT_TYPE ' receives coordinates of cursor

Dim retval As Long ' return value

retval = GetCursorPos(coord) ' read cursor location

Debug.Print "The mouse is at:"; coord.x; coord.y

Related Call: SetCursorPos

Category: Cursor

GetDC Function

Declare Function GetDC Lib "user32.dll" (ByVal hWnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetDC returns the device context (DC) of a window or other device, given the object's handle. When you are finished using the device context, you should use ReleaseDC to free up system resources. If you try to get the device context of something that is not a device (i.e., pass the function a handle to a file) or another error occurs, the function will instead return 0. Do not use DeleteDC to destroy the device context when you are done.

hWnd

The handle of the object or device to get the device context of.

Example:

' Find the device context of the desktop

Dim deskhwnd As Long ' handle to the desktop

Dim deskhdc As Long ' device context to the desktop

Dim retval As Long ' return value

deskhwnd = GetDesktopWindow() ' get the desktop's handle

deskhdc = GetDC(deskhwnd) ' get the desktop's device context

' You could put any code that works with the desktop here

retval = ReleaseDC(deskhwnd, deskhdc) ' free up resources associated with the device context

Related Call: CreateDC, ReleaseDC

Category: Devices

GetDesktopWindow Function

Declare Function GetDesktopWindow Lib "user32.dll" () As Long

Platforms: Win 32s, Win 95/98, Win NT

GetDesktopWindow returns a handle to the desktop window. The desktop window is the window that makes up the desktop of the computer -- that is, the screen. If the function fails, it will return 0 instead of the handle.

Example:

' Find the device context of the desktop

' The handle to the desktop is needed to find the device context

Dim deskhwnd As Long ' handle to the desktop

Dim deskhdc As Long ' device context to the desktop

Dim retval As Long ' return value

deskhwnd = GetDesktopWindow() ' get the desktop's handle

deskhdc = GetDC(deskhwnd) ' get the desktop's device context

' You could put any code that works with the desktop here

retval = ReleaseDC(deskhwnd, deskhdc) ' free up resources associated with the device context

Category: Windows

GetDiskFreeSpace Function

Declare Function GetDiskFreeSpace Lib "kernel32.dll" Alias "GetDiskFreeSpaceA" (ByVal lpRootPathName As String, lpSectorsPerCluster As Long, lpBytesPerSector As Long, lpNumberOfFreeClusters As Long, lpTotalNumberOfClusters As Long) As Long

Platforms

Windows 95: Supported but Obsolete with OEM Service Release 2 (OEM2) or later; use GetDiskFreeSpaceEx instead.

Windows 98: Supported but Obsolete; use GetDiskFreeSpaceEx instead.

Windows NT: Requires Windows NT 3.1 or later but obsolete in Windows NT 4.0 or later; use GetDiskFreeSpaceEx instead.

Windows 2000: Supported but Obsolete; use GetDiskFreeSpaceEx instead.

Windows CE: Not Supported.

Description & Usage

GetDiskFreeSpace retrives information about the amount of space on a disk. This information includes the number of sectors in each cluster, the number of bytes in each sector, the number of free clusters, and the total number of clusters. Due to the limitations of the 32-bit integer data type, this function only works properly with disks with a capacity less than 2 MB. The replacement function GetDiskFreeSpaceEx does not have this limitation.

Return Value

If an error occured, the function returns 0 (use GetLastError to determine the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

None

Parameters

lpRootPathName

The root directory of the disk to get information on, such as "c:\" or "a:\"

lpSectorsPerCluster

32-bit integer variable which receives the number of sectors in a cluster on the disk.

lpBytesPerSector

32-bit integer variable which receives the number of bytes in a sector on the disk.

lpNumberOfFreeClusters

32-bit integer variable which receives the number of unused, empty clusters on the disk. Windows 2000: This may be lower than the actual value if per-user quotas are enabled.

lpTotalNumberOfClusters

32-bit integer variable which receives the total number of clusters, used and unused, on the disk. Windows 2000: This may be lower than the actual value if per-user quotas are enabled.

Example

' Calculate and display the free and total space on drive C:

Dim secPerClus As Long ' receives sectors per cluster

Dim bytePerSec As Long ' receives bytes per sector

Dim freeClus As Long ' receives number of free clusters

Dim totalClus As Long ' receives total number of clusters

Dim retval As Long ' return value

' Read the information into the variables

retval = GetDiskFreeSpace("c:\", secPerClus, bytePerSec, freeClus, totalClus)

' Display the information

Debug.Print "Free space:"; freeClus * secPerClus * bytePerSec; "bytes"

Debug.Print "Total space:"; totalClus * secPerClus * bytePerSec; "bytes"

Related Function

GetDiskFreeSpaceEx

Category

Files

GetDiskFreeSpaceEx Function

Declare Function GetDiskFreeSpaceEx Lib "kernel32.dll" Alias "GetDiskFreeSpaceExA" (ByVal lpDirectoryName As String, lpFreeBytesAvailableToCaller As ULARGE_INTEGER, lpTotalNumberOfBytes As ULARGE_INTEGER, lpTotalNumberOfFreeBytes As ULARGE_INTEGER) As Long

Platforms

Windows 95: Requires OEM Service Release 2 (OSR2) or later.

Windows 98: Supported.

Windows NT: Requires Windows NT 4.0 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

GetDiskFreeSpaceEx determines information about the size of a disk. It finds the free space available to the current user, the total disk space, and the amount of free space (all in bytes). Each value is placed into a ULARGE_INTEGER structure which can hold the unsigned 64-bit integer values. (If your programming language supplies an intrinsic unsigned 64-bit integer data type, that can be used instead.)

Return Value

If an error occured, the function returns 0 (use GetLastError to retrieve the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

Until Visual Basic implements an intrinsic unsigned 64-bit integer data type, the ULARGE_INTEGER data structure must be used.

Parameters

lpDirectoryName

The name of a directory on the disk to retrieve the size information about. While this can be the name of the disk's root directory, it doesn't have to be.

lpFreeBytesAvailableToCaller

Unsigned 64-bit integer variable which receives the amount of free disk space available, in bytes, to the user. Windows 2000: This may be lower than the actual value if per-user disk space quotas are enabled.

lpTotalNumberOfBytes

Unsigned 64-bit integer variable which receives the amount of total disk space, in bytes. Windows 2000: This may be lower than the actual value if per-user disk space quotas are enabled.

lpTotalNumberOfFreeBytes

Unsigned 64-bit integer variable which receives the amount of free disk space, in bytes.

Example

' Display the amount of free space on drive C:. If possible, display the free space

' as a "regular" number. If it is larger than a 32-bit value, display the number in

' hexadecimal becaue Visual Basic does not yet support unsigned 64-bit integers.

Dim userbytes As ULARGE_INTEGER ' receives space available to user

Dim totalbytes As ULARGE_INTEGER ' receives total space

Dim freebytes As ULARGE_INTEGER ' receives free space

Dim buffer As String ' used as buffer to build hexadecimal display string

Dim retval As Long ' return value

' Determine the amount of free space available -- ignore the other values.

retval = GetDiskFreeSpaceEx("C:\", userbytes, totalbytes, freebytes) ' information for C:

' If the value fits into a 31-bit integer (because VB doesn't support unsigned 32-bit integers),

' display its value in base 10. If not, convert it to base 16 (hexadecimal) to display.

If freebytes.HighPart = 0 And (freebytes.LowPart &H80000000) = 0 Then ' can display regularly

 Debug.Print "Free Space on C:"; freebytes.LowPart ' no conversion is necessary

Else ' convert the two halves into hexadecimal

 buffer = Hex(freebytes.LowPart) ' convert low-order half into hex

 ' Add leading 0's if it isn't 8 digits long.

 If Len(buffer) < 8 Then buffer = String(8 - Len(buffer), "0") & buffer

 buffer = Hex(freebytes.HighPart) & buffer ' add high-order word

 Debug.Print "Free Space on C: (hex): "; buffer ' display hexadecimal equivalent

End If

Related Function

GetDiskFreeSpace

Category

Files

GetDoubleClickTime Function

Declare Function GetDoubleClickTime Lib "user32.dll" () As Long

Platforms: Win 32s, Win 95/98, Win NT

GetDoubleClickTime determines the maximum time allowed between successive mouse clicks for Windows to interpret it as a double click (along with negligible mouse movement). The maximum time between clicks is given in milliseconds. The function returns the maximum double click time.

Example:

' Display the maximum amount of time between clicks to

' consider the operation a double click.

Dim doubletime As Long ' receives double click time

doubletime = GetDoubleClickTime() ' get the maximum double click time

Debug.Print doubletime; "milliseconds are allowed between clicks during a double click."

Related Call: SetDoubleClickTime

Category: Mouse

GetDriveType Function

Declare Function GetDriveType Lib "kernel32.dll" Alias "GetDriveTypeA" (ByVal nDrive As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetDriveType finds the type of disks a disk drive is/uses. This could be a fixed (hard) drive, a floppy drive, a CD-ROM drive, etc. The function returns the drive type. 0 means that an error occured. 1 means that the specified drive does not exist. Other return values are one of the following flags identifying the drive type:

DRIVE_CDROM = 5

A CD-ROM drive.

DRIVE_FIXED = 3

A hard drive.

DRIVE_RAMDISK = 6

A RAM disk.

DRIVE_REMOTE = 4

A network drive or a drive located on a network server.

DRIVE_REMOVABLE = 2

A floppy drive or some other removable-disk drive.

nDrive

The root directory of the drive to check, such as "c:\" or "a:\"

Example:

' Determine what type of drive D: is

Dim drivetype As Long ' receives the drive type

drivetype = GetDriveType("d:\") ' determine which kind of drive this is

If drivetype = 1 Then Debug.Print "Drive D:\ does not exist."

If drivetype = DRIVE_REMOVABLE Then Print "Drive D:\ is a removable-disk drive."

If drivetype = DRIVE_FIXED Then Print "Drive D:\ is a hard drive."

If drivetype = DRIVE_CDROM Then Print "Drive D:\ is a CD-ROM drive."

' etc.

Category: Files

GetFileAttributes Function

Declare Function GetFileAttributes Lib "kernel32.dll" Alias "GetFileAttributesA" (ByVal lpFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetFileAttributes returns the attributes of a file or a directory. Attributes determine such things as read-only status, archive status (most files are), hidden status, etc. If the function fails, it will return 0. If the file or directory cannot be found, it will return -1. Otherwise, the return value will be one or more of the following file attribute flags:

FILE_ATTRIBUTE_ARCHIVE = &H20

An archive file (which most files are).

FILE_ATTRIBUTE_COMPRESSED = &H800

A file residing in a compressed drive or directory.

FILE_ATTRIBUTE_DIRECTORY = &H10

A directory instead of a file.

FILE_ATTRIBUTE_HIDDEN = &H2

A hidden file, not normally visible to the user.

FILE_ATTRIBUTE_NORMAL = &H80

An attribute-less file (cannot be combined with other attributes).

FILE_ATTRIBUTE_READONLY = &H1

A read-only file.

FILE_ATTRIBUTE_SYSTEM = &H4

A system file, used exclusively by the operating system.

lpFileName

The full name of the file or directory to check the attributes of, including the full path.

Example:

' Display the attributes of C:\Files\program.exe

Dim attribs As Long ' receives file attributes

attribs = GetFileAttributes("C:\Files\program.exe") ' read file attributes

If (attribs And FILE_ATTRIBUTES_ARCHIVE) <> 0 Then Debug.Print "Archive"

If (attribs And FILE_ATTRIBUTES_HIDDEN) <> 0 Then Debug.Print "Hidden"

If (attribs And FILE_ATTRIBUTES_READONLY) <> 0 Then Debug.Print "Read-only"

' etc....

Related Calls: GetFileInformationByHandle, SetFileAttributes

Category: Files

GetFileInformationByHandle Function

Declare Function GetFileInformationByHandle Lib "kernel32.dll" (ByVal hFile As Long, lpFileInformation As BY_HANDLE_FILE_INFORMATION) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetFileInformationByHandle determines various information about a file. This information includes the file's attributes; its creation, last-access, and last-modified dates and times; the serial number of the disk the file is on; the size of the file; the number of links to it in the file system; and the its unique numeric identifier. All of this information is put into the structure passed as lpFileInformation. The function returns 0 if an error occured, or 1 if successful.

hFile

A handle to the file to get the information of.

lpFileInformation

Receives the information (specified above) relating to the file.

Example:

' Display the serial number of the disk that file C:\MyProgram\datafile.txt

' is on -- in other words, we are finding the serial number of drive C:. Note that here we

' aren't interested in the other information we receive. Also note that the alternate declare

' of CreateFile must be used here since we're using Win 95/98 -- see its page for details.

Dim hfile As Long ' receives the handle to the file

Dim fileinfo As BY_HANDLE_FILE_INFORMATION ' receives info about the file

Dim hexstring As String ' will receive the hexadecimal form of the serial number

Dim retval As Long ' return value

' Get a handle to the file (note how the alternate declare is used):

hfile = CreateFileNS("C:\MyProgram\datafile.txt", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' if the file could not be opened

 Debug.Print "Could not open the file C:\MyProgram\datafile.txt."

 End ' abort the program

End If

' Display the serial number, using hexadecimal:

retval = GetFileInformationByHandle(hfile, fileinfo) ' read the information

hexstring = Hex(fileinfo.dwVolumeSerialNumber) ' get the hexadecimal value of the serial number

If Len(hexstring) < 8 Then ' if the string is less than 8 characters,

 hexstring = String("0", 8 - Len(hexstring)) & hexstring ' then right-pad it with "0"s

End If

Debug.Print "The serial number of C: is "; hexstring

' Close the file:

retval = CloseHandle

Related Calls: GetFileAttributes, GetFileSize, GetFileTime

Category: Files

GetFileSize Function

Declare Function GetFileSize Lib "kernel32.dll" (ByVal hFile As Long, lpFileSizeHigh As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetFileSize determines the size of the file. The file size is given in a 64-bit value that is split into two 32-bit values. The high-order half is put into the variable passed as lpFileSizeHigh; the low-order half is returned by the function. To get the size, you can either put the binary or hexadecimal values of the two variables side-by-side, or use the formula filesize = lpFileSizeHigh * 2^32 + return value. If an error occurs, the function instead returns -1.

hFile

A handle to the file to determine the size of. The file must be opened with at least either read-level or write-level access.

lpFileSizeHigh

Variable that receives the high-order half of the file size.

Example:

' Display the file size of "C:\MyProgram\datafile.txt". Note how

' the alternate declare of the CreateFile function (needed to get the file's handle)

' must be used -- see that function's page for details.

Dim hfile As Long ' receives a handle to the file

Dim loworder As Long, highorder As Long ' receive the low- and high-order halves of the file size

Dim retval As Long ' return value

' Get a handle to the file using CreateFile's alternate declare (necessary for non-Win NT).

hfile = CreateFileNS("C:\MyProgram\datafile.txt", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' error opening the file

 Debug.Print "Could not open file C:\MyProgram\datafile.txt"

 End ' abort the program

End If

' Read and display that file's size in bytes.

highorder = 0 ' initialize the value for high-order half

loworder = GetFileSize(hfile, highorder) ' read the file's size

If highorder = 0 Then ' if there is no high-order part

 Debug.Print "File size:"; loworder; "bytes" ' display the file size

Else ' if there is a high-order part (file size >= 4.29 GB!)

 ' Visual Basic has no 64-bit variables, so we can't display the actual value:

 Debug.Print "File size:"; highorder; "* 2^32 +"; loworder; "bytes (in base-10)"

 ' But we can combine the two hex values to give the result in hexadecimal:

 Debug.Print "File size: "; Hex(highorder); Hex(loworder); " bytes (in hexadecimal)"

End If

' Close the file

retval = CloseHandle(hfile) ' close the handle

Related Call: GetFileInformationByHandle

Category: Files

GetFileTime Function

Declare Function GetFileTime Lib "kernel32.dll" (ByVal hFile As Long, lpCreationTime As FILETIME, lpLastAccessTime As FILETIME, lpLastWriteTime As FILETIME) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetFileTime determines the times and dates of creation, last access, and last modification (write-to) of a file. Each of these times are put into the corresponding variables passed to the function. The function returns 1 if successful, or 0 if an error occured.

hFile

A handle to the file to get the creation, last access, and last modification times and dates of. The file must have been opened with at least read-level access.

lpCreationTime

Receives the time and date when the file was created.

lpLastAccessTime

Receives the time and date when the file was last accessed.

lpLastWriteTime

Receives the time and date when the file was last written to or modified.

Example:

' Display the date when file C:\MyProgram\datafile.txt was

' created. Note how CreateFile's alternate declare must be used under Win 95/98 --

' see that function's page for more information.

Dim hfile As Long ' receives the handle to the file

Dim ctime As FILETIME ' receives creation date and time of the file

Dim atime As FILETIME ' receives last access date and time of the file

Dim wtime As FILETIME ' receives last write-to date and time of the file

Dim createtime As SYSTEMTIME ' receives a converted form of ctime

Dim retval As Long ' return value

' Get a handle to the file (note how the alternate declare is used):

hfile = CreateFileNS("C:\MyProgram\datafile.txt", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' if the file could not be opened

 Debug.Print "Could not open the file C:\MyProgram\datafile.txt."

 End ' abort the program

End If

' Get the various times and dates associated with the file:

retval = GetFileTime(hfile, ctime, atime, wtime)

' Convert the creation time from a FILETIME structure to a SYSTEMTIME structure (for usability):

retval = FileTimeToSystemTime(ctime, createtime)

' Display the creation date of the file:

Debug.Print "Creation Date:"; createtime.wMonth; "-"; createtime.wDay; "-"; createtime.wYear

' Close the file

retval = CloseHandle(hfile)

Related Call: GetFileInformationByHandle

Category: Files

GetForegroundWindow Function

Declare Function GetForegroundWindow Lib "user32.dll" () As Long

Platforms: Win 95/98, Win NT

GetForegroundWindow finds which window is currently the foreground window. The foreground window is the window, usually at the top of the Z-order, with which the user is currently working with -- i.e., the window with the focus. The function returns 0 if an error occured, or the handle of the foreground window if successful.

Example:

' Display the title bar text of the foreground window.

Dim hforewnd As Long ' receives handle of foreground window

Dim slength As Long ' length of foreground window's title bar text

Dim wintext As String ' buffer for foreground window's title bar text

Dim retval As Long ' return value

hforewnd = GetForegroundWindow() ' determine the foreground window

slength = GetWindowTextLength(hforewnd) + 1 ' length of its title bar text

wintext = Space(slength) ' make room in the buffer to receive the text

retval = GetWindowText(hforewnd, wintext, slength) ' get title bar text

wintext = Left(wintext, slength - 1) ' remove null character from end of string

Debug.Print "The window "; wintext; " is the foreground window."

Related Call: SetForegroundWindow

Category: Windows

GetFullPathName Function

Declare Function GetFullPathName Lib "kernel32.dll" Alias "GetFullPathNameA" (ByVal lpFileName As String, ByVal nBufferLength As Long, ByVal lpBuffer As String, ByVal lpFilePart As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetFullPathName appends a specified filename to the name of the current directory. For example, if you specify the file "hello.txt" and the current directory is "C:\My Documents\Junk", the resulting filename would be "C:\My Documents\Junk\hello.txt". This string is put into the string passed as lpBuffer. The function returns 0 if an error occured, or the length of the final string if successful.

lpFileName

The name of the file to append.

nBufferLength

The size in characters of lpBuffer.

lpBuffer

A string variabled that receives the null-terminated combined path and filename.

lpFilePart

??? (appears to have no effect)

Example:

' Append the filename datafile.dat to C:\Programs\Test

Dim buffer As String ' receives path and filename string

Dim numchar As Long ' receives length of buffer after function call

ChDir "\Programs\Test" ' change current directory to C:\Programs\Test

buffer = Space(255) ' make room for buffer to receive the string

numchar = GetFullPathName("datafile.dat", 255, buffer, "") ' put the result string into buffer

buffer = Left(buffer, numchar) ' extract data from the returned string

Debug.Print buffer ' display resulting string

Related Call: GetShortPathName

Category: Files

GetKeyboardState Function

Declare Function GetKeyboardState Lib "user32.dll" (pbKeyState As Byte) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetKeyboardState reads the status of all of the keys on the keyboard and puts them into a 255-element byte array. Two pieces of information are recorded for each key: its toggle status and its pressed status. The &H01 bit of the array element is the pressed status: it is 1 if the key is currently being pressed and 0 if it is not. The &H80 bit of the array element is the toggle status: it is 1 if the key is toggled and 0 of it is not. Although the CapsLock, NumLock, and ScrollLock keys are the only ones generally considered toggle keys, Windows stores the toggle status of every key on the keyboard. Generally, the toggle status of the other keys are disregarded. The example shows how to extract key information from an array element. The function returns 1 if successful or 0 if an error occured.

pbKeyState

A 255-element byte array which receives the key status information for all keys. Each key is identified by the element corresponding with the key's virtual key code.

Example:

' Display the key status of the Enter and Backspace keys

' Enter's virtual key code = 13; Backspace's virtual key code = 8

Dim keystat(0 To 255) As Byte ' receives key status information for all keys

Dim retval As Long ' return value of function

retval = GetKeyboardState(keystat(0)) ' In VB, the array is passed by referencing element #0.

' Display info about Enter

If (keystat(13) And &H01) = &H01 Then Debug.Print "Enter is being pressed."

If (keystat(13) And &H80) = &H80 Then Debug.Print "Enter is toggled."

' Display info about Backspace

If (keystat(8) And &H01) = &H01 Then Debug.Print "Backspace is being pressed."

If (keystat(8) And &H80) = &H80 Then Debug.Print "Backspace is toggled."

Related Call: GetKeyState

Category: Keyboard

GetKeyState Function

Declare Function GetKeyState Lib "user32.dll" (ByVal nVirtKey As Long) As Integer

Platforms: Win 32s, Win 95/98, Win NT

GetKeyState returns the current status of one of the keys on the keyboard. This status contains two pieces of information: the key's toggle state and the key's pressed state. The information is put into the return value. The toggle state is analogous to the toggle nature of the Caps Lock, Num Lock, and Scroll Lock keys, but Windows records toggle information about every key. The toggle information is stored in bit &H80 of the return value. The pressed state is true if the key is currently being depressed. The pressed information is stored in bit &H01 of the return value. See the example for more information on how to use the return value.

nVirtKey

The virtual key code of the key to read the status of.

Example:

' Read and display the status of the Enter key

' Enter's virtual key code = 13

Dim keystate As Long ' receives key state

keystate = GetKeyState(13) ' read the Enter key's status

' Display its pressed and toggle status

If (keystate And &H01) = &H01 Then Debug.Print "Enter key is being pressed."

If (keystate And &H80) = &H80 Then Debug.Print "Enter key is toggled."

Related Call: GetKeyboardState

Category: Keyboard

GetLastError Function

Declare Function GetLastError Lib "kernel32.dll" () As Long

GetLastError returns the error code returned by the last API function called. Most API functions merely return a number saying if an error occured, but not what kind of error. This function will return a universal error code identifying the type of error that last occured. Note that most functions set the code to 0 (success) if the function completes successfully, erasing the previous error code. Therefore, be sure to check this error code immediately after an error is found.

Example:

' Demonstrate catching an invalid handle error

Dim retval As Long ' return value of function

Dim errorcode As Long ' error code

' Make an invalid call to the following function by giving it an invalid handle

retval = CloseHandle(-1) ' there is no handle -1!

If retval = 0 Then ' the return value will be 0 if an error occured

 errorcode = GetLastError() ' find the error code

 If errorcode = 6 Then Debug.Print "ERROR: Invalid Handle Specified" ' error 6 = invalid handle

End If

Related Call: CommDlgExtendedError

Category: Errors

GetLocalTime Function

Declare Sub GetLocalTime Lib "kernel32.dll" (lpSystemTime As SYSTEMTIME)

Platforms: Win 95/98, Win NT

GetLocalTime returns the system's time and date. The various features of the time and date (month, day, hour, minute, second, etc.), down to the millisecond, are sorted in the variable passed as lpSystemTime! Windows considers "local time" to be the system's current time.

lpSystemTime

Variable that receives the computer's date and time.

Example:

' Print the current date in mm-dd-yyyy format

Dim localtime As SYSTEMTIME ' receives the computer's time and date

GetLocalTime localtime ' read the computer's time and date

' Display the date

Debug.Print localtime.wMonth; "-"; localtime.wDay; "-"; localtime.wYear

Related Call: GetSystemTime

Category: Time

GetLogicalDrives Function

Declare Function GetLogicalDrives Lib "kernel32.dll" () As Long

Platforms: Win 32s, Win 95/98, Win NT

GetLogicalDrives determines all the valid logical drives on the computer. Logical drives are any drives assigned a one-letter name (such as A: or C:). The return value is a collection of single-bit flags identifying the drives found. Perform a binary And between the return value and increasing powers of 2 to determine all of the drives. For example, And it with 1 to see if drive A: exists, with 2 for B:, 4 for C:, 8 for D:, etc. (See the example for a demonstration.)

Example:

' Tell the user which drives exist on the computer. Note how this example

' only checks up to drive D:, but it does establish the necessary pattern to use in general.

Dim driveflags As Long ' receives the flags identifying valid drives

' Get the valid logical drives on the computer.

driveflags = GetLogicalDrives()

' Test the returned value to see if drives A: through D: exist.

If (driveflags And 1) = 1 Then Debug.Print "Drive A: exists."

If (driveflags And 2) = 2 Then Debug.Print "Drive B: exists."

If (driveflags And 4) = 4 Then Debug.Print "Drive C: exists."

If (driveflags And 8) = 8 Then Debug.Print "Drive D: exists."

' And so on....

Related Call: GetLogicalDriveStrings

Category: Files

GetLogicalDriveStrings Function

Declare Function GetLogicalDriveStrings Lib "kernel32.dll" Alias "GetLogicalDriveStringsA" (ByVal nBufferLength As Long, ByVal lpBuffer As String) As Long

Platforms: Win 95/98, Win NT

GetLogicalDriveStrings determines the valid logical drives on the computer and places the names of their root directories into the string passed as lpBuffer. Each root directory name in the buffer is separated by a null character, and the entire string ends in two null characters. For example, if only drives A: and C: exist, the string will be "a:\(null)c:\(null)(null)", where (null) represents the null character. The function returns 0 if an error occured, or the length of the string placed in lpBuffer if successful.

nBufferLength

The size of the buffer string passed as lpBuffer.

lpBufferA string which receives the names of all the logical drives. This must have enough room to receive the string.

Example:

' List the names of all the root directories. Since each entry in the string takes

' four characters (three for the name and one for the null), we can "count by fours" going

' through the string until we reach the end. This frees us from worrying about nulls.

Dim drivenames As String ' receives list of root names

Dim thisdrive As String ' buffer for one extracted root directory name

Dim c As Long ' counter variable

Dim slength As Long ' receives length of returned string

' Make enough room in the buffer to receive the drive names.

drivenames = Space(255) ' more than enough room

' Get the root directory names of all logical drives.

slength = GetLogicalDriveStrings(255, drivenames) ' drivenames now holds the list

' Count by fours to extract the names of each drive.

For c = 1 To slength Step 4 ' loop with an increment of 4

 thisdrive = Mid(drivenames, c, 3) ' extract a 3-character string X:\ (X is the drive letter)

 Debug.Print thisdrive ' display the drive name

Next c

Related Call: GetLogicalDrives

Category: Files

GetOpenFileName Function

Declare Function GetOpenFileName Lib "comdlg32.dll" Alias "GetOpenFileNameA" (pOPENFILENAME As OPENFILENAME) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetOpenFileName opens the standard Windows Open File dialog box. All of the information you need to pass to the function to set up the dialog box are passed inside pOPENFILENAME. Also, the filename(s) (if any) returned by the function are also put into pOPENFILENAME. Note that all this function does is run the dialog box and returns the file(s) chosen. It does not actually open the files. The function returns 0 if an error occured or if the user hit Cancel, or returns 1 if successful.

pOPENFILENAME

Holds the parameters needed to open the dialog box. Also receives the returned filename(s) and other information about the user's settings.

Example:

' Call the Open File dialog box and look for *.txt files

Dim filebox As OPENFILENAME ' structure that sets the dialog box

Dim fname As String ' will receive selected file's name

Dim retval As Long ' return value

' Configure how the dialog box will look

filebox.lStructSize = Len(filebox) ' the size of the structure

filebox.hwndOwner = Form1.hWnd ' handle of the form calling the function

filebox.lpstrTitle = "Open File" ' text displayed in the box's title bar

' The next line sets up the file types drop-box

filebox.lpstrFilter = "Text Files" & vbNullChar & "*.txt" & vbNullChar & "All Files" & vbNullChar & "*.*" & vbNullChar & vbNullChar

filebox.lpstrFile = Space(255) ' initalize buffer that receives path and filename of file

filebox.nMaxFile = 255 ' length of file and pathname buffer

filebox.lpstrFileTitle = Space(255) ' initialize buffer that receives filename of file

filebox.nMaxFileTitle = 255 ' length of filename buffer

' Allow only existing files and hide the read-only check box

filebox.flags = OFN_PATHMUSTEXIST Or OFN_FILEMUSTEXIST Or OFN_HIDEREADONLY

' Execute the dialog box

retval = GetOpenFileName(filebox)

If retval <> 0 Then ' if the dialog box completed successfully

 ' Remove null space from the file name

 fname = Left(filebox.lpstrFile, InStr(filebox.lpstrFile, vbNullChar) - 1)

 Debug.Print "The selected file: "; fname

End If

Related Call: GetSaveFileName

Category: Common Dialog

GetParent Function

Declare Function GetParent Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetParent returns the handle of the parent window of another window. For example, the parent of a button would normally be the form window it is in. If successful, the function returns a handle to the parent window. If it fails (for example, trying to find the parent of a non-window), it returns 0.

hwnd

The handle of the window to find the parent of.

Example:

' Figure out which frame, Frame1 or Frame2, the button Command1

' is located on -- it is considered the child of the frame it is in

Dim parenthwnd As Long ' button's parent window

parenthwnd = GetParent(Command1.hWnd) ' get the button's parent window

If parenthwnd = Frame1.hWnd Then Debug.Print "The button is inside Frame 1."

If parenthwnd = Frame2.hWnd Then Debug.Print "The button is inside Frame 2."

Related Call: SetParent

Category: Windows

GetPolyFillMode Function

Declare Function GetPolyFillMode Lib "gdi32.dll" (ByVal hdc As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetPolyFillMode determines how a given device fills polygonal areas and shapes. These two modes only differ in how they handle complex overlapping polygons (i.e., polygons whose boundaries criss-cross themselves). The function returns 0 if an error occured, or exactly one of the following flags if successful:

ALTERNATE = 1

The device alternates between filling and not filling contiguous sections whose boundaries are determined by the edge(s) of the polygon crossing through the polygon's interior.

WINDING = 2

Any section inside the polygon is filled, regardless of any intra-polygonal boundaries and edges.

hdc

A device context to the device to find the polygon filling mode of.

Example:

' Display the current polygon fill mode of window Form1.

Dim fillmode As Long ' receives fill mode

fillmode = GetPolyFillMode(Form1.hDC) ' get the polygon fill mode

If fillmode = ALTERNATE Then

 Debug.Print "Form1 currently uses alternating filling."

Else

 Debug.Print "Form1 currently uses winding filling."

End If

Related Call: SetPolyFillMode

Category: Regions

GetPrivateProfileInt Function

Declare Function GetPrivateProfileInt Lib "kernel32.dll" Alias "GetPrivateProfileIntA" (ByVal lpApplicationName As String, ByVal lpKeyName As String, ByVal nDefault As Long, ByVal lpFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetPrivateProfileInt reads an integer value from any INI file. The parameters passed to the function specify which value will be read from. If successful, the function returns the value read. If the value you specify does not exist or is a string (i.e., not a number), the value specified as nDefault is returned. Note that INI file support is only provided in Windows for backwards compatibility; using the registry to store information is preferred.

lpApplicationName

The header of the INI file section the value is in.

lpKeyName

The name of the value to read.

nDefault

The value to return if a valid value cannot be read. Make it something that would definitely not be read, such as -1.

lpFileName

The filename of the INI file to read from.

Example:

' Read the "version" value under the "[programinfo]" section

' of the INI file C:\MyProgram\config.ini

Dim version As Long ' receives the value returned from the INI file

' Read the value from the INI file, returning -1 if it can't find the value

version = GetPrivateProfileInt("programinfo", "version", -1, "C:\MyProgram\config.ini")

' Display the result

If version = -1 Then ' failure

 Debug.Print "Could not read the information from the INI file."

Else

 Debug.Print "Version number:"; version

End If

Related Calls: GetPrivateProfileString, GetProfileInt

Category: INI Files

GetPrivateProfileString Function

Declare Function GetPrivateProfileString Lib "kernel32.dll" Alias "GetPrivateProfileStringA" (ByVal lpApplicationName As String, ByVal lpKeyName As Any, ByVal lpDefault As String, ByVal lpReturnedString As String, ByVal nSize As Long, ByVal lpFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetPrivateProfileString reads an string value from an INI file. The parameters passed to the function specify which value will be read from. The function always returns the length in characters of the string put into the variable passed as lpReturnedString. If the function was successful, the string read from the INI file will be put into lpReturnedString. If not, it will instead receive the string given as lpDefault. Note that INI file support is only provided in Windows for backwards compatibility; using the registry to store information is preferred.

lpApplicationName

The header of the INI file section the value is in.

lpKeyName

The name of the value to read.

lpDefault

The value to return if a valid value cannot be read. Make it something that would definitely not be read, such as "(error)".

lpReturnedString

A fixed-length string that will receive either the string read from the file or lpDefault.

nSize

The length in characters of lpReturnedString.

lpFileName

The filename of the INI file to read from.

Example:

' Read the "username" value under the [default] section of

' the INI file C:\MyProgram\config.ini. The default value is "anonymous".

Dim uname As String ' receives the value read from the INI file

Dim slength As Long ' receives length of the returned string

uname = Space(255) ' provide enough room for the function to put the value into the buffer

' Read from the INI file

slength = GetPrivateProfileString("default", "username", "anonymous", uname, 255, "C:\MyProgram\config.ini")

uname = Left(uname, slength) ' extract the returned string from the buffer

Debug.Print "User's name: "; uname

Related Calls: GetPrivateProfileInt, GetProfileString, WritePrivateProfileString

Category: INI Files

GetProfileInt Function

Declare Function GetProfileInt Lib "kernel32.dll" Alias "GetProfileIntA" (ByVal lpAppName As String, ByVal lpKeyName As String, ByVal nDefault As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetPrivateProfileInt reads an integer value from the WIN.INI file. The parameters passed to the function specify which value will be read from. If successful, the function returns the value read. If the value you specify does not exist or is a string (i.e., not a number), the value specified as nDefault is returned. This is basically a watered-down version of GetPrivateProfileInt because, unlike it, this function only works with WIN.INI. Note that INI file support is only provided in Windows for backwards compatibility; using the registry to store information is preferred.

lpAppName

The header of the WIN.INI file section the value is in.

lpKeyName

The name of the value to read.

nDefault

The value to return if a valid value cannot be read. Make it something that would definitely not be read, such as -1.

Example:

' Read the value "WallpaperStyle" under the [Desktop]

' section of the WIN.INI file. Return -1 if an error occured.

Dim wstyle As Long ' receives the information read from WIN.INI

' Read the data from WIN.INI

wstyle = GetProfileInt("Desktop", "WallpaperStyle", -1)

If wstyle = -1 Then

 Debug.Print "Could not read the data from WIN.INI."

Else

 Debug.Print "Wallpaper Style:"; wstyle

End If

Related Call: GetPrivateProfileInt, GetProfileString

Category: INI Files

GetProfileString Function

Declare Function GetProfileString Lib "kernel32.dll" Alias "GetProfileStringA" (ByVal lpAppName As String, ByVal lpKeyName As String, ByVal lpDefault As String, ByVal lpReturnedString As String, ByVal nSize As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetProfileString reads an string value from the WIN.INI file. The parameters passed to the function specify which value will be read from. The function always returns the length in characters of the string put into the variable passed as lpReturnedString. If the function was successful, the string read from the INI file will be put into lpReturnedString. If not, it will instead receive the string given as lpDefault. This function is basically a watered-down version of GetPrivateProfileString because it, unlike this function, works with all INI files. Note that INI file support is only provided in Windows for backwards compatibility; using the registry to store information is preferred.

lpAppName

The header of the INI file section the value is in.

lpKeyName

The name of the value to read.

lpDefault

The value to return if a valid value cannot be read. Make it something that would definitely not be read, such as "(error)".

lpReturnedString

A fixed-length string that will receive either the string read from the file or lpDefault.

nSize

The length in characters of lpReturnedString.

Example:

' Read the value "Wallpaper" from under the [Desktop] section

' of WIN.INI. If an error occurs, the function will return "(error)"

Dim wallpaper As String ' receives string read from WIN.INI

Dim slength As Long ' receives length of string read from WIN.INI

wallpaper = Space(255) ' make room in the buffer to receive the string read from WIN.INI

' Read the string from WIN.INI

slength = GetProfileString("Desktop", "Wallpaper", "(error)", buffer, 255)

wallpaper = Left(wallpaper, slength) ' extract the returned string from the buffer

If wallpaper = "(error)" Then

 Debug.Print "Could not read information from WIN.INI."

Else

 Debug.Print "Wallpaper file: "; wallpaper

End If

Related Call: GetPrivateProfileString, GetProfileInt, WriteProfileString

Category: INI Files

GetRgnBox Function

Declare Function GetRgnBox Lib "gdi32.dll" (ByVal hRgn As Long, lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetRgnBox determines the bounding rectangle of a given region. The bounding rectangle is the smallest possible rectangle which fully encompases the region. The bounding rectangle is placed in the structure passed as lpRect. The function returns 0 if an error occured, or exactly one of the following flags specifying the shape of the input region:

COMPLEXREGION = 3

The region is not empty but is not rectangular.

NULLREGION = 1

The region is empty, i.e., null.

SIMPLEREGION = 2

The region is rectangular in shape.

hRgn

A handle to the region to get the bounding rectangle of.

lpRect

Receives the coordinates of the region's bounding rectangle.

Example:

' Fill a triangular region on Form1 in dark gray and fill its bounding

' rectangle (behind it) in light gray.

Dim triangle(0 To 2) As POINT_TYPE ' vertices of triangular region

Dim hRgn As Long ' handle to the triangular region

Dim hLightBrush As Long, hDarkBrush As Long ' handles to the two brushes

Dim bounding As RECT ' receives bounding rectangle of region

Dim retval As Long ' generic return value

' Create the triangular region.

triangle(0).x = 150: triangle(0).y = 100 ' point #1: (150,100)

triangle(1).x = 200: triangle(1).y = 150 ' point #2: (200,150)

triangle(2).x = 175: triangle(2).y = 200 ' point #3: (175,200)

hRgn = CreatePolygonRgn(triangle(0), 3, ALTERNATE) ' create the region

' Get handles to the light and dark gray solid stock brushes to use.

hLightBrush = GetStockObject(LTGRAY_BRUSH)

hDarkBrush = GetStockObject(DKGRAY_BRUSH)

' Calculate the triangular region's bounding rectangle.

retval = GetRgbBox(hRgn, bounding) ' now bounding is the bounding rectangle

' Fill the bounding rectangle in ligh gray, the region in dark gray.

retval = FillRect(Form1.hDC, bounding, hLightBrush)

retval = FillRgn(Form1.hDC, hRgn, hDarkBrush)

' Delete the region to free up resources.

retval = DeleteObject(hRgn)

Category: Regions

GetSaveFileName Function

Declare Function GetSaveFileName Lib "comdlg32.dll" Alias "GetSaveFileNameA" (pOPENFILENAME As OPENFILENAME) As Long

GetSaveFileName opens the standard Windows Save File dialog box. All of the information you need to pass to the function to set up the dialog box are passed inside pOPENFILENAME. Also, the filename (if any) returned by the function is also put into pOPENFILENAME. Note that all this function does is run the dialog box and returns the file chosen. It does not actually save the file. The function returns 0 if an error occured or if the user hit Cancel, and returns 1 if successful.

pOPENFILENAME

Holds the parameters needed to open the dialog box. Also receives the returned filename.

Example:

' Call the Save File dialog box and extract the filename

Dim filebox As OPENFILENAME ' passes data to and from the function

Dim fname As String ' receives path and filename of selected file

Dim retval As Long ' return value

filebox.lStructSize = Len(filebox) ' size of the structure

filebox.hwndOwner = Form1.hWnd ' handle of the window opening the box

filebox.lpstrTitle = "Save File" ' text to display in the title bar

' Set the File Type drop-box values to Text Files and All Files

filebox.lpstrFilter = "Text Files" & vbNullChar & "*.txt" & vbNullChar & "All Files" & vbNullChar & "*.*" & vbNullChar & vbNullChar

filebox.lpstrFile = Space(255) ' receives path and filename of selected file

filebox.nMaxFile = 255 ' size of the path and filename buffer

filebox.lpstrFileTitle = Space(255) ' receives filename of selected file

filebox.nMaxFileTitle = 255 ' size of the filename buffer

filebox.lpstrDefExt = "txt" ' default file extension

' Allow only existing paths, warn if file already exists, hide read-only box

filebox.flags = OFN_PATHMUSTEXIST Or OFN_OVERWRITEPROMPT Or OFN_HIDEREADONLY

retval = GetSaveFileName(filebox) ' open the Save File dialog box

If retval <> 0 Then ' the user chose a file

 ' Extract the filename from the buffer and put it into fname

 fname = Left(filebox.lpstrFile, InStr(filebox.lpstrFile, vbNullChar) - 1)

End If

Related Call: GetOpenFileName

Category: Common Dialog

GetShortPathName Function

GetShortPathName Lib "kernel32.dll" Alias "GetShortPathNameA" (ByVal lpszLongPath As String, lpszShortPath As String, ByVal cchBuffer As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetShortPathName converts a long filename into the old-style 8.3 filenames. Although Windows allows the use of long filenames, DOS programs, not to mention 16-bit Windows programs, must use the 8.3 equivalent. For example, the equivalent of ReallyLongFile.txt could be REALLY~1.TXT. The short filename is put into the string variable passed as lpShortPath. The function returns the length of the string, or 0 if the function failed.

lpszLongPath

The complete long path and filename to convert.

lpszShortPath

A string which receives the short filename equivalent.

cchBuffer

The size in characters of lpszShortPath.

Example:

' Find the equivalent short filename "of C:\My Documents\ReadMeFirst.txt"

Dim shortname As String ' receives short-filename equivalent

Dim slength As Long ' receives length of short-filename equivalent

shortname = Space(255) ' make room in the buffer for the short filename

slength = GetShortPathName("C:\My Documents\ReadMeFirst.txt", shortname, 255)

shortname = Left(shortname, slength) ' extract returned string from buffer

Debug.Print "Equivalent: "; shortname

Related Call: GetFullPathName

Category: Files

GetStockObject Function

Declare Function GetStockObject Lib "gdi32.dll" (ByVal nIndex As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetStockObject accesses one of Windows's stock pens, brushes, fonts, or palettes. This function provides fast access to these commonly used objects, instead of having to use more complicated functions. The function returns a handle to the pen, brush, font, or palette which the function accesses. Although the program isn't required to delete the handle using DeleteObject, doing so doesn't have any adverse effects.

nIndex

Exactly one of the following flags specifying which of the stock objects to create a handle to:

ANSI_FIXED_FONT = 11

The system's normal monospaced font.

ANSI_VAR_FONT = 12

The system's normal proportional-width font.

BLACK_BRUSH = 4

A solid black brush.

BLACK_PEN = 7

A solid black pen.

DEFAULT_GUI_FONT = 17

Win 95/98 only: The default font for user objects under Windows.

DEFAULT_PALETTE = 15

The default system palette.

DEVICE_DEFAULT_FONT = 14

Win NT only: a device-dependent font.

DKGRAY_BRUSH = 3

A solid dark gray brush.

GRAY_BRUSH = 2

A solid gray brush.

HOLLOW_BRUSH = 5

Same as NULL_BRUSH.

LTGRAY_BRUSH = 1

A solid light gray brush.

NULL_BRUSH = 5

A null brush; i.e., a brush that does not draw anything on the device.

NULL_PEN = 8

A null pen; i.e., a pen that does not draw anything on the device.

OEM_FIXED_FONT = 10

The Original Equipment Manufacturer's default monospaced font.

SYSTEM_FIXED_FONT = 16

The system monospaced font under pre-3.x versions of Windows.

SYSTEM_FONT = 13

The system font (used for most system objects under Windows).

WHITE_BRUSH = 0

A solid white brush.

WHITE_PEN = 6

A solid white pen.

Example:

' Draw a rectangle with a black border and light gray filled interior

' on window Form1. Use stock pens and brushes to do this.

Dim hbrush As Long, holdbrush As Long ' handles to stock brush & default brush

Dim hpen As Long, holdpen As Long ' handles to stock pen & default pen

Dim retval As Long ' return value

' Load the stock pen and brush needed for this operation

hpen = GetStockObject(BLACK_PEN) ' load the black solid pen

hbrush = GetStockObject(LTGRAY_BRUSH) ' load the light gray solid brush

' Select the two objects in Form1 and save the defaults

holdpen = SelectObject(Form1.hDC, hpen) ' select the pen

holdbrush = SelectObject(Form1.hDC, hbrush) ' select the brush

' Draw the rectangle using the pen and brush. The rectangle has corners (20,25)-(200,175)

retval = Rectangle(Form1.hDC, 20, 25, 200, 175)

' Restore Form1's previously selected pen and brush

retval = SelectObject(Form1.hDC, holdpen) ' reselect old pen

retval = SelectObject(Form1.hDC, holdbrush) ' reselect old brush

' Note that it is not necessary to delete hpen and hbrush, but we could if we wanted.

Category: Devices

GetSystemDirectory Function

Declare Function GetSystemDirectory Lib "kernel32.dll" Alias "GetSystemDirectoryA" (ByVal lpBuffer As String, ByVal nSize As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetSystemDirectory reads the path of Windows's System directory. This is where many important files for Windows are stored, including the API DLLs. Never assume this is "C:\Windows\System" because the Windows directory doesn't have to be called Windows. The path of the system directory is put into the string variable passed as lpBuffer. The function returns the length of the string returned if it is successful, or 0 if it failed.

lpBuffer

A string which receives the path of the system directory.

nSize

The length in characters of lpBuffer.

Example:

' Display the path of the system directory

Dim sysdir As String ' receives path of system directory

Dim slength As Long ' receives length of returned string

sysdir = Space(255) ' make room in the buffer to receive the string

slength = GetSystemDirectory(sysdir, 255) ' determine the system directory's path

sysdir = Left(sysdir, slength) ' extract the returned string from the buffer

Debug.Print "System directory path: "; sysdir

Related Call: GetWindowsDirectory

Category: System Information

GetSystemMetrics Function

Declare Function GetSystemMetrics Lib "user32.dll" (ByVal nIndex As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetSystemMetrics returns information about various things in Windows. Most of these deal with the sizes of various objects, such as the screen, icons, cursors, etc. This function provides information about the system. The return value of the function depends on the value specified for nIndex. Keep in mind that all sizes (such as widths and heights) are measured in pixels. Also note that some of the metrics have slightly different meanings between Win NT and Win 95/98.

nIndex

Exactly one of the following flags specifying which piece of information to return:

SM_ARRANGE = 56

Win 95/98 only: Return the method used to display minimized windows. The return value is a combination of two of the following flags, one specifying a starting position for the minimized icons and another specifying the direction in which new ones are added:

ARW_BOTTOMLEFT = 0

Start placing the icons in the bottom-left corner of the screen.

ARW_BOTTOMRIGHT = 1

Start placing the icons in the bottom-right corner of the screen.

ARW_DOWN = 4

Add new icons below existing ones.

ARW_HIDE = 8

Do not place the icons anywhere on the screen (i.e., hide them).

ARW_LEFT = 0

Add new icons to the left of existing ones.

ARW_RIGHT = 4

Add new icons to the right of existing ones.

ARW_STARTRIGHT = 1

Same as ARW_BOTTOMRIGHT.

ARW_STARTTOP = 2

Same as ARW_TOPLEFT.

ARW_TOPLEFT = 2

Start placing the icons in the top-left corner of the screen.

ARW_TOPRIGHT = 3

Start placing the icons in the top-right corner of the screen.

ARW_UP = 0

Add new icons above existing ones.

SM_CLEANBOOT = 67

Win 95/98 only: Return a value specifying how the computer was booted up. 0 means a normal bootup, 1 means a fail-safe (a.k.a. SafeBoot) bootup, and 2 means a fail-safe bootup with the network installed.

SM_CMETRICS = 44

Win 95/98 only: Return the number of system metrics.

SM_CMOUSEBUTTONS = 43

Return the number of mouse buttons on the installed mouse, or 0 if no mouse is installed.

SM_CXBORDER = 5

Win NT: Return the width of a window border. Win 95/98: Return the width of a single window border.

SM_CXCURSOR = 13

Win NT: Return the width of the cursor. Win 95/98: Return the width of the standard cursor bitmap.

SM_CXDLGFRAME = 7

Win NT only: Return the width of a window frame having a dialog frame style.

SM_CXDOUBLECLK = 36

The width of the rectangle within which both mouse clicks must be to recognize a double-click.

SM_CXDRAG = 68

Return the minimum width the cursor must move to begin a drag-and-drop operation.

SM_CXEDGE = 45

Win 95/98 only: Return the width of a 3D window border.

SM_CXFRAME = 32

Win NT only: Return the width of the border of a resizable window.

SM_CXFULLSCREEN = 16

Return the width of the client area of a full-screen window.

SM_CXHSCROLL = 21

Win 95/98 only: Return the width of an arrow bitmap on a horizontal scrollbar.

SM_CXHTHUMB = 10

Return the width of the horizontal scrollbar thumb.

SM_CXICON = 11

Return the default width of an icon.

SM_CXICONSPACING = 38

Win NT: Return the width of the cell used to position icons. Win 95/98: Return the width of the grid cell for items in a large icon view.

SM_CXMAXIMIZED = 61

Win 95/98 only: Return the default width of a maximized window.

SM_CXMAXTRACK = 59

Win 95/98 only: Return the default maximum width the user is allowed to resize a window to.

SM_CXMENUCHECK = 71

Win 95/98 only: Return the width of the default menu check-mark bitmap.

SM_CXMENUSIZE = 54

Win 95/98 only: Return the width of a menu bar button.

SM_CXMIN = 28

Return the minimum width of a window.

SM_CXMINIMIZED = 57

Win 95/98 only: Return the width of a normal minimized window.

SM_CXMINSPACING = 47

Win 95/98 only: Return the width of the grid cell rectangle used to position minimized windows.

SM_CXMINTRACK = 34

Win 95/98 only: Return the default minimum width the user is allowed to resizea window to.

SM_CXSCREEN = 0

Return the width of the screen.

SM_CXSIZE = 30

Win NT: Return the width of a title bar bitmap. Win 95/98: Return the width of a caption button.

SM_CXSIZEFRAME = 32

Win 95/98 only: Return the width of a thick window frame.

SM_CXSMICON = 49

Win 95/98 only: Return the recommended width for small icons.

SM_CXSMSIZE = 52

Win 95/98 only: Return the width of a small caption button.

SM_CXVSCROLL = 2

Win 95/98 only: Return the width of a vertical scrollbar.

SM_CYBORDER = 6

Win NT: Return the height of a window border. Win 95/98: Return the height of a single window border.

SM_CYCAPTION = 4

Return the height of a normal caption area.

SM_CYCURSOR = 14

Win NT: Return the height of the cursor. Win 95/98: Return the height of the standard cursor bitmap.

SM_CYDLGFRAME = 8

Win NT only: Return the height of a window frame having a dialog frame style.

SM_CYDOUBLECLK = 37

Return the height of the rectangle within which both mouse clicks must be to recognize a double-click.

SM_CYDRAG = 69

Return the minimum height the cursor must move to begin a drag-and-drop operation.

SM_CYEDGE = 46

Win 95/98 only: Return the height of a 3D window border.

SM_CYFRAME = 33

Win NT only: Return the height of the border of a resizable window.

SM_CYFULLSCREEN = 17

Return the height of the client area of a full-screen window.

SM_CYHSCROLL = 3

Win 95/98 only: Return the height of a horizontal scrollbar.

SM_CYICON = 12

Return the default height of an icon.

SM_CYICONSPACING = 39

Win NT: Return the height of the cell used to position icons. Win 95/98: Return the height of the grid cell for items in a large icon view.

SM_CYKANJIWINDOW = 18

Return the height of the Kanji window (for double-byte character set versions of Windows).

SM_CYMAXIMIZED = 62

Win 95/98 only: Return the default height of a maximized window.

SM_CYMAXTRACK = 60

Win 95/98 only: Return the default maximum height the user is allowed to resize a window to.

SM_CYMENU = 15

Return the height of a single menu bar.

SM_CYMENUCHECK = 72

Win 95/98 only: Return the height of the default menu check-mark bitmap.

SM_CYMENUSIZE = 55

Win 95/98 only: Return the height of a menu bar button.

SM_CYMIN = 29

Return the minimum height of a window.

SM_CYMINIMIZED = 58

Win 95/98 only: Return the height of a normal minimized window.

SM_CYMINSPACING = 48

Win 95/98 only: Return the height of the grid cell rectangle used to position minimized windows.

SM_CYMINTRACK = 35

Win 95/98 only: Return the default minimum height the user is allowed to resize a window to.

SM_CYSCREEN = 1

Return the height of the screen.

SM_CYSIZE = 31

Win NT: Return the height of a title bar bitmap. Win 95/98: Return the height of a caption button.

SM_CYSIZEFRAME = 33

Win 95/98 only: Return the height of a thick window frame.

SM_CYSMCAPTION = 51

Win 95/98 only: Return the height of a small caption area.

SM_CYSMICON = 50

Win 95/98 only: Return the recommended height for small icons.

SM_CYSMSIZE = 53

Win 95/98 only: Return the height of a small caption button.

SM_CYVSCROLL = 20

Win 95/98 only: Return the height of an arrow bitmap on a vertical scrollbar.

SM_CYVTHUMB = 9

Return the height of a vertical scrollbar thumb.

SM_DBCSENABLED = 42

Return a non-zero value if the double-byte character set version of USER.EXE is installed, 0 if not.

SM_DEBUG = 22

Return a non-zero value if the debugging version of USER.EXE is installed, 0 if not.

SM_MENUDROPALIGNMENT = 40

Return a non-zero value if popup menus appear to the right, 0 if to the left.

SM_MIDEASTENABLED = 74

Return a non-zero value if the system is enabled to use Hebrew and Arabic languages, 0 if not.

SM_MOUSEPRESENT = 19

Return a non-zero value if a mouse is installed and present, 0 if not.

SM_NETWORK = 63

Set the &H1 bit of the return value if a network is installed. All other bits of the return value are reserved and undefined.

SM_PENWINDOWS = 41

Return a non-zero value if the Microsoft Windows for Pen computing extensions are installed, 0 if not.

SM_SECURE = 44

Return a non-zero value if security is present and active, 0 if not.

SM_SHOWSOUNDS = 70

Return a non-zero value if the application should show a visual cue for all sounds, 0 if not.

SM_SLOWMACHINE = 73

Return a non-zero value if the system has a slow, low-end processor, 0 if not.

SM_SWAPBUTTON = 23

Return a non-zero value if the left and right mouse buttons are swapped, 0 if not.

Example:

' Display the screen resolution (size) and some information about the

' configuration of windows.

Dim xres As Long, yres As Long ' receive x and y resolutions of the display

Dim hasmouse As Long, numbuttons As Long ' receive presense of mouse and number of buttons

Dim hasnetwork As Long ' receives info on availability of network

' Display the screen resolution -- i.e., the width and height of the screen.

xres = GetSystemMetrics(SM_CXSCREEN)

yres = GetSystemMetrics(SM_CYSCREEN)

Debug.Print "The display is"; xres; "pixels wide and"; yres; "pixels high."

' Display the number of buttons on the mouse, if a mouse is present.

hasmouse = GetSystemMetrics(SM_MOUSEPRESENT)

numbuttons = GetSystemMetrics(SM_CMOUSEBUTTONS)

If hasmouse = 0 Then

 Debug.Print "No mouse is installed on the system."

Else

 Debug.Print "A mouse with"; numbuttons; "buttons is installed."

End If

' Display whether the system has a network connection installed.

hasnetwork = GetSystemMetrics(SM_NETWORK)

If (hasnetwork And &H1) = &H1 Then ' check only the information bit

 Debug.Print "A network is configured to be used by Windows."

Else

 Debug.Print "No network is currently configured."

End If

Related Call: SystemParametersInfo

Category: Accessibility

GetSystemTime Function

Declare Sub GetSystemTime Lib "kernel32.dll" (lpSystemTime As SYSTEMTIME)

Platforms: Win 32s, Win 95/98, Win NT

GetSystemTime returns the system's time and date -- in Coordinated Universal Time (UTC, also known as Greenwich Mean Time (GMT) or Zulu time) instead of in the local time zone. This means that the time and date this function gives you probably won't match what the computer's clock tells you. This is useful in case your program communicates to other computers across time zone lines, and needs a universal time to reference anywhere. The various features of the time and date (month, day, hour, minute, second, etc.), down to the millisecond, are sorted in the variable passed as lpSystemTime. The function does not return a value.

lpSystemTime

Variable that receives the computer's date and time.

Example:

' Display the current time in UTC time (along the Prime Meridian).

Dim utctime As SYSTEMTIME ' receives time and date

GetSystemTime utctime ' put the time and date in UTC time into utctime

Debug.Print "In Greenwich, England, the time is"; utctime.wHour; ":"; utctime.wMinute; ":"; utctime.wSecond

Related Call: GetLocalTime

Category: Time

GetTempFileName Function

Declare Function GetTempFileName Lib "kernel32.dll" Alias "GetTempFileNameA" (ByVal lpszPath As String, ByVal lpPrefixString As String, ByVal wUnique As Long, ByVal lpTempFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetTempFileName generates a filename for a temporary file and optionally creates it for you. Temporary files are used to store data for short periods of time on the hard drive. The full filename, including the path, is put into the string variable passed as lpTempFileName. The format of the generated filename is path\xxxuuuu.TMP. path is the path to put the file in, preferably the temporary directory supplied by Windows, which can be gotten through GetTempPath. xxx is the string specified in lpPrefixString. uuuu is a hexadecimal number between 0000 and FFFF. If wUnique is non-zero, uuuu is the rightmost four digits of the number (in hexadecimal), and the file is not created. This method will work even if a file with that name already exists. If wUnique is zero, uuuu is a random number generated by Windows, and the file is created. Temporary files always have a .TMP extension. The function returns the value used for uuuu if successful, or 0 if an error occured.

lpszPath

The path to put the temporary file into. This is preferably the same path gotten from GetTempPath.

lpPrefixString

The first three characters of the filename.

wUnique

If non-zero, this number's last four digits in hexidecimal are the last four characters in the filename, and the file is not created. If zero, the last four characters are generated by Windows, and the file is created.

lpTempFileName

A string that receives the path and filename of the temporary file.

Example:

' Generate a temporary file (path)\api????.TMP, where (path)

' is Windows's temporary file directory and ???? is a randomly assigned unique value.

' Then display the name of the created file on the screen.

Dim temppath As String ' receives name of temporary file path

Dim tempfile As String ' receives name of temporary file

Dim slength As Long ' receives length of string returned for the path

Dim lastfour As Long ' receives hex value of the randomly assigned ????

' Get Windows's temporary file path

temppath = Space(255) ' initialize the buffer to receive the path

slength = GetTempPath(255, temppath) ' read the path name

temppath = Left(temppath, slength) ' extract data from the variable

' Get a uniquely assigned random file

tempfile = Space(255) ' initialize buffer to receive the filename

lastfour = GetTempFileName(temppath, "api", 0, tempfile) ' get a unique temporary file name

' (Note that the file is also created for you in this case.)

tempfile = Left(tempfile, InStr(tempfile, vbNullChar) - 1) ' extract data from the variable

Debug.Print "Temporary filename: "; tempfile

Related Call: GetTempPath

Category: Files

GetTempPath Function

Declare Function GetTempPath Lib "kernel32.dll" Alias "GetTempPathA" (ByVal nBufferLength As Long, ByVal lpBuffer As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetTempPath determines Windows's default Temp directory. The Temp directory is where temporary files made and used by Windows-based programs should be put. Usually this will be the \Temp subdirectory under the Windows directory, but not necessarily. The path of the directory is put into the string variable passed as lpBuffer. The function returns the length of the string returned by the function if it succeeds, or 0 if it fails.

nBufferLength

The length in characters of lpBuffer

lpBuffer

A string that will receive the path of the Temp directory.

Example:

' Generate a temporary file (path)\api????.TMP, where (path)

' is Windows's temporary file directory and ???? is a randomly assigned unique value.

' Then display the name of the created file on the screen.

Dim temppath As String ' receives name of temporary file path

Dim tempfile As String ' receives name of temporary file

Dim slength As Long ' receives length of string returned for the path

Dim lastfour As Long ' receives hex value of the randomly assigned ????

' Get Windows's temporary file path

temppath = Space(255) ' initialize the buffer to receive the path

slength = GetTempPath(255, temppath) ' read the path name

temppath = Left(temppath, slength) ' extract data from the variable

' Get a uniquely assigned random file

tempfile = Space(255) ' initialize buffer to receive the filename

lastfour = GetTempFileName(temppath, "api", 0, tempfile) ' get a unique temporary file name

' (Note that the file is also created for you in this case.)

tempfile = Left(tempfile, InStr(tempfile, vbNullChar) - 1) ' extract data from the variable

Debug.Print "Temporary filename: "; tempfile

Related Call: GetTempFileName

Category: System Information

GetTextAlign Function

Declare Function GetTextAlign Lib "gdi32.dll" (ByVal hdc As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetTextAlign determines how a device displays a line of text relative to a given reference point. The reference point is the point used to specify where the device should display a line of text. The function returns exactly three of the following flags specifying where this reference point will be relative to the text (one flag specifies horizontal position, one specifies vertical position, one determines current point updating):

TA_BASELINE = 24

The reference point will be on the baseline of the text.

TA_BOTTOM = 8

The reference point will be on the bottom edge of the bounding rectangle of the text.

TA_CENTER = 6

The reference point will be horizontally centered along the bounding rectangle of the text.

TA_LEFT = 0

The reference point will be on the left edge of the bounding rectangle of the text.

TA_NOUPDATECP = 0

Do not set the current point to the reference point.

TA_RIGHT = 2

The reference point will be on the right edge of the bounding rectangle of the text.

TA_RTLREADING = 256

Win 95/98 only:Display the text right-to-left (if the font is designed for right-to-left reading).

TA_TOP = 0

The reference point will be on the top edge of the bounding rectangle of the text.

TA_UPDATECP = 1

Set the current point to the reference point.

hdc

The device context of the device to find the reference point settings of.

Example:

' Display whether window Form1 will display text left-justified,

' centered, or right-justified relative to a given reference point.

Dim refpoint As Long ' receives reference point settings

refpoint = GetTextAlign(Form1.hDC) ' get the text alignment setting of the window

If (refpoint And TA_RIGHT) = TA_RIGHT Then ' ref. point on right edge

 Debug.Print "Text will be displayed right-justified."

ElseIf (refpoint And TA_CENTER) = TA_CENTER Then ' ref. point horizontally centered

 Debug.Print "Text will be displayed centered horizontally."

Else ' assume ref. point on left edge

 Debug.Print "Text will be displayed left-justified."

End If

Related Calls: SetTextAlign, TextOut

Category: Fonts & Text

GetTimeZoneInformation Function

Declare Function GetTimeZoneInformation Lib "kernel32.dll" (lpTimeZoneInformation As TIME_ZONE_INFORMATION) As Long

Platforms: Win 95/98, Win NT

GetTimeZoneInformation reads the computer's current time zone settings. Since Windows handles all of the system clock settings, there usually isn't a need for other programs to use this information. The information is put into the variable passed as lpTimeZoneInformation. The function returns 0 if an error occured, or a 1 if successful.

lpTimeZoneInformation

Variable which receives the information about the system time zone.

Example:

' Display the name of the time zone the computer is set to.

Dim tzi As TIME_ZONE_INFORMATION ' receives information on the time zone

Dim retval As Long ' return value

Dim c As Long ' counter variable needed to display time zone name

retval = GetTimeZoneInformation(tzi) ' read information on the computer's selected time zone

' Oddly, instead of being stored in a string, the time zone name is stored in a

' 32-element array, each element holding the ASCII code of one of the characters.

' This loop converts the array into a readable string.

Debug.Print "The computer's time zone is: ";

For c = 0 To 31 ' the array's range is from 0 to 31

 If tzi.StandardName(c) = 0 Then Exit For ' abort if the terminating null character is reached

 Debug.Print Chr(tzi.StandardName(c)) ' convert the ASCII code into a character and display it

Next c

Debug.Print "" ' end the line being displayed

Category: Time

GetTopWindow Function

Declare Function GetTopWindow Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetTopWindow returns a handle to the currently active child window of a window. The active child window is the one that has the focus, and it is usually at the top of all the other children in the Z-order. This function works even if the parent window is not active. If an error occurs or the window has no children, the function instead returns 0. This function is identical to calling GetWindow using the GW_CHILD relationship.

hwnd

The handle of the parent window. The function will return its active child window.

Example:

' Flash the MDI form window MDIForm1's active child once.

' (In VB, a MDI form has child windows).

Dim active As Long ' receives handle to the MDI form's active window

Dim retval As Long ' return value used for flashing the child window

active = GetTopWindow(MDIForm1.hWnd) ' get the handle of MDIForm1's active child window

If active <> 0 Then ' don't try to flash if there is no child window

 ' The next three lines flags the window once.

 retval = FlashWindow(active, 1): Sleep 250

 retval = FlashWindow(active, 1): Sleep 250

 retval = FlashWindow(active, 0)

End If

Related Call: GetWindow

Category: Windows

GetUserName Function

Declare Function GetUserName Lib "advapi32.dll" Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Platforms: Win 95/98, Win NT

GetUserName retrieves the name of the user who is logged on to Windows. This user's saved settings are the ones used during the current Windows session. The name of the user is placed in the string passed as lpBuffer. The function puts the size of the returned string into the variable passed as nSize. The function returns 0 if an error occured, or a non-zero value if successful.

lpBuffer

String which receives the name of the user logged on to Windows. The string passed must have sufficient room to receive the string the function will give it.

nSize

The size of the string passed to the function. The variable passed as this parameter also receives the size of the returned string (including the terminating null character).

Example:

' Display the name of the user currently logged on.

Dim username As String ' receives name of the user

Dim slength As Long ' length of the string

Dim retval As Long ' return value

' Create room in the buffer to receive the returned string.

username = Space(255) ' room for 255 characters

slength = 255 ' initialize the size of the string

' Get the user's name and display it.

retval = GetUserName(username, slength) ' slength is now the length of the returned string

username = Left(username, slength - 1) ' extract the returned info from the buffer

' (We subtracted one because we don't want the null character in the trimmed string.)

Debug.Print "The name of the current user is "; username

Category: System Information

GetVersionEx Function

Declare Function GetVersionEx Lib "kernel32.dll" Alias "GetVersionExA" (lpVersionInformation As OSVERSIONINFO) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetVersionEx reads information about the version of Windows running as the operating system. This information includes the strict version number and platform (3.x with Win32s, Windows 95, Windows NT, Windows 98, etc.). The information is put into the variable passed as lpVersionInformation. The function returns 0 if an error occured, or a 1 if successful.

lpVersionInformation

Receives the version information for the operating system.

Example:

' Display the major and minor version numbers of Windows.

' For example, 4.0 could represent Windows 95.

Dim os As OSVERSIONINFO ' receives version information

Dim retval As Long ' return value

os.dwOSVersionInfoSize = Len(os) ' set the size of the structure

retval = GetVersionEx(os) ' read Windows's version information

Debug.Print "Windows version number:"; os.dwMajorVersion; "."; os.dwMinorVersion

Category: System Information

GetWindow Function

Declare Function GetWindow Lib "user32.dll" (ByVal hwnd As Long, ByVal wCmd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetWindow returns the handle of a window related to a given window. The relations generally deal with child-parent relationships or relationships among children of the same parent window. The exact relation is specified by wCmd. If an error occurs or there is no window having the specified relation, the function instead returns 0.

hwnd

The handle of the first window in the relation.

wCmd

Exactly one of the following flags specifying which relationship the returned window has to the given window:

GW_HWNDFIRST = 0

The highest window in the Z-order having the same parent as the given window.

GW_HWNDLAST = 1

The lowest window in the Z-order having the same parent as the given window.

GW_HWNDNEXT = 2

The window below the given window in the Z-order.

GW_HWNDPREV = 3

The window above the given window in the Z-order.

GW_OWNER = 4

The window that owns the given window (not to be confused with the parent window).

GW_CHILD = 5

The topmost of the given window's child windows. This has the same effect as using the GetTopWindow function.

Example:

' Flash the application's window that is below Form1 in the Z-order

' once.

Dim next As Long ' receives handle of next window in the Z-order

Dim retval As Long ' return value for flashing the window

next = GetWindow(Form1.hWnd, GW_HWNDNEXT) ' get the handle of the next window

If next <> 0 Then ' don't try to flags if no such window exists

 ' The next three lines flags the window once.

 retval = FlashWindow(next, 1): Sleep 250

 retval = FlashWindow(next, 1): Sleep 250

 retval = FlashWindow(next, 0)

End If

Related Calls: GetActiveWindow, GetTopWindow

Category: Windows

GetWindowRect Function

Declare Function GetWindowRect Lib "user32.dll" (ByVal hwnd As Long, lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetWindowRect reads the size and position of a window. This information is put into the variable passed as lpRect. The rectangle receives the coordinates of the upper-left and lower-right corners of the window. If the window is past one of the edges of the screen, the values will reflect that (for example, if the left edge of a window is off the screen, the rectangle's .Left property will be negative). The function returns 0 if an error occured, or 1 if successful.

hwnd

The handle of the window to read the position and width of.

lpRect

Variable that receives the coordinates of the upper-left and lower-right corners of the window.

Example:

' Display the width and height of window Form1

' Width and height can be calculated from the coordinates returned in the rectangle.

Dim r As RECT ' receives window rectangle

Dim retval As Long ' return value

retval = GetWindowRect(Form1.hWnd, r) ' set r equal to Form1's rectangle

Debug.Print "Width ="; r.Right - r.Left

Debug.Print "Height ="; r.Bottom - r.Top

Related Call: MoveWindow, SetWindowPos

Category: Windows

GetWindowsDirectory Function

Declare Function GetWindowsDirectory Lib "kernel32.dll" Alias "GetWindowsDirectoryA" (ByVal lpBuffer As String, ByVal nSize As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetWindowsDirectory reads the path of the Windows directory. This is where Windows itself is stored, along will all of the little applets that come with it. Never assume this is "C:\Windows" because it doesn't necessarily have to be there. The directory is put into the string variable passed as lpBuffer. The function returns the length of the returned string if successful, or 0 if an error occured.

lpBuffer

String variable that receives the path.

nSize

The length in characters of lpBuffer.

Example:

' Display the location of the Windows directory

Dim windir As String ' receives path of Windows directory

Dim slength As Long ' receives length of the string returned

windir = Space(255) ' initialize buffer to receive the string

slength = GetWindowsDirectory(windir, 255) ' read the path of the Windows directory

windir = Left(windir, slength) ' extract the returned string from the buffer

Debug.Print "The Windows directory is at: "; windir

Related Call: GetSystemDirectory

Category: System Information

GetWindowText Function

Declare Function GetWindowText Lib "user32.dll" Alias "GetWindowTextA" (ByVal hwnd As Long, ByVal lpString As String, ByVal cch As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetWindowText reads the text on the title bar of a window. This function works with any window, not just those in your application. The text is put into the string variable passed as lpString. The function returns the length of the string returned if successful, or 0 if an error occured.

hwnd

The handle of the window to read the title of.

lpString

String variable that receives the text of the title bar of the window.

cch

The length in characters of lpString.

Example:

' Display the text of the title bar of window Form1

Dim textlen As Long ' receives length of text of title bar

Dim titlebar As String ' receives the text of the title bar

Dim slength As Long ' receives the length of the returned string

' Find out how many characters are in the window's title bar

textlen = GetWindowTextLength(Form1.hWnd)

titlebar = Space(textlen + 1) ' make room in the buffer, allowing for the terminating null character

slength = GetWindowText(Form1.hWnd, titlebar, textlen + 1) ' read the text of the window

titlebar = Left(titlebar, slength) ' extract information from the buffer

Debug.Print "The title bar of the window: "; titlebar

Related Calls: GetWindowTextLength, SetWindowText

Category: Windows

GetWindowTextLength Function

Declare Function GetWindowTextLength Lib "user32.dll" Alias "GetWindowTextLengthA" (ByVal hwnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetWindowTextLength returns the length in characters of the text in a window's title bar. You can use this function in conjunction with GetWindowText to create a string just long enough to receive the title. If you do, be sure to make the string 1 character longer than the value the function returns to allow for the ending vbNullChar. The function returns 0 if an error occurs.

hwnd

The handle of the window to read the length of the title bar text.

Example:

' Display the text of the title bar of window Form1

Dim textlen As Long ' receives length of text of title bar

Dim titlebar As String ' receives the text of the title bar

Dim slength As Long ' receives the length of the returned string

' Find out how many characters are in the window's title bar

textlen = GetWindowTextLength(Form1.hWnd)

titlebar = Space(textlen + 1) ' make room in the buffer, allowing for the terminating null character

slength = GetWindowText(Form1.hWnd, titlebar, textlen + 1) ' read the text of the window

titlebar = Left(titlebar, slength) ' extract information from the buffer

Debug.Print "The title bar of the window: "; titlebar

Related Calls: GetWindowText

Category: Windows

GetWindowThreadProcessId Function

Declare Function GetWindowThreadProcessId Lib "user32.dll" (ByVal hwnd As Long, lpdwProcessId As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GetWindowThreadProcessId finds identifiers for the thread which owns a given window and the process which created it. These identifiers can be used to later get information about the program controlling the window. Note that these two values are not handles but just numerical identifiers. The process identifier is put into the variable passed as lpdwProcessId, while the function returns the thread identifier.

hwnd

A handle to the window to find the identifers of the owning thread and creating process.

lpdwProcessId

Receives the identifer for the process which created the window.

Example:

' Display the title bar text of all windows controlled by the thread

' which the window Form1 is in. This task is given to the callback function, which

' will receive each handle individually. Note that if the window has no title bar

' text, it will not be displayed (for clarity's sake).

' *** Place this code in a module. This is the callback function. ***

' This function displays the title bar text of the window identified by hwnd.

Public Function EnumThreadWndProc (ByVal hwnd As Long, ByVal lParam As Long) As Long

 Dim slength As Long, wintext As String ' title bar text length and buffer

 Dim retval As Long ' return value

 Static winnum As Integer ' counter keeps track of how many windows have been enumerated

 winnum = winnum + 1 ' one more window enumerated....

 slength = GetWindowTextLength(hwnd) + 1 ' get length of title bar text

 If slength > 1 ' if return value refers to non-empty string

 buffer = Space(slength) ' make room in the buffer

 retval = GetWindowText(hwnd, buffer, slength) ' get title bar text

 Debug.Print "Window #"; winnum; " : "; ' display number of enumerated window

 Debug.Print Left(buffer, slength - 1) ' display title bar text of enumerated window

 End If

 EnumThreadWndProc = 1 ' return value of 1 means continue enumeration

End Function

' *** Place this code wherever you want to enumerate the windows. ***

Dim threadid As Long, processid As Long ' receive id to thread and process of Form1

Dim retval As Long ' return value

' Determine the thread which owns the window Form1.

threadid = GetWindowThreadProcessId(Form1.hWnd, processid)

' Use the callback function to list all of the enumerated thrad windows. Note that lParam

' is set to 0 because we don't need to pass any additional information to the function.

retval = EnumThreadWindows(threadid, AddressOf EnumThreadWndProc, 0)

Category: Windows

GlobalAlloc Function

Declare Function GlobalAlloc Lib "kernel32.dll" (ByVal wFlags As Long, ByVal dwBytes As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GlobalAlloc allocates a series of bytes in the computer's global memory. The memory can be used for any purpose necessary. The function's return value, if successful, depends on the flags specified in wFlags. It will either be a pointer to the block of allocated memory or a handle to the block of allocated memory. Although they both identify the same thing, they will most likely not be equal and cannot be used interchangably! If the function fails, a value of 0 will be returned. Note that Windows will not allocate a memory block starting at base address 0.

wFlags

One or more of the following flags specifying how to allocate the block of memory:

GHND = &H40

Same as combining GMEM_MOVEABLE with GMEM_ZEROINIT.

GMEM_DDESHARE = &H2000

Optimize the allocated memory for use in DDE conversations.

GMEM_DISCARDABLE = &H100

Allocate discardable memory. (Cannot be combined with GMEM_FIXED.)

GMEM_FIXED = &H0

Allocate fixed memory. The function's return value is a pointer to the beginning of the memory block. (Cannot be combined with GMEM_DISCARDABLE or GMEM_MOVEABLE.)

GMEM_MOVEABLE = &H2

Allocate moveable memory. The memory block's lock count is initialized at 0 (unlocked). The function's return value is a handle to the beginning of the memory block. (Cannot be combined with GMEM_FIXED.)

GMEM_NOCOMPACT = &H10

Do not compact any memory or discard any discardable memory to allocate the requested block.

GMEM_NODISCARD = &H20

Do not discard any discardable memory to allocate the requested block.

GMEM_SHARE = &H2000

Same as GMEM_DDESHARE.

GMEM_ZEROINIT = &H40

Initialize the contents of the memory block to 0.

GPTR = &H42

Same as combining GMEM_FIXED with GMEM_ZEROINIT.

dwBytes

The number of bytes to allocate; i.e., the size of the memory block to allocate.

Example:

' Use a block of memory as an intermediary step to copy

' the contents of array s() to array t(). Yes, you could copy them directly,

' but this demonstrates a few different memory functions.

Dim s(0 To 255) As Integer, t(0 To 255) As Integer ' arrays to copy from/to

Dim c As Integer, retval As Long ' counter variable & return value

Dim hMem As Long, pMem As Long ' handle and pointer to memory block

' Initialize the source array s()'s data

For c = 0 To 255

 s(c) = 2 * c ' each element equals double its index

Next c

' Allocate a moveable block of memory (returns a handle) (Integer type = 2 bytes)

hMem = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, 256 * 2)

' Lock the memory block, returning a pointer to it

pMem = GlobalLock(hMem)

' Copy the entire contents of s() to the memory block

' Note that pMem is ByVal because we want its contents, not a pointer to it

CopyMemory ByVal pMem, s(0), 256 * 2

' Copy the contents of the memory block to t() (we could have just copied s() to t())

CopyMemory t(0), ByVal pMem, 256 * 2

' Unlock the memory block, destroying the pointer and freeing resources

x = GlobalUnlock(hMem)

' Free the memory block (de-allocate it)

x = GlobalFree(hMem)

' Verify that t() = s(), which it should

For c = 0 To 255

 If s(c) <> t(c) Then Debug.Print "Copy attempt failed."

End If

Related Call: GlobalFree

Category: Memory

GlobalFree Function

Declare Function GlobalFree Lib "kernel32.dll" (ByVal hMem As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GlobalFree frees up the resources associated with a memory block, including of course the memory itself. This function should be used to deallocate any memory blocks allocated by GlobalAlloc after you are finished using it. The function returns 0 if successful, or the value passed as hMem if an error occured.

hMem

The handle to the block of memory to free.

Example:

' Use a block of memory as an intermediary step to copy

' the contents of array s() to array t(). Yes, you could copy them directly,

' but this demonstrates a few different memory functions.

Dim s(0 To 255) As Integer, t(0 To 255) As Integer ' arrays to copy from/to

Dim c As Integer, retval As Long ' counter variable & return value

Dim hMem As Long, pMem As Long ' handle and pointer to memory block

' Initialize the source array s()'s data

For c = 0 To 255

 s(c) = 2 * c ' each element equals double its index

Next c

' Allocate a moveable block of memory (returns a handle) (Integer type = 2 bytes)

hMem = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, 256 * 2)

' Lock the memory block, returning a pointer to it

pMem = GlobalLock(hMem)

' Copy the entire contents of s() to the memory block

' Note that pMem is ByVal because we want its contents, not a pointer to it

CopyMemory ByVal pMem, s(0), 256 * 2

' Copy the contents of the memory block to t() (we could have just copied s() to t())

CopyMemory t(0), ByVal pMem, 256 * 2

' Unlock the memory block, destroying the pointer and freeing resources

x = GlobalUnlock(hMem)

' Free the memory block (de-allocate it)

x = GlobalFree(hMem)

' Verify that t() = s(), which it should

For c = 0 To 255

 If s(c) <> t(c) Then Debug.Print "Copy attempt failed."

End If

Related Call: GlobalAlloc

Category: Memory

GlobalLock Function

Declare Function GlobalLock Lib "kernel32.dll" (ByVal hMem As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GlobalLock locks a moveable block of memory into its current physical position. The block's internal lock count is incremented by one; a memory block is considered locked if its lock counter is greater than zero. Memory blocks cannot be moved or discarded while locked. The function returns a pointer to the beginning of the memory block if successful, or 0 if the function fails.

hMem

The handle to the moveable memory block to lock.

Example:

' Use a block of memory as an intermediary step to copy

' the contents of array s() to array t(). Yes, you could copy them directly,

' but this demonstrates a few different memory functions.

Dim s(0 To 255) As Integer, t(0 To 255) As Integer ' arrays to copy from/to

Dim c As Integer, retval As Long ' counter variable & return value

Dim hMem As Long, pMem As Long ' handle and pointer to memory block

' Initialize the source array s()'s data

For c = 0 To 255

 s(c) = 2 * c ' each element equals double its index

Next c

' Allocate a moveable block of memory (returns a handle) (Integer type = 2 bytes)

hMem = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, 256 * 2)

' Lock the memory block, returning a pointer to it

pMem = GlobalLock(hMem)

' Copy the entire contents of s() to the memory block

' Note that pMem is ByVal because we want its contents, not a pointer to it

CopyMemory ByVal pMem, s(0), 256 * 2

' Copy the contents of the memory block to t() (we could have just copied s() to t())

CopyMemory t(0), ByVal pMem, 256 * 2

' Unlock the memory block, destroying the pointer and freeing resources

x = GlobalUnlock(hMem)

' Free the memory block (de-allocate it)

x = GlobalFree(hMem)

' Verify that t() = s(), which it should

For c = 0 To 255

 If s(c) <> t(c) Then Debug.Print "Copy attempt failed."

End If

Related Call: GlobalUnlock

Category: Memory

GlobalUnlock Function

Declare Function GlobalUnlock Lib "kernel32.dll" (ByVal hMem As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

GlobalUnlock decrements the lock count of a moveable memory block by one. The memory block is locked if its lock count is greater than zero; it is considered unlocked if its lock count is zero. A moveable memory block cannot be moved or discarded while it is locked. The function returns 1 if, after decrementing the lock count, the memory block is still locked. The function returns 0 if, after decrementing the lock count, either the memory block is now unlocked or an error occured.

hMem

A handle to the moveable memory block to decrement the lock count of.

Example:

' Use a block of memory as an intermediary step to copy

' the contents of array s() to array t(). Yes, you could copy them directly,

' but this demonstrates a few different memory functions.

Dim s(0 To 255) As Integer, t(0 To 255) As Integer ' arrays to copy from/to

Dim c As Integer, retval As Long ' counter variable & return value

Dim hMem As Long, pMem As Long ' handle and pointer to memory block

' Initialize the source array s()'s data

For c = 0 To 255

 s(c) = 2 * c ' each element equals double its index

Next c

' Allocate a moveable block of memory (returns a handle) (Integer type = 2 bytes)

hMem = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, 256 * 2)

' Lock the memory block, returning a pointer to it

pMem = GlobalLock(hMem)

' Copy the entire contents of s() to the memory block

' Note that pMem is ByVal because we want its contents, not a pointer to it

CopyMemory ByVal pMem, s(0), 256 * 2

' Copy the contents of the memory block to t() (we could have just copied s() to t())

CopyMemory t(0), ByVal pMem, 256 * 2

' Unlock the memory block, destroying the pointer and freeing resources

x = GlobalUnlock(hMem)

' Free the memory block (de-allocate it)

x = GlobalFree(hMem)

' Verify that t() = s(), which it should

For c = 0 To 255

 If s(c) <> t(c) Then Debug.Print "Copy attempt failed."

End If

Related Call: GlobalLock

Category: Memory

InflateRect Function

Declare Function InflateRect Lib "user32.dll" (lpRect As RECT, ByVal x As Long, ByVal y As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

InflateRect increases or decreases the size of a rectangle. The values to inflate the rectangle by are added to both sides of it, so in reality the width and/or height of the rectangle increases by double what you pass to the function. For example, if you pass 20 as x, the left and right sides will both be extended by 20, so the total width will be 40 more. Positive values increase the size, while negative values decrease it. The function returns 0 if an error occured, or 1 if successful.

lpRect

The rectangle to change the size of.

x

The value to expand the left and right sides by. Positive values increase the width; negative values decrease it.

y

The value to expand the top and bottom by. Positive values increase the height; negative values decrease it.

Example:

' Expand the width of window Form1 by 100 and shrink its

' height by 50 using its rectangle.

Dim winrect As RECT ' receives the rectangle of the window

Dim retval As Long ' return value

retval = GetWindowRect(Form1.hWnd, winrect) ' get Form1's rectangle

retval = InflateRect(winrect, 50, -25) ' these values added to each side to inflate it

' Now change the window on screen to match its new rectangle

retval = SetWindowPos(Form1.hWnd, 0, winrect.Left, winrect.Top, winrect.Right, winrect.Bottom, 0)

Related Call: OffsetRect

Category: Rectangles

IntersectRect Function

Declare Function IntersectRect Lib "user32.dll" (lpDestRect As RECT, lpSrc1Rect As RECT, lpSrc2Rect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

IntersectRect creates a rectangle based on the intersecting part of two other rectangles. The rectangular region where the two source rectangles overlap is the intersection rectangle. If one or both of the source rectangles are empty or there is no intersection, the function returns 0 and the lpDestRect rectangle is set to (0,0)-(0,0). If the source rectangles do overlap, the intersection is put into lpDestRect and the function returns 1.

lpDestRect

The rectangle to be set as the intersection of the two source rectangles.

lpSrc1Rect

The first source rectangle.

lpSrc2Rect

The second source rectangle.

Example:

' Determine if windows Form1 and Form2 are overlapping on the

' screen. If they don't the intersection rectangle will be empty.

Dim intrect As RECT ' receives the intersection rectangle

Dim window1 As RECT, window2 As RECT ' receive rectangles of Form1 and Form2

Dim result As Long ' will be set to 0 if no intersection, 1 if there is intersection

Dim retval As Long ' return value for other functions

retval = GetWindowRect(Form1.hWnd, window1) ' get Form1's rectangle

retval = GetWindowRect(Form2.hWnd, window2) ' get Form2's rectangle

result = IntersectRect(intrect, window1, window2) ' determine the intersection rectangle

If result = 0 ' in this case, intrect will also be empty

 Debug.Print "Windows Form1 and Form2 are not overlapping on the screen."

Else

 Debug.Print "Windows Form1 and Form2 are overlapping on the screen."

End If

Related Calls: SubtractRect, UnionRect

Category: Rectangles

InvertRect Function

Declare Function InvertRect Lib "user32.dll" (ByVal hdc As Long, ByVal lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

InvertRect inverts the image inside a rectangular area on a device. The inverted colors are calculated by taking the binary NOT of each pixel's RGB color value inside the rectangle. The function returns a non-zero value if successful, or 0 if an error occured.

hdc

A device context to the device to invert the colors in a given rectangle on.

lpRect

The rectangle to invert.

Example:

' Invert the colors in the rectangle (20,30)-(150,100) on window Form1.

Dim r As RECT ' rectangle to invert

Dim retval As Long ' return value

retval = SetRect(r, 20, 30, 150, 100) ' set r to be (20,30)-(150,100)

retval = InvertRect(Form1.hDC, r) ' invert the pixels within the rectangle

Related Call: InvertRgn

Category: Filled Shapes

InvertRgn Function

Declare Function InvertRgn Lib "gdi32.dll" (ByVal hdc As Long, ByVal hRgn As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

InvertRgn inverts the colors of all the pixels inside a region on a given device. The inverse of the pixels is calculated by doing a binary NOT operation on the RGB color value of each pixel. The function returns 0 if an error occured, or a non-zero value if successful.

hdc

A device context to the device to invert the pixels within a region of.

hRgn

A handle to the region on the device to invert.

Example:

' Invert the pixels within an elliptical region on window Form1. The

' elliptical region has a bounding rectangle of (20,30)-(150,110).

Dim hrgn As Long ' handle to the region to invert

Dim retval As Long ' return value

' Create the elliptical region to invert and get a handle to it.

hrgn = CreateEllipticRgn(20,30,150,110)

' Invert that region in window Form1.

retval = InvertRgn(Form1.hDC, hrgn)

' Delete the region to free up resources.

retval = DeleteObject(hrgn)

Related Call: InvertRect

Category: Regions

IsChild Function

Declare Function IsChild Lib "user32.dll" (ByVal hWndParent As Long, ByVal hWnd As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

IsChild determines if a parent-child relationship exists between two windows. The possible child window must be a direct descendant of the possible parent window. For example, if the possible child window is a child of a child of the possible parent window, the parent-child relationship does not exist.

Return Value

If a parent-child relationship does not exist between the two windows, the function returns 0. If the relationship does exist, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hWndParent

A handle to the candidate parent window.

hWnd

A handle to the candidate child window.

Example

' Demonstrate a parent-child relationship and a non-parent-child

' relationship. Command1, a command button on window Form1, is a child

' of Form1. However, fellow window Form2 is not a child.

Dim result As Long ' result of the function

' Verify that Command1 is a child of Form1.

result = IsChild(Form1.hWnd, Command1.hWnd) ' see if Form1 is Command1's parent

If result = 0 Then

 Debug.Print "Form1 is not Command1's parent window." ' won't happen

Else

 Debug.Print "Form1 is Command1's parent window." ' will happen

End If

' Verify that Form2 is not a child of Form1.

result = IsChild(Form1.hWnd, Form2.hWnd) ' see if Form1 is Form2's parent

If result = 0 Then

 Debug.Print "Form1 is not Form2's parent window." ' will happen

Else

 Debug.Print "Form1 is Form2's parent window." ' won't happen

Related Functions

IsWindow, SetParent

Category

Windows

IsIconic Function

Declare Function IsIconic Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

IsIconic finds if a given window is minimized or not. The function returns 0 if the window is not minimized (it could be either restored or maximized); it returns a non-zero value if the window is minimized.

hwnd

A handle to the window to find whether it is minimized or not.

Example:

' Determine if the window Form1 is maximized, minimized, or restored.

Dim minflag As Long, maxflag As Long ' receive minimized or maximized status

minflag = IsIconic(Form1.hWnd) ' is Form1 minimized?

maxflag = IsZoomed(Form1.hWnd) ' is Form1 maximized?

If minflag <> 0 Then

 Debug.Print "Form1 is minimized."

Elseif maxflag <> 0 Then

 Debug.Print "Form1 is maximized."

Else

 Debug.Print "Form1 is restored."

End If

Related Calls: IsZoomed, ShowWindow

Category: Windows

IsRectEmpty Function

Declare Function IsRectEmpty Lib "user32.dll" (lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

IsRectEmpty checks to see if a rectangle is empty. A rectangle is considered empty if its right edge is not to the right of its left edge and/or its bottom edge is not below its top edge. For example, a rectangle (50,50)-(25,100) is empty because the right edge is to the left of the left edge. The function returns 1 if the rectangle is empty and 0 if it is not.

lpRect

The rectangle to check.

Example:

' Determine if windows Form1 and Form2 are overlapping on the

' screen. If they don't the intersection rectangle will be empty.

Dim intrect As RECT ' receives the intersection rectangle

Dim window1 As RECT, window2 As RECT ' receive rectangles of Form1 and Form2

Dim isempty As Long ' will be set to 0 if intersection isn't empty, 1 if it is

Dim retval As Long ' return value for other functions

retval = GetWindowRect(Form1.hWnd, window1) ' get Form1's rectangle

retval = GetWindowRect(Form2.hWnd, window2) ' get Form2's rectangle

retval = IntersectRect(intrect, window1, window2) ' determine the intersection rectangle

isempty = IsRectEmpty(intrect) ' determine if it is empty -- it will be if there's no intersection

If isempty = 0 ' in this case, intrect will also be empty

 Debug.Print "Windows Form1 and Form2 are not overlapping on the screen."

Else

 Debug.Print "Windows Form1 and Form2 are overlapping on the screen."

End If

Related Call: SetRectEmpty

Category: Rectangles

IsWindow Function

Declare Function IsWindow Lib "user32.dll" (ByVal hWnd As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Desctiption & Usage

IsWindow determines if a given handle refers to a window or not. The function verifies that the handle in fact refers to a window, instead of one of the many other objects which handles can represent.

Return Value

If the handle does not refer to a window, the function returns 0. If the handle does refer to a window, the function returns a non-zero value.

Visual Basic-Specific Issues

None.

Parameters

hWnd

The handle to check if it refers to a window or not.

Example

' Demonstrate handles refering to a window and not refering to a window.

Dim hWindow As Long ' handle to a window (Form1, to be exact)

Dim hPen As Long ' handle to a pen (the solid black stock pen)

Dim result As Long ' result of the test

' Initialize the two handles.

hWindow = Form1.hWnd ' hWindow now equals window Form1's handle

hPen = GetStockObject(BLACK_PEN) ' hPen refers to a pen

' Verify that hWindow refers to a window.

result = IsWindow(hWindow)

If result = 0 Then

 Debug.Print "hWindow does not refer to a window." ' won't happen

Else

 Debug.Print "hWindow refers to a window." ' will happen

End If

' Verify that hPen does not refer to a window.

result = IsWindow(hPen)

If result = 0 Then

 Debug.Print "hPen does not refer to a window." ' will happen

Else

 Debug.Print "hPen refers to a window." ' won't happen

End If

Related Function

IsChild

Category

Windows

IsWindowEnabled Function

Declare Function IsWindowEnabled Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

IsWindowEnabled determines if a window is currently enabled or disabled. If a window is disabled, it cannot receive the focus and will ignore any attempted input. Many types of windows, such as buttons and other controls, will appear grayed when disabled. The function returns 0 if the window is disabled, or a non-zero value if the window is enabled.

hwnd

A handle to the window to determine if it is enabled or disabled.

Example:

' Reverse the enabled status of window Command1. If the window is

' disabled, enable it; if it is enabled, disable it.

Dim wasenabled As Long ' receives enabled/disabled status of Command1

Dim retval As Long ' return value

' Determine if the window Command1 is currently enabled or not.

wasenabled = IsWindowEnabled(Command1.hWnd)

If wasenabled = 0 Then ' if not enabled, enable it

 retval = EnableWindow(Command1.hWnd, 1)

Else ' if enabled, disable it

 retval = EnableWindow(Command1.hWnd, 0)

End If

Related Call: EnableWindow

Category: Windows

IsZoomed Function

Declare Function IsZoomed Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

IsZoomed finds if a given window is maximized or not. The function returns 0 if the window is not maximized (it could be either restored or minimized); it returns a non-zero value if the window is maximized.

hwnd

A handle to the window to find whether it is maximized or not.

Example:

' Determine if the window Form1 is maximized, minimized, or restored.

Dim minflag As Long, maxflag As Long ' receive minimized or maximized status

minflag = IsIconic(Form1.hWnd) ' is Form1 minimized?

maxflag = IsZoomed(Form1.hWnd) ' is Form1 maximized?

If minflag <> 0 Then

 Debug.Print "Form1 is minimized."

Elseif maxflag <> 0 Then

 Debug.Print "Form1 is maximized."

Else

 Debug.Print "Form1 is restored."

End If

Related Calls: IsIconic, ShowWindow

Category: Windows

joyGetDevCaps Function

Declare Function joyGetDevCaps Lib "winmm.dll" Alias "joyGetDevCapsA" (ByVal id As Long, lpCaps As JOYCAPS, ByVal uSize As Long) As Long

Platforms: Win 95/98

joyGetDevCaps reads various information about a joystick. This information is put into the variable passed as lpCaps. This function does not, however, give you the current position of the joystick. The function returns 0 if the joystick is connected and working and a non-zero error code if it isn't.

id

The ID number of the joystick to read, starting with 0.

lpCaps

Variable that receives the information about the joystick.

uSize

The length in bytes of lpCaps.

Example:

' Display the name of the joystick driver for Joystick #1

' Note that the ID of Joystick #1 is 0.

Dim joyinfo As JOYCAPS ' receives joystick information

Dim joydriver As String ' will be set to the joystick's driver name

Dim retval As Long ' return value

retval = joyGetDevCaps(0, joyinfo, Len(joyinfo)) ' read joystick information

If retval = 0 Then ' there is a functioning Joystick #1

 joydriver = Left(joyinfo.szPname, InStr(joyinfo.szPname, vbNullChar) - 1) ' extract data from the fixed-length string

 Debug.Print "The joystick driver is: "; joydriver

Else

 Debug.Print "There is no joystick connected to Joystick Port #1."

End If

Category: Joysticks

joyGetNumDevs Function

Declare Function joyGetNumDevs Lib "winmm.dll" () As Long

Platforms: Win 95/98

joyGetNumDevs returns the number of joysticks that are configured under Windows's Control Panel. This doesn't necessarily mean that all of them are connected and in working order, but there could be. The best way to see if a joystick is working is to call joyGetDevCaps and check for a return value of 0.

Example:

' Determine the number of configured joysticks and the number of

' connected joysticks. To see if a joystick is connected, try to read information from it and see if

' the attempt is successful or not.

Dim joyinfo As JOYCAPS ' needed for the function call to see if a joystick works

Dim numjoys As Long ' receives number of configured joysticks

Dim numexist As Long ' number of existing joysticks hooked up to the computer

Dim c As Integer ' counter variable

Dim retval As Long ' return value for other functions

numjoys = joyGetNumDevs() ' determine the number of configured joysticks

Debug.Print "There are"; numjoys; "joysticks configured under Windows."

numexist = 0 ' initialize the number of existing joysticks

For c = 0 To numjoys - 1 ' check each joystick (remember Joystick #1's ID = 0, etc.)

 retval = joyGetDevCaps(c, joyinfo, Len(joyinfo)) ' try to read information

 If retval = 0 Then numexist = numexist + 1 ' increment counter if the joystick is connected

Next c

Debug.Print "There are"; numexist; "joysticks currently connected to the computer."

Category: Joysticks

joyGetPos Function

Declare Function joyGetPos Lib "winmm.dll" (ByVal uJoyID As Long, pji As JOYINFO) As Long

Platforms: Win 95/98

joyGetPos reads the current position and status of a joystick. This information is put into the variable passed as pji. The function returns 0 if the joystick is connected and working, or a non-zero error code if it is not.

uJoyID

The ID number of the joystick to read, starting at 0.

pji

Variable that receives the joystick's current position and status.

Example:

' Display the x, y, and z coordinates of Joystick #1, as well

' as the status of buttons 1-4 (which are the only ones this function can read).

Dim joypos As JOYINFO ' receives current joystick status

Dim retval As Long ' return value

retval = joyGetPos(0, joypos) ' get the joystick status (remember Joystick #1's ID = 0)

Debug.Print "X Coordinate:"; pos.wXpos

Debug.Print "Y Coordinate:"; pos.wYpos

Debug.Print "Z Coordinate:"; pos.wZpos

If (pos.wButtons And JOY_BUTTON1) = JOY_BUTTON1 Then Debug.Print "Button 1 is depressed."

If (pos.wButtons And JOY_BUTTON2) = JOY_BUTTON2 Then Debug.Print "Button 2 is depressed."

If (pos.wButtons And JOY_BUTTON3) = JOY_BUTTON3 Then Debug.Print "Button 3 is depressed."

If (pos.wButtons And JOY_BUTTON4) = JOY_BUTTON4 Then Debug.Print "Button 4 is depressed."

Category: Joysticks

keybd_event Function

Declare Sub keybd_event Lib "user32.dll" (ByVal bVk As Byte, ByVal bScan As Byte, ByVal dwFlags As Long, ByVal dwExtraInfo As Long)

Platforms

Windows 95: Supported.

Windows 98: Supported but Obsolete; use SendInput instead.

Windows NT: Requires Windows NT 3.1 or later but Obsolete with Windows NT 4.0 with Service Pack 3 (SP3) or later; use SendInput instead.

Windows 2000: Supported but Obsolete; use SendInput instead.

Windows CE: Requires Windows CE 1.0 or later but Obsolete with Windows CE 2.0 or later; use SendInput instead.

Description & Usage

keybd_event simulates keyboard input by placing a keyboard input event into the input stream. The function can simulate a single press or release of a single key. This function should only be used when a key's state changes. For example, do not tell the function to simulate pressing the Z key if the Z key is already pressed.

Return Value

keybd_event does not return a value.

Visual Basic-Specific Issues

None.

Parameters

bVk

The virtual-key code of the key to simulate pressing or releasing.

bScan

Reserved -- set to 0.

dwFlags

A combination of the following flags specifying what kind of keyboard input to synthesize:

KEYEVENTF_EXTENDEDKEY

Prefix the scan code with a prefix byte having the value &HE0.

KEYEVENTF_KEYUP

The key specified in bVk is being released. If this flag is not specified, the key is being pressed.

dwExtraInfo

An additional 32-bit value associated with the keyboard event.

Constant Definitions

Const KEYEVENTF_EXTENDEDKEY = &H1

Const KEYEVENTF_KEYUP = &H2

Example

' Simulate the user pressing Alt+Space followed by N. This

' key combination will minimize the active window.

' Hold the Alt key while typing Space.

keybd_event VK_MENU, 0, 0, 0 ' press Alt

keybd_event VK_SPACE, 0, 0, 0 ' press Space

keybd_event VK_SPACE, 0, KEYEVENTF_KEYUP, 0 ' release Space

keybd_event VK_MENU, 0, KEYEVENTF_KEYUP, 0 ' release Alt

' Type the N key.

keybd_event VK_N, 0, 0, 0 ' press N

keybd_event VK_N, 0, KEYEVENTF_KEYUP, 0 ' release N

Related Functions

mouse_event, SendInput

Category

Keyboard

LineTo Function

Declare Function LineTo Lib "gdi32.dll" (ByVal hdc As Long, ByVal x As Long, ByVal y As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

LineTo draws a line from the current point to the point specified on a device. The line is drawn in the color specified by that object's .ForeColor property. After the line is drawn, the endpoint is the new current point. The algorithm Windows uses to draw a line does not actually color the last pixel of the line because it is not considered part of the line. The function returns 0 if an error occured, or 1 if successful.

hdc

The device context of the device to draw on.

x

The x coordinate of the endpoint to draw to.

y

The y coordinate of the endpoint to draw to.

Example:

' Draw a red line from (0,40) to (100,50) on the window Form1.

Dim pt As POINT_TYPE ' needed for another API function

Dim retval As Long ' return value

Form1.ForeColor = RGB(255, 0, 0) ' set the foreground drawing color of Form1 to red

retval = MoveToEx(Form1.hdc, 0, 40, pt) ' set the current point to (0,40)

retval = LineTo(Form1.hdc, 100, 50) ' draw a line from current point to (100,50)

Related Calls: Polyline, PolylineTo, PolyPolyline

Category: Lines & Curves

LoadCursor Function

Declare Function LoadCursor Lib "user32.dll" Alias "LoadCursorA" (ByVal hInstance As Long, ByVal lpCursorName As Any) As Long

Platforms: Win 32s, Win 95/98, Win NT

LoadCursor loads a cursor from either a currently running program's cursor resources or Windows's cursor resources. The cursor can be referenced either by its resource name or by its numeric resource ID number. If successful, the function returns a handle to the loaded cursor. If unsuccessful, the function returns 0.

hInstance

To load one of a program's cursor resources, set this to the application's instance handle. To load one of Windows's cursor resources, set this to 0.

lpCursorName

Either a string containing the name of the cursor resource to load, or a numeric ID number identifying the resource. For Windows's cursors, exactly one of the following flags can be used to select the desired cursor resource:

IDC_APPSTARTING = 32650

The application starting cursor (arrow and hourglass).

IDC_ARROW = 32512

The regular arrow pointer cursor.

IDC_CROSS = 32515

The cross cursor.

IDC_IBEAM = 32513

The I-shaped beam cursor (text editing cursor).

IDC_ICON = 32641

Win NT only: An empty cursor.

IDC_NO = 32648

The "no" symbol cursor (circle with a slash).

IDC_SIZE = 32640

Win NT only: The four-pointed resize/move arrow.

IDC_SIZEALL = 32646

The four-pointed resize/move arrow.

IDC_SIZENESW = 32643

The double-pointed resize arrow pointing to the upper-right and lower-left.

IDC_SIZENS = 32645

The double-pointed resize arrow pointing up and down.

IDC_SIZENWSE = 32642

The double-pointed resize arrow pointing to the upper-left and lower-right.

IDC_SIZEWE = 32644

The double-pointed resize arrow pointing left and right.

IDC_UPARROW = 32516

The up-arrow cursor.

IDC_WAIT = 32514

The wait cursor (hourglass).

Example:

' Display the application starting (arrow and hourglass) Windows

' cursor for three seconds. The cursor resource is loaded from Windows. Then

' restore the old cursor (whatever it happens to be).

Dim hcursor As Long ' receives handle to application starting cursor

Dim holdcursor As Long ' receives handle to previously used cursor

Dim retval As Long ' throw-away return value

hcursor = LoadCursor(0, IDC_APPSTARTING) ' load Windows's application starting cursor

holdcursor = SetCursor(hcursor) ' set it to the new cursor

Sleep 3000 ' wait for 3 seconds

retval = SetCursor(holdcursor) ' set it to the previous cursor

Related Call: LoadCursorFromFile

Category: Cursor

LoadCursorFromFile Function

Declare Function LoadCursorFromFile Lib "user32.dll" Alias "LoadCursorFromFileA" (ByVal lpFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

LoadCursorFromFile loads a cursor from a cursor file. The cursor file can contain either a regular cursor (*.cur) or an animated cursor (*.ani). If successful, the function returns a cursor handle to the newly loaded cursor. If unsuccessful, the function returns 0.

lpFileName

The filename of the cursor file to load. This file can either be a *.cur or an *.ani cursor file.

Example:

' Load the cursor "C:\MyProg\custom.ani" and set it as

' the current cursor for three seconds. Then restore the original cursor as

' the current cursor.

Dim hcursor As Long ' receives handle to the loaded cursor

Dim holdcursor As Long ' receives handle to the previously in use cursor

Dim retval As Long ' throw-away return value

hcursor = LoadCursorFromFile("C:\MyProg\custom.ani") ' load the animated cursor from the file

If hcursor = 0 Then End ' abort program if cursor couldn't be loaded

holdcursor = SetCursor(hcursor) ' set the loaded cursor as the current cursor

Sleep 3000 ' wait for three seconds

retval = SetCursor(holdcursor) ' restore the previous cursor

Related Call: LoadCursor

Category: Cursor

LocalFileTimeToFileTime Function

Declare Function LocalFileTimeToFileTime Lib "kernel32.dll" (lpLocalFileTime As FILETIME, lpFileTime As FILETIME) As Long

Platforms: Win 32s, Win 95/98, Win NT

LocalFileTimeToFileTime converts a time from local time (time according to the computer's current time zone) to UTC time (also known as Greenwich Mean Time). The source and target times are stored in FILETIME format. The function returns 1 if successful, or 0 if an error occured.

lpLocalFileTime

The time and date in local time to convert.

lpFileTime

Receives the time and date specified in lpLocalFileTime converted to UTC time.

Example:

' Convert the time and date May 1, 1999 6:10:00 PM local time

' to a FILETIME structure in UTC time.

Dim sourcetime As SYSTEMTIME ' original time and date

Dim localtime As FILETIME ' receives sourcetime's time

Dim utctime As FILETIME ' receives the final result

Dim retval As Long ' return value

' Set sourcetime to the desired date:

sourcetime.wMonth = 5: sourcetime.wDay = 1: sourcetime.wYear = 1999

sourcetime.wHour = 18: sourcetime.wMinute = 10: sourcetime.wSecond = 0

' Convert sourcetime into FILETIME format:

retval = SystemTimeToFileTime(sourcetime, localtime)

' Convert localtime into UTC time:

retval = LocalFileTimeToFileTime(localtime, utctime)

' utctime now has the converted time and date

Related Call: FileTimeToLocalFileTime

Category: Time

lstrcpy Function

Declare Function lstrcpy Lib "kernel32.dll" Alias "lstrcpyA" (ByVal lpString1 As String, lpString2 As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

lstrcpy copies the entire contents of a string from one string variable to another. Any terminating null character will also be copied to the receiving string. The function returns 1 if successful, or 0 if an error occured.

lpString1

String variable that receives the copied contents of lpString2.

lpString2

The string to put into lpString1.

Example:

' Copy the source string to the target string

Dim source As String, target As String ' the two strings

Dim retval As Long ' return value

source = "Hello, world!" ' the source string to copy

target = Space(Len(source)) ' make room in target to receive the copied string

retval = lstrcpy(target, source) ' set target to equal source

Debug.Print "Source string: "; source

Debug.Print "Target string: "; target ' they should be the same....

Related Call: lstrcpyn

Category: Strings

lstrcpyn Function

Declare Function lstrcpyn Lib "kernel32.dll" Alias "lstrcpynA" (ByVal lpString1 As String, ByVal lpString2 As String, ByVal iMaxLength As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

lstrcpyn a sequence of characters from the source string to the target string. Note that the target string must initially contain at least one more character than the desired number of characters to copy to allow for the terminating null character. The function returns 1 if successful, or 0 if an error occured.

lpString1

String variable that receives the specified string of characters. It must have an initial length of at least iMaxLength + 1.

lpString2

The source string. The first iMaxLength characters of it will be copied.

iMaxLength

The number of characters to copy from lpString2 to lpString1.

Example:

' Copy the first five characters of "Hello, world!"

Dim source As String, target As String ' source and target strings

Dim retval As Long ' return value

source = "Hello, world!" ' source string

target = Space(6) ' extra character allows for the terminating null

retval = lstrcpyn(target, source, 5) ' copy the first 5 characters over

target = Left(target, 5) ' remove the terminating null character

Debug.Print "Source string: "; source

Debug.Print "Target string: "; target ' should be "Hello"

Related Call: lstrcpy

Category: Strings

lstrlen Function

Declare Function lstrlen Lib "kernel32.dll" Alias "lstrlenA" (ByVal lpString As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

lstrlen determines the length of a string. The length of a string is considered to be the number of characters it contains, not counting any possible terminating null character. The function returns the length of the string.

lpString

The string to determine the length of.

Example:

' Display the length of the string "Hello, world!"

Dim slength As Long ' receives the length of the string

slength = lstrlen("Hello, world!") ' find the length of the string

Debug.Print "The string 'Hello, world!' contains"; slength; "characters."

Category: Strings

MessageBeep Function

Declare Function MessageBeep Lib "user32.dll" (ByVal wType As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

MessageBeep plays one of the system's associated sounds, with one exception. These sounds are some of the ones that Windows associates with certain events. However, this function can also play a beep on the computer's internal speaker. The function returns 1 if successful, or 0 if an error occured.

wType

If set to -1 (or &HFFFFFFFF), plays a beep using the computer's internal speaker. Otherwise, this is exactly one of the following flags specifying which sound to play:

MB_ICONASTERISK = &H40

Play the SystemAsterisk sound.

MB_ICONEXCLAMATION = &H30

Play the SystemExclamation sound.

MB_ICONHAND = &H10

Play the SystemHand sound.

MB_ICONQUESTION = &H20

Play the SystemQuestion sound.

MB_OK = &H0

Play the SystemDefault sound.

Example:

' Play the SystemQuestion sound.

Dim retval As Long ' return value

retval = MessageBeep(MB_ICONQUESTION) ' play the SystemQuestion sound

Related Call: Beep

Category: Errors

mouse_event Function

Declare Sub mouse_event Lib "user32.dll" (ByVal dwFlags As Long, ByVal dx As Long, ByVal dy As Long, ByVal cButtons As Long, ByVal dwExtraInfo As Long)

Platforms

Windows 95: Supported.

Windows 98: Supported but Obsolete; use SendInput instead.

Windows NT: Requires Windows NT 3.1 or later but Obsolete with Windows NT 4.0 with Service Pack 3 (SP3) or later; use SendInput instead.

Windows 2000: Supported but Obsolete; use SendInput instead.

Windows CE: Requires Windows CE 2.0 or later but Obsolete; use SendInput instead.

Description & Usage

mouse_event synthesizes mouse input by placing mouse input information into the input stream. A single mouse input event consists of either a move of the mouse or the change of the button state. For mouse movement, the coordinates can be given in either absolute or relative form. Only changes in mouse position or button state should be send via this function. For example, if the left mouse button is already down, the program should not send another left-button-down input.

Return Value

mouse_event does not return a value.

Visual Basic-Specific Issues

None.

Parameters

dwFlags

A combination of the following flags specifying which mouse input information to place into the input stream. Remember to only specify button status information for those which have changed. Note that scroll wheel movement and X button status cannot be simultaneously specified because they both use the dwData parameter.

MOUSEEVENTF_ABSOLUTE

The dx and dy parameters contain absolute mouse coordinates. In the coordinate system used by the function, the screen's upper-left corner has coordinates (0,0) and the lower-right corner has coordinates (65535,65535), regardless of the actual screen size. If this flag is not set, dx and dy contain relative coordinates, whose actual amount of movement depends on the current mouse speed and acceleration settings.

MOUSEEVENTF_LEFTDOWN

The left button was pressed.

MOUSEEVENTF_LEFTUP

The left button was released.

MOUSEEVENTF_MIDDLEDOWN

The middle button was pressed.

MOUSEEVENTF_MIDDLEUP

The middle button was released.

MOUSEEVENTF_MOVE

The mouse moved. The dx and dy parameters specify the amount or location of the movement.

MOUSEEVENTF_RIGHTDOWN

The right button was pressed.

MOUSEEVENTF_RIGHTUP

The right button was released.

MOUSEEVENTF_WHEEL

Windows NT, 2000: The scroll wheel has moved. The dwData parameter specifies the amount of movement.

MOUSEEVENTF_XDOWN

Windows 2000: An X button was pressed. The dwData parameter identifies which X buttons.

MOUSEEVENTF_XUP

Windows 2000: An X button was released. The dwData parameter identifies which X buttons.

dx

Specifies either the x-coordinate of absolute mouse movement or the amount of relative movement along the x-axis. For relative motion, positive values move right and negative values move left.

dy

Specifies either the y-coordinate of absolute mouse movement or the amount of relative movement along the y-axis. For relative motion, positive values move down and negative values move up.

dwData

Windows NT, 2000: If dwFlags contains MOUSEEVENTF_WHEEL, this specifies the amount of wheel movement, in integer multiples of WHEEL_DATA. Positive values mean forward (away) rotation, and negative values mean backwards (toward) rotation. Windows 2000: If dwFlags contains either MOUSEEVENTF_XDOWN or MOUSEEVENTF_XUP, this is a combination of the following flags specifying which X buttons have been pressed or released:

XBUTTON1

The first X button was pressed or released.

XBUTTON2

The second X button was pressed or released.

dwExtraInfo

An additional 32-bit value associated with the mouse event.

Constant Definitions

Const MOUSEEVENTF_ABSOLUTE = &H8000

Const MOUSEEVENTF_LEFTDOWN = &H2

Const MOUSEEVENTF_LEFTUP = &H4

Const MOUSEEVENTF_MIDDLEDOWN = &H20

Const MOUSEEVENTF_MIDDLEUP = &H40

Const MOUSEEVENTF_MOVE = &H1

Const MOUSEEVENTF_RIGHTDOWN = &H8

Const MOUSEEVENTF_RIGHTUP = &H10

Const MOUSEEVENTF_WHEEL = &H80

Const MOUSEEVENTF_XDOWN = &H100

Const MOUSEEVENTF_XUP = &H200

Const WHEEL_DELTA = 120

Const XBUTTON1 = &H1

Const XBUTTON2 = &H2

Example

' Simulate the mouse moving to near the lower-left corner of the

' screen and clicking (pressing and releasing) the left button. Depending on the exact

' location of the taskbar, this will imitate clicking the Start button.

' Move the mouse to about where the Start button would be, using

' absolute coordinates.

mouse_event MOUSEEVENTF_MOVE Or MOUSEEVENTF_ABSOLUTE, 400, 65000, 0, 0

' Press and then release the left mouse button.

mouse_event MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0

mouse_event MOUSEEVENTF_LEFTUP, 0, 0, 0, 0

Related Functions

keybd_event, SendInput

Category

Mouse

MoveFile Function

Declare Function MoveFile Lib "kernel32.dll" Alias "MoveFileA" (ByVal lpExistingFileName As String, ByVal lpNewFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

MoveFile moves or renames a file or directory -- it's really the same operation either way. If a directory is moved/renamed, all of the subdirectories and files contained in it will similarly be moved/renamed to reflect the path change. The function returns 1 if successful, or 0 if an error occured.

lpExistingFileName

The source file or directory; i.e., the file or directory to rename (move).

lpNewFileName

The target file or directory; i.e., the new file or directory name to give the source file (where to move the file or directory).

Example:

' Move the file to C:\MyFiles\temp.txt to C:\Dummy\buffer.txt.

' The original file will no longer exist. Note how this example both changes

' the filename and moves the file into a different directory simultaneously.

Dim retval As Long ' return value

retval = MoveFile("C:\MyFiles\temp.txt", "C:\Dummy\buffer.txt")

Related Call: CopyFile

Category: Files

MoveMemory Function

Declare Sub MoveMemory Lib "kernel32.dll" Alias "RtlMoveMemory" (Destination As Any, Source As Any, ByVal Length As Long)

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

MoveMemory moves the contents of a portion of memory from one location to another. The two locations are identified by pointers to the memory addresses. After the copy, the original contents in the source are set to zeros.

Return Value

MoveMemory does not return a value.

Visual Basic-Specific Issues

A pointer to any variable can be automatically generated merely be passing that variable as either Destination or Source. However, if either a String or a Long holding the desired memory address is passed, the ByVal keyword must preceed it.

Parameters

Destination

A pointer to the memory address to use as the target, which receives the transfered data.

Source

A pointer to the memory address to use as the source, which initially holds the data to be transfered.

Length

The number of bytes of data to copy from the source memory location to the target memory location.

Example

' Transfer the contents of one byte array to another. After the transfer,

' the contents of the source array are set to 0.

Dim source(0 To 9) As Byte ' source array of 10 bytes

Dim target(0 To 9) As Byte ' similarly sized target array

Dim c As Integer ' counter variable

' Fill the source array with some information.

For c = 0 To 9 ' loop through each element

 source(c) = c ' set each element's value to its index

Next c

' Transfer the data from the target array to the source array. Note how pointers

' are implied merely by passing the arrays as usual.

MoveMemory target(0), source(0), 10 ' copy all 10 bytes

' Verify that the contents were transfered.

For c = 0 To 9

 Debug.Print target(c); ' this will now contain the information

Next c

Related Function

CopyMemory

Category

Memory

MoveToEx Function

Declare Function MoveToEx Lib "gdi32.dll" (ByVal hdc As Long, ByVal x As Long, ByVal y As Long, lpPoint As POINT_TYPE) As Long

Platforms: Win 32s, Win 95/98, Win NT

MoveToEx sets the current point of a device. The current point is the starting point from which all graphics APIs ending with "To" (such as LineTo) begin drawing from. Some programming languages call this point the last point referenced. This function also puts the former current point into the variable passed as lpPoint. The function returns 0 if an error occured, or 1 if successful.

hdc

The device context of the device to set the current point of.

x

The x coordinate of the point to set as the current point.

y

The y coordinate of the point to set as the current point.

lpPoint

Variable that receives the coordinate of the former current point.

Example:

' Draw a red line from (0,40) to (100,50) on the window Form1.

Dim pt As POINT_TYPE ' receives the former current point

Dim retval As Long ' return value

Form1.ForeColor = RGB(255, 0, 0) ' set the foreground drawing color of Form1 to red

retval = MoveToEx(Form1.hdc, 0, 40, pt) ' set the current point to (0,40)

' Note that pt now contains whatever the old current point was, but it doesn't matter here.

retval = LineTo(Form1.hdc, 100, 50) ' draw a line from current point to (100,50)

Category: Lines & Curves

MoveWindow Function

Declare Function MoveWindow Lib "user32.dll" (ByVal hwnd As Long, ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, ByVal nHeight As Long, ByVal bRepaint As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

MoveWindow moves a window to a new location. In addition to moving it, this function also changes the window's size to a new width and height. The function returns 1 if successful, or 0 if an error occured.

hwnd

The handle of the window to move and resize.

x

The x-coordinate to position the upper-left corner of the window at.

y

The y-coordinate to position the upper-left corner of the window at.

nWidth

The width in pixels to resize the window to.

nHeight

The height in pixels to resize the window to.

bRepaint

If 1, updates the screen to display the window at its new position. If 0, does not update the screen to reflect the move (the window will appear to be unmoved but will actually be at its new location!).

Example:

' Move window Form1. Set its upper-left corner to the point (200, 150).

' Change its size to a width of 175 and a height of 300.

Dim retval As Long ' return value

' Move the window and make sure it's redrawn at its new position.

retval = MoveWindow(Form1.hWnd, 200, 150, 175, 300, 1)

' (If the last value had been 0, the window would have appeared to be unmoved!)

Related Calls: GetWindowRect, SetWindowPos

Category: Windows

OffsetRect Function

Declare Function OffsetRect Lib "user32.dll" (lpRect As RECT, ByVal x As Long, ByVal y As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

OffsetRect changes the position of a rectangle without changing its size. If the value to move by is negative, the rectangle is moved left or up (depending on the direction); positive values move it right or down. The function returns 0 if an error occured, or 1 if successful.

lpRect

The rectangle to move.

x

The value to move the rectangle horizontally by. Negative values move to the left, positive to the right.

y

The value to move the rectangle vertically by. Negative values move up, positive down.

Example:

' Shift window Form1 50 pixels right and 20 pixels up using its rectangle.

Dim winrect As RECT ' receives the rectangle of the window

Dim retval As Long ' return value

retval = GetWindowRect(Form1.hWnd, winrect) ' get Form1's rectangle

retval = OffsetRect(winrect, 50, -20) ' shift the rectangle 50 to the right and 20 upwards

' Now change the window on screen to match its new rectangle

retval = SetWindowPos(Form1.hWnd, 0, winrect.Left, winrect.Top, winrect.Right, winrect.Bottom, 0)

Related Call: InflateRect

Category: Rectangles

OffsetRgn Function

Declare Function OffsetRgn Lib "gdi32.dll" (ByVal hRgn As Long, ByVal x As Long, ByVal y As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

OffsetRgn translates (slides) a region by a specified amount horizontally and vertically. The region can be moved in any direction left, right, up, or down. The function returns 0 if an error occured, or exactly one of the following flags identifying the shape of the region which was moved:

COMPLEXREGION = 3

The region is not empty but is not a rectangle.

NULLREGION = 1

The region is empty, i.e., null.

SIMPLEREGION = 2

The region is rectangular in shape.

hRgn

A handle to the region to move.

x

The number of pixels to move the region horizontally. Positive values move to the right; negative ones move to the left.

y

The number of pixels to move the region vertically. Positive values move down; negative ones move up.

Example:

' On window Form1, fill an elliptical region in light gray. Then translate the

' region 50 pixels right and 20 pixels up and fill it with dark gray.

Dim hRgn As Long ' handle to the region

Dim hLightBrush As Long, hDarkBrush As Long ' handles to the two brushes to be used

Dim retval As Long ' generic return value

' Create the elliptical region.

hRgn = CreateEllipticRgn(20, 100, 220, 200) ' bounding rectangle (20,100)-(220,200)

' Get handles to the light and dark gray solid stock brushes.

hLightBrush = GetStockObject(LTGRAY_BRUSH)

hDarkBrush = GetStockObject(DKGRAY_BRUSH)

' Fill in the region in its current location on Form1 in light gray.

retval = FillRgn(Form1.hDC, hRgn, hLightBrush)

' Slide the region 50 pixels right and 20 pixels up.

retval = OffsetRgn(hRgn, 50, -20) ' -20 means 20 up, not down

' Fill in the region in its new location in dark gray.

retval = FillRgn(Form1.hDC, hRgn, hDarkBrush)

' Delete the region to free up resources.

retval = DeleteObject(hRgn)

Category: Regions

Pie Function

Declare Function Pie Lib "gdi32.dll" (ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long, ByVal X3 As Long, ByVal Y3 As Long, ByVal X4 As Long, ByVal Y4 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

Pie draws an elliptical pie wedge on a device. The pie wedge is drawn using the device's currently selected pen and is filled using its currently selected brush. The pie wedge consists of two radials from the ellipse's center to the ellipse's edge, filling the area between them (going counterclockwise around the ellipse). The first two sets of (x,y) coordinate pairs specify the bounding rectangle which determines the ellipse. The last two sets of (x,y) pairs determine the points along the ellipse; the start and endpoints are determined by the intersection of a ray from the ellipse's center through the (x,y) coordinate and the ellipse. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to draw the chord on.

X1

The x-coordinate of the upper-left corner of the ellipse's bounding rectangle.

Y1

The y-coordinate of the upper-left corner of the ellipse's bounding rectangle.

X2

The x-coordinate of the lower-right corner of the ellipse's bounding rectangle.

Y2

The y-coordinate of the lower-right corner of the ellipse's bounding rectangle.

X3

The x-coordinate of the point determining the starting point of the pie wedge.

Y3

The y-coordinate of the point determining the starting point of the pie wedge.

X4

The x-coordinate of the point determining the ending point of the pie wedge.

Y4

The y-coordinate of the point determining the ending point of the pie wedge.

Example:

' Draw a pie wedge on window Form1. The ellipse has a bounding rectangle

' of (10,20)-(210,120). The pie wedge will have endpoints on the ellipse of (210,70)

' and (110,20) -- i.e., the "upper-right" fourth of the ellipse. Draw the pie wedge

' using Form1's current brush and pen.

Dim retval As Long ' return value

' Draw the chord as specified above.

retval = Pie(Form1.hDC, 10, 20, 210, 120, 210, 70, 110, 20)

Related Calls: Chord, Ellipse

Category: Filled Shapes

PlaySound Function

Declare Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long

Alternate Declare for when using a resource or memory location:

Declare Function PlaySound_Res Lib "winmm.dll" Alias "PlaySoundA" (ByVal lpszName As Long, ByVal hModule As Long, ByVal dwFlags As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

PlaySound plays a waveform sound through the speakers. This sound could be a .wav file, a system event sound (such as the system startup sound), or a sound resource stored in an application. Note that when the function needs to play an application resource or a RAM-loaded sound, Visual Basic users must use the alternate declare of the function in order to pass the numeric identifier of the sound instead of a string. The function returns 0 if an error occured, or a non-zero value if successful.

lpszName

The name or some other identifier of the sound. Its exact format depends on the flags passed as dwFlags.

hModule

A handle to the application module containing the sound resource the play, if needed. If the function does not need this information, pass 0 for this parameter.

dwFlags

Zero or more of the following flags specifying what lpszName refers to and how to play the sound:

SND_ALIAS = &H10000

lpszName is a string identifying the name of the system event sound to play.

SND_ALIAS_ID = &H110000

lpszName is a string identifying the name of the predefined sound identifier to play.

SND_APPLICATION = &H80

lpszName is a string identifying the application-specific event association sound to play.

SND_ASYNC = &H1

Play the sound asynchronously -- return immediately after beginning to play the sound and have it play in the background.

SND_FILENAME = &H20000

lpszName is a string identifying the filename of the .wav file to play.

SND_LOOP = &H8

Continue looping the sound until this function is called again ordering the looped playback to stop. SND_ASYNC must also be specified.

SND_MEMORY = &H4

lpszName is a numeric pointer refering to the memory address of the image of the waveform sound loaded into RAM.

SND_NODEFAULT = &H2

If the specified sound cannot be found, terminate the function with failure instead of playing the SystemDefault sound. If this flag is not specified, the SystemDefault sound will play if the specified sound cannot be located and the function will return with success.

SND_NOSTOP = &H10

If a sound is already playing, do not prematurely stop that sound from playing and instead return with failure. If this flag is not specified, the playing sound will be terminated and the sound specified by the function will play instead.

SND_NOWAIT = &H2000

If a sound is already playing, do not wait for the currently playing sound to stop and instead return with failure.

SND_PURGE = &H40

Stop playback of any waveform sound. lpszName must be an empty string.

SND_RESOURCE = &H4004

lpszName is the numeric resource identifier of the sound stored in an application. hModule must be specified as that application's module handle.

SND_SYNC = &H0

Play the sound synchronously -- do not return until the sound has finished playing.

Example:

' First play the SystemStart event sound synchronously. Then loop

' playing the file C:\Sounds\scream.wav for 5 seconds before stopping.

Dim retval As Long ' return value of the function

' Synchronously play the SystemStart sound. This function returns when the sound is done.

retval = PlaySound("SystemStart", 0, SND_ALIAS Or SND_SYNC)

' Now loop the .wav file for five seconds before purging its playback. Note that

' we don't want the default sound to play if the file is not found.

retval = PlaySound("C:\Sounds\scream.wav", 0, SND_FILENAME Or SND_ASYNC Or SND_NODEFAULT Or SND_LOOP)

Sleep 5000 ' wait for 5 seconds while sound loops

retval = PlaySound("", 0, SND_PURGE Or SND_NODEFAULT) ' stop playback

Related Call: sndPlaySound

Category: Audio

Polygon Function

Declare Function Polygon Lib "gdi32.dll" (ByVal hdc As Long, lpPoint As POINT_TYPE, ByVal nCount As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

Polygon draws and fills a polygon on a device. The polygon is drawn using the current pen and is filled using the current brush. The vertices of the polygon are stored in an array passed as lpPoint, in sequential order. Only specify each point once. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to draw the polygon on.

lpPoint

An array holding the vertices of the polygon in the order which they will be drawn in. Specify each point only once.

nCount

The number of elements in the array passed as lpPoint.

Example:

' Draw a diamond on window Form1 using the default pen and

' brush. Note how the points must be loaded into the array before calling the function.

Dim points(0 To 3) As POINT_TYPE ' vertices of the polygon

Dim retval As Long ' return value

' Load the coordinates of the diamond's vertices into the array.

points(0).x = 200: points(0).y = 100 ' 1st point (200,100)

points(1).x = 250: points(1).y = 150 ' 2nd point (250,150)

points(2).x = 200: points(2).y = 200 ' 3rd point (200,200)

points(3).x = 150: points(3).y = 150 ' 4th point (150,150)

' Draw the diamond using Form1's default pen and brush

retval = Polygon(Form1.hDC, points(0), 4) ' four points in the array

Related Call: PolyPolygon

Category: Filled Shapes

Polyline Function

Declare Function Polyline Lib "gdi32.dll" (ByVal hdc As Long, lpPoint As POINT_TYPE, ByVal nCount As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

Polyline draws a series of lines on a graphics-capable device. These lines connect the points given in an array passed as lpPoint. Lines are drawn connecting the first point to the second point, the second point to the third point, etc. The first and last points are not connected. The lines are drawn using the device's current drawing color. The function returns 1 if successful, or 0 if an error occured.

hdc

The device context of the device to draw the lines on.

lpPoint

An array specifying the x and y coordinates of each point to draw lines to or from.

nCount

The number of elements in the array passed as lpPoint.

Example:

' Draw a triangle having corners (100,100), (200, 150), and (0, 150)

' on window Form1. Note how since we want the first and last points to be connected,

' point (100,100) must be given as both the first and last points.

Dim points(0 To 3) As POINT_API ' the points to draw to/from

Dim retval As Long ' return value

' Put the points to use into the array. Four points must be specified to draw the

' triangle because the point (100,100) must be entered twice.

points(0).x = 100: points(0).y = 100 ' point #0: (100,100)

points(1).x = 200: points(1).y = 150 ' point #1: (200,150)

points(2).x = 0: points(2).y = 150 ' point #2: (0,150)

points(3).x = 100: points(3).y = 100 ' point #3: (100,100)

Form1.ForeColor = RGB(255, 0, 0) ' set Form1's drawing color to red

retval = Polyline(Form1.hDC, points(0), 4) ' draw the lines

Related Calls: LineTo, PolylineTo, PolyPolyline

Category: Lines & Curves

PolylineTo Function

Declare Function PolylineTo Lib "gdi32.dll" (ByVal hdc As Long, lppt As POINT_TYPE, ByVal cCount As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

PolylineTo draws a series of connected lines on a graphics-capable device. The points are given to the function inside an array passed as lppt. The function draws lines connecting the device's current point to the first point, the first point to the second point, the second point to the third point, etc. When the function is finished, it sets the current point to whatever the last point in the array is. The original current point and the last point are not connected. The lines are drawn in the device's current drawing color. The function returns 1 if successful, or 0 if an error occured.

hdc

The device context of the device to draw the lines on.

lppt

An array of points to connect using the lines.

cCount

The number of elements in lppt.

Example:

' Draw a red triangle with corners (100,100), (200,150), and (0,150)

' on window Form1. The current point must first be set to (100,100), and the last

' point must also be given as (100,100) to close the triangle.

Dim points(0 To 2) As POINT_TYPE ' points given to the function

Dim curpt As POINT_TYPE ' receives current point from MoveToEx

Dim retval As Long ' return value

' Set Form1's current point to (100,100)

retval = MoveToEx(Form1.hDC, 100, 100, curpt)

' Load the points of the triangle into the array points(). Notice that (100,100)

' is given as the last point to close the figure.

points(0).x = 200: points(0).y = 150 ' point #0: (200,150)

points(1).x = 0: points(1).y = 150 ' point #1: (0,150)

points(2).x = 100: points(2).y = 100 ' point #2: (100,100)

Form1.ForeColor = RGB(255, 0, 0) ' set Form1's drawing color to red

retval = PolylineTo(Form1.hDC, points(0), 3) ' draw the lines

Related Calls: LineTo, Polyline, PolyPolyline

Category: Lines & Curves

PolyPolygon Function

Declare Function PolyPolygon Lib "gdi32.dll" (ByVal hdc As Long, lpPoint As POINT_TYPE, lpPolyCounts As Long, ByVal nCount As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

PolyPolygon draws multiple polygons on a given device. The polygons are drawn using the device's current pen and are filled using the device's current brush. The various polygons are not connected. The vertices of every polygon are stored in an array passed as lpPoint. The array passed as lpPolyCounts identifies the number of vertices in each polygon. This function is equivalent to calling the Polygon function multiple times. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to draw the polygons on.

lpPoint

An array holding all of the vertices of every polygon to draw, listed in their proper order. Do not specify any point more than once in each polygon's set of vertices.

lpPolyCounts

An array holding the number of points in lpPoint belonging to each polygon. For example, lpPolyCounts(0) identifies the number of points belonging to the first polygon, etc.

nCount

The number of elements in the array passed as lpPolyCounts.

Example:

' Draw a diamond and a triangle on window Form1. The two

' polygons are not interconnected and are drawn using the window's current pen

' and brush. Note how the two arrays delineate each polygon's set of vertices.

Dim points(0 To 6) As POINT_TYPE ' holds diamond's and triangle's vertices

Dim numpoints(0 To 1) As Long ' holds number of points belonging to each polygon

Dim retval As Long ' return value

' Load the points belonging to the diamond.

points(0).x = 200: points(0).y = 100 ' 1st point: (200,100)

points(1).x = 250: points(1).y = 150 ' 2nd point: (250,150)

points(2).x = 200: points(2).y = 200 ' 3rd point: (200,200)

points(3).x = 150: points(3).y = 150 ' 4th point: (150,150)

numpoints(0) = 4 ' first four points identify the diamond

' Load the points belonging to the triangle.

points(4).x = 350: points(4).y = 200 ' 1st point: (350,200)

points(5).x = 400: points(5).y = 250 ' 2nd point: (400,250)

points(6).x = 300: points(6).y = 250 ' 3rd point: (300,250)

numpoints(1) = 3 ' next three points identify the triangle

' Draw the two polygons

retval = PolyPolygon(Form1.hDC, points(0), numpoints(0), 2) ' two polygons

Related Call: Polygon

Category: Filled Shapes

PolyPolyline Function

Declare Function PolyPolyline Lib "gdi32.dll" (ByVal hdc As Long, lppt As POINT_TYPE, lpdwPolyPoints As Long, ByVal cCount As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

PolyPolyline draws multiple sets of lines connecting points on a graphics-capable device. This function has a similar effect as using Polyline with various sets of points. Lines are drawn to connect the first point in a set to the second point, the second point to the third, etc. The first and last points in a set are not connected, just as the sets are not connected to each other. All of the points go into an array passed as lppt. The connecting lines are drawn in the object's current drawing color. The function returns 1 if successful, or 0 if an error occured.

hdc

The device context of the device to draw the lines on.

lppt

An array holding all of the points in every set. This should have all of the points in the first set, followed by those in the second set, followed by those in the third set, etc.

lpdwPolyPoints

An array identifying how many points belong to each set. The first element specified how many points are in the first set, etc.

cCount

The number of elements in lpdwPolyPoints.

Example:

' Draw a red triangle and a red parallelogram on window Form1. The

' triangle has corners (100,100), (200,150), and (0,150). The parallelogram has corners

' (300,300), (400,300), (350,400), and (250,400). Note that since the first and last points

' are not connected, the beginning point is also specified as the last point in order

' to close the figures.

Dim points(0 To 8) As POINT_TYPE ' the points in both sets

Dim numpoints(0 To 1) As Long ' the number of points in each set

Dim retval As Long ' return value

' Load the points for the triangle into the array. The point (100,100) is both the first

' and last points in order to close the figure.

points(0).x = 100: points(0).y = 100 ' point #0: (100,100)

points(1).x = 200: points(1).y = 150 ' point #1: (200,150)

points(2).x = 0: points(2).y = 150 ' point #2: (0,150)

points(3).x = 100: points(3).y = 100 ' point #3: (100,100)

numpoints(0) = 4 ' number of points in first set

' Load the points for the parallelogram in a similar fashion.

points(4).x = 300: points(4).y = 300 ' point #4: (300,300)

points(5).x = 400: points(5).y = 300 ' point #5: (400,300)

points(6).x = 350: points(6).y = 400 ' point #6: (350,400)

points(7).x = 250: points(7).y = 400 ' point #7: (250,400)

points(8).x = 300: points(8).y = 300 ' point #8: (300,300)

numpoints(1) = 5 ' number of points in second set

' Now, finally draw both sets of points. The two are not mutually connected.

Form1.ForeColor = RGB(255, 0, 0) ' set Form1's drawing color to red

retval = PolyPolyline(Form1.hDC, points(0), numpoints(0), 2) ' draw the lines

Related Calls: LineTo, Polyline, PolylineTo

Category: Lines & Curves

PrintDlg Function

Declare Function PrintDlg Lib "comdlg32.dll" Alias "PrintDlgA" (pPrintdlg As PRINTDLG_TYPE) As Long

Platforms: Win 32s, Win 95/98, Win NT

PrintDlg displays either the Print common dialog box or the Print Setup dialog box. Either box can be used to allow the user to select a printer and other settings, such as the number of copies and the page range, desired for a print operation. Information for initializing the dialog box as well as information returned from it is stored in the structure passed as pPrintdlg. See the pages for the PRINTDLG_TYPE, DEVMODE, and DEVNAMES structures for more details about using this function. Note that instead of using the latter two structures explicitly, handles to the memory blocks holding their data are required by the function; see the example below. The function returns 0 if either an error occured or the user pressed Cancel, or a non-zero value if the user successfully pressed OK.

pPrintdlg

Stores both the dialog box's initialization settings and the information returned from the dialog box.

Example:

' Open a Print common dialog box. Then display certain selections the user made,

' such as the printer name, number of copies, and orientation. Carefully note how memory

' blocks are allocated to hold the two data structures containing information about the

' printer device. To save space, Visual Basic's Printer object, referring to the default

' printer, is used to provide the defaults. Of course, API functions could also be used

' to get these defaults.

Dim pd As PRINTDLG_TYPE ' holds information to make the dialog box

Dim printmode As DEVMODE ' holds settings for the printer device

Dim printnames As DEVNAMES ' holds device, driver, and port names

Dim pMode As Long, pNames As Long ' pointers to the memory blocks for the two DEV* structures

Dim retval As Long ' return value of function

' First, load default settings into printmode. Note that we only fill relevant information.

printmode.dmDeviceName = Printer.DeviceName ' name of the printer

printmode.dmSize = Len(printmode) ' size of the data structure

printmode.dmFields = DM_ORIENTATION ' identify which other members have information

printmode.dmOrientation = DMORIENT_PORTRAIT ' default to Portrait orientation

' Next, load strings for default printer into printnames. Note the unusual way in which such

' information is stored. This is explained on the DEVNAMES page.

devnames.wDriverOffset = 8 ' offset of driver name string

devnames.wDeviceOffset = devnames.wDriverOffset + 1 + Len(Printer.DriverName) ' offset of printer name string

devnames.wOutputOffset = devnames.wDeviceOffset + 1 + Len(Printer.Port) ' offset to output port string

devnames.wDefault = 0 ' maybe this isn't the default selected printer

' Load the three strings into the buffer, separated by null characters.

devnames.extra = Printer.DriverName & vbNullChar & Printer.DeviceName & vbNullChar & Printer.Port & vbNullChar

' Finally, load the initialization settings into pd, which is passed to the function. We'll

' set the pointers to the structures after this.

pd.lStructSize = Len(pd) ' size of structure

pd.hwndOwner = Form1.hWnd ' window Form1 is opening the Print dialog box

' Flags: All Pages default, disable Print to File option, return device context:

pd.flags = PD_ALLPAGES Or PD_DISABLEPRINTTOFILE Or PD_RETURNDC

pd.nMinPage = 1 ' allow user to select first page of "document"

pd.nMaxPage = 15 ' let's say there are 15 pages of the "document"

' Note how we can ignore those members which will be set or are not used here.

' Copy the data in printmode and printnames into the memory blocks we allocate.

pd.hDevMode = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, Len(printmode) ' allocate memory block

pMode = GlobalLock(pd.hDevMode) ' get a pointer to the block

CopyMemory ByVal pMode, printmode, Len(printmode) ' copy structure to memory block

retval = GlobalUnlock(pd.hDevMode) ' unlock the block

' Now do the same for printnames.

pd.hDevNames = GlobalAlloc(GMEM_MOVEABLE Or GMEM_ZEROINIT, Len(printnames) ' allocate memory block

pNames = GlobalLock(pd.hDevNames) ' get a pointer to the block

CopyMemory ByVal pNames, printnames, Len(printnames) ' copy structure to memory block

retval = GlobalUnlock(pd.hDevNames) ' unlock the block

' Finally, open the dialog box!

retval = PrintDlg(pd) ' looks so simple, doesn't it?

' If the user hit OK, display some information about the selection.

If retval <> 0 Then

 ' First, we must copy the memory block data back into the structures. This is almost identical

 ' to the code above where we did the reverse. Comments here are omitted for brevity.

 pMode = GlobalLock(pd.hDevMode)

 CopyMemory printmode, ByVal pMode, Len(printmode)

 retval = GlobalUnlock(pd.hDevMode)

 pNames = GlobalLock(pd.hDevNames)

 CopyMemory printnames, ByVal pNames, Len(printnames)

 retval = <A href="../g/gl

PtInRect Function

Declare Function PtInRect Lib "user32.dll" (lpRect As RECT, ByVal x As Long, ByVal y As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

PtInRect determines if a point lies inside or outside of a rectangle. Note that Windows considers the left and top edges of a rectangle to be inside it, and the right and bottom edges to be outside. The function returns 1 if the point is inside or 0 if it is outside.

lpRect

The rectangle to look inside.

x

The x coordinate of the point to determine if it is inside or outside.

y

The y coordinate of the point to determine if it is inside or outside.

Example:

' Determine if the mouse cursor is inside or outside of window Form1.

' This is done by checking the point of the mouse cursor with the rectangle of the window.

Dim mousept As POINT_TYPE ' receives mouse coordinate

Dim winrect As RECT ' receives rectangle of Form1

Dim isinside As Long ' receives 1 if inside or 0 if outside

Dim retval As Long ' return value for other functions

retval = GetCursorPos(mousept) ' determine the mouse cursor's position

retval = GetWindowRect(Form1.hWnd, winrect) ' determine Form1's rectangle

' Check to see if the mouse cursor is located inside of the Form1 rectangle

isinside = PtInRect(winrect, mousept.x, mousept.y)

If isinside = 1 Then

 Debug.Print "The mouse cursor is currently inside of Form1."

Else

 Debug.Print "The mouse cursor is currently outside of Form1."

End If

Category: Rectangles

PtInRegion Function

Declare Function PtInRegion Lib "gdi32.dll" (ByVal hRgn As Long, ByVal x As Long, ByVal y As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

PtInRegion determines if a given point lies within a region. The point is considered to be inside the region if it is within the area bounded by the region. The function returns 0 if the point is not inside the region, or a non-zero value if the point is in the region.

hRgn

A handle to the region to determine if a given point lies within.

x

The x-coordinate of the point to determine if it lies within the region.

y

The y-coordinate of the point to determine if it lies within the region.

Example:

' Consider a line connecting the upper-right and lower-left corners of the

' screen, and consider the region made of the upper-left side of this line. Determine

' if the mouse cursor lies within this region or not.

Dim swidth As Long, sheight As Long ' width and height of the screen

Dim hRgn As Long ' handle to the triangular region explained above

Dim curpos As POINT_TYPE ' receives location of mouse cursor

Dim vertices(0 To 2) As POINT_TYPE ' vertices of region to create

Dim isinside As Long ' receives 0 if not inside, non-zero otherwise

Dim retval As Long ' generic return value

' Get the screen's width and height. Use this information to create the region.

swidth = GetSystemMetrics(SM_CXSCREEN) ' screen width

sheight = GetSystemMetrics(SM_CYSCREEN) ' screen height

' Load region's vertices into the array and create it.

vertices(0).x = 0: vertices(0).y = 0 ' vertex #1: upper-left corner of screen

vertices(1).x = swidth: vertices(1).y = 0 ' vertex #2: upper-right corner of screen

vertices(2).x = 0: vertices(2).y = sheight ' vertex #3: lower-left corner of screen

hRgn = CreatePolygonRgn(vertices(0), 3, ALTERNATE) ' create the region

' Get the current position of the mouse cursor.

retval = GetCursorPos(curpos)

' Determine if the cursor location lies within the region.

isinside = PtInRegion(hRgn, curpos.x, curpos.y) ' is the point in the region?

If isinside = 0 Then ' not inside

 Debug.Print "The cursor is not inside the region."

Else

 Debug.Print "The cursor is inside the region."

End If

' Delete the region to free up resources.

retval = DeleteObject(hRgn)

Related Call: RectInRegion

Category: Regions

ReadFile Function

Declare Function ReadFile Lib "kernel32.dll" (ByVal hFile As Long, lpBuffer As Any, ByVal nNumberOfBytesToRead As Long, lpNumberOfBytesRead As Long, lpOverlapped As OVERLAPPED) As Long

Alternate Declare for use with synchronous (non-overlapped) files:

Declare Function ReadFileNO Lib "kernel32.dll" Alias "ReadFile" (ByVal hFile As Long, lpBuffer As Any, ByVal nNumberOfBytesToRead As Long, lpNumberOfBytesRead As Long, ByVal lpOverlapped As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

ReadFile reads data from an open file and puts the data in the variable passed as lpBuffer. The function also puts the number of bytes of data actually read into the variable passed as lpNumberOfBytesRead. The file must of course have been opened with read-level access. The function starts reading from the position specified by the file pointer and sets the file pointer to the position immediately after the data read if the file is synchronous (non-overlapped). If it is asynchronous (overlapped), the reading starts at the point specified by lpOverlapped. If the end of the file is reached, the function completes successfully but gives a value of 0 for the number of bytes read. For Visual Basic users, the alternate declare must be used when not using an overlapped file; pass a value of 0 as lpOverlapped in the alternate declare. Note that Win 95/98 does not support overlapped files at all. The function returns 1 if successful, or 0 if an error occured.

hFile

The handle to the file to read from. The file must have read-level access.

lpBuffer

Variable that receives the data from the file. If this is a string, Visual Basic users must pass the string explicitly ByVal (see example).

nNumberOfBytesToRead

The number of bytes of data to read from the file and put into lpBuffer (i.e., the size of lpBuffer).

lpNumberOfBytesRead

Receives the number of bytes of data actually read from the file. If this is 0, the end of the file has been reached.

lpOverlapped

Specifies where to begin reading from if the file is asynchronous (overlapped). If not, this must be 0. VB users need to use the alternate Declares to pass 0 as this value.

Example:

' Read both a Long (32-bit) number and a String from the file

' C:\Test\myfile.txt. Since this is under Win 95/98, the alternate declare is used. Notice how the

' ByVal keyword must be used when reading a string variable.

Dim longbuffer As Long ' receives long read from file

Dim stringbuffer As String ' receives string read from file

Dim numread As Long ' receives number of bytes read from file

Dim hfile As Long ' handle of the open file

Dim retval As Long ' return value

' Use CreateFile's alternate declare because this isn't Win NT (see its page for the reason why).

hfile = CreateFileNS("C:\Test\myfile.txt", GENERAL_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' the file could not be opened

 Debug.Print "Unable to open the file -- probably does not exist."

 End ' abort the program

End If

' Read a Long-type number from the file

retval = ReadFileNO(hfile, longbuffer, Len(longbuffer), numread, 0)

If numread = 0 Then ' EOF reached

 Debug.Print "End of file encountered -- could not read any data."

Else

 Debug.Print "Number read from file:"; longbuffer

End If

' Read a 10-character string from the file

stringbuffer = Space(11) ' make more than enough room in the buffer

retval = ReadFileNO(hfile, ByVal stringbuffer, 10, numread, 0)

If numread = 0 Then ' EOF reached

 Debug.Print "End of file encountered -- could not read any data."

Else

 Debug.Print "String read from file: "; string buffer

End If

retval = CloseHandle(hfile) ' close the file

Related Calls: SetFilePointer, WriteFile

Category: Files

Rectangle Function

Declare Function Rectangle Lib "gdi32.dll" (ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

Rectangle draws a rectangular-shaped box on a graphics-capable device. The rectangle is drawn in the device's current drawing color and is filled using its current filling color and brush, if any. The function returns 0 if an error occured, or 1 if successful.

hdc

The device context of the object to draw on.

X1

The x coordinate of the rectangle's upper-left corner.

Y1

The y coordinate of the rectangle's upper-left corner.

X2

The x coordinate of the rectangle's lower-right corner.

Y2

The y coordinate of the rectangle's lower-right corner.

Example:

' Draw a green rectangle on window Form1 with an upper-left

' corner of (25,30) and a lower-right corner of (100,50)

Dim retval As Long ' return value

Form1.ForeColor = RGB(0, 255, 0) ' set the foreground-drawing color to green

retval = Rectangle(Form1.hdc, 25, 30, 100, 50) ' draw the rectangle from (25,30)-(100,50)

Related Call: RoundRect

Category: Filled Shapes

RectInRegion Function

Declare Function RectInRegion Lib "gdi32.dll" (ByVal hRgn As Long, lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

RectInRegion determines if a rectangle lies within a given region. The rectangle is considered to be inside the region if any portion of it -- not necessarily all of it -- lies within the region. The function returns 0 if the rectangle is completely outside the region, or a non-zero value if the rectangle is at least partially within the region.

hRgn

A handle to the region to determine if the rectangle lies within.

lpRect

The rectangle to determine if it lies at least partially within the region.

Example:

' Consider a line connecting the upper-right and lower-left corners of the

' screen, and consider the region made of the upper-left side of this line. Determine

' if window Form1 at least partially lies within the region..

Dim swidth As Long, sheight As Long ' width and height of the screen

Dim hRgn As Long ' handle to the triangular region explained above

Dim winrect As RECT ' receives Form1's rectangle

Dim vertices(0 To 2) As POINT_TYPE ' vertices of region to create

Dim isinside As Long ' receives 0 if not inside, non-zero otherwise

Dim retval As Long ' generic return value

' Get the screen's width and height. Use this information to create the region.

swidth = GetSystemMetrics(SM_CXSCREEN) ' screen width

sheight = GetSystemMetrics(SM_CYSCREEN) ' screen height

' Load region's vertices into the array and create it.

vertices(0).x = 0: vertices(0).y = 0 ' vertex #1: upper-left corner of screen

vertices(1).x = swidth: vertices(1).y = 0 ' vertex #2: upper-right corner of screen

vertices(2).x = 0: vertices(2).y = sheight ' vertex #3: lower-left corner of screen

hRgn = CreatePolygonRgn(vertices(0), 3, ALTERNATE) ' create the region

' Get the rectangle of window Form1, identifying the corners of the window.

retval = GetWindowRect(Form1.hWnd, winrect)

' Determine if the rectangle lies within the region.

isinside = RectInRegion(hRgn, winrect) ' is the rectangle in the region?

If isinside = 0 Then ' not inside

 Debug.Print "Form1 is completely outside the region."

Else

 Debug.Print "Form1 lies at least partially inside the region."

End If

' Delete the region to free up resources.

retval = DeleteObject(hRgn)

Related Call: PtInRegion

Category: Regions

RegCloseKey Function

Declare Function RegCloseKey Lib "advapi32.dll" (ByVal hKey As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

RegCloseKey closes a registry key. This should be done after you finish reading to or writing to the registry. Closing the registry key frees up some resources. Obviously, you can no longer use the key after closing it. The function returns 0 if successful, or a non-zero error code if an error occurs.

hKey

The registry key to close.

Example:

' Create a key called HKEY_CURRENT_USER\Software\MyCorp\MyProgram\Config.

' Then create a "username" value under that key and set its value to "Rimmer".

Dim hregkey As Long ' receives handle to the newly created or opened registry key

Dim secattr As SECURITY_ATTRIBUTES ' security settings of the key

Dim subkey As String ' name of the subkey to create

Dim neworused As Long ' receives 1 if new key was created or 2 if an existing key was opened

Dim stringbuffer As String ' the string to put into the registry

Dim retval As Long ' return value

' Set the name of the new key and the default security settings

subkey = "Software\MyCorp\MyProgram\Config"

secattr.nLength = Len(secattr) ' size of the structure

secattr.lpSecurityDescriptor = 0 ' default security level

secattr.bInheritHandle = True ' the default value for this setting

' Create or open the registry key

retval = RegCreateKeyEx(HKEY_CURRENT_USER, subkey, 0, "", 0, KEY_WRITE, secattr, hregkey, neworused)

If retval <> 0 Then ' error during open

 Debug.Print "Error opening or creating registry key -- aborting."

 End ' terminate the program

End If

' Write the string to the registry. Note that because Visual Basic is being used, the string passed to the

' function must explicitly be passed ByVal.

stringbuffer = "Rimmer" & vbNullChar ' note how a null character must be appended to the string

retval = RegSetValueEx(hregkey, "username", 0, REG_SZ, stringbuffer, Len(stringbuffer)) ' write the string

' Close the registry key

retval = RegCloseKey(hregkey)

Related Call: RegCreateKeyEx, RegOpenKeyEx

Category: Registry

RegCreateKeyEx Function

Declare Function RegCreateKeyEx Lib "advapi32.dll" Alias "RegCreateKeyExA" (ByVal hKey As Long, ByVal lpSubKey As String, ByVal Reserved As Long, ByVal lpClass As String, ByVal dwOptions As Long, ByVal samDesired As Long, lpSecurityAttributes As SECURITY_ATTRIBUTES, phkResult As Long, lpdwDisposition As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

RegCreateKeyEx creates a new registry key. If the key you want to create already exists, the existing key will be opened (as if RegOpenKeyEx had been used). The handle to the created/opened key is put into the variable passed as phkResult. The function returns 0 if successful, or a non-zero error code if an error occurs.

hKey

Either a handle to an open registry key or exactly one of the following flags that identify the base key to create the new key under:

HKEY_CURRENT_USER = &H80000001

The HKEY_CURRENT_USER base key, which stores program information for the current user.

HKEY_LOCAL_MACHINE = &H80000002

The HKEY_LOCAL_MACHINE base key, which stores program information for all users.

HKEY_USERS = &H80000003

The HKEY_USERS base key, which has all the information for any user (not just the one provided by HKEY_CURRENT_USER).

HKEY_CURRENT_CONFIG = &H80000005

The HKEY_CURRENT_CONFIG base key, which stores computer configuration information.

HKEY_DYN_DATA = &H80000006

The HKEY_DYN_DATA base key, which stores dynamic data.

lpSubkey

The name of the new key to create.

Reserved

Reserved. Set to 0.

lpClass

The name of the class or object type of the key. You can specify an empty string.

dwOptions

Set to 0 if you want the key to be saved to the registry. Set to 1 if you want the key to be destroyed when Windows shuts down (i.e., do not save).

samDesired

One or more of the following flags specifying the desired read/write access:

KEY_ALL_ACCESS = &HF003F

Permission for all types of access.

KEY_CREATE_LINK = &H20

Permission to create symbolic links.

KEY_CREATE_SUB_KEY = &H4

Permission to create subkeys.

KEY_ENUMERATE_SUB_KEYS = &H8

Permission to enumerate subkeys.

KEY_EXECUTE = &H20019

Same as KEY_READ.

KEY_NOTIFY = &H10

Permission to give change notification.

KEY_QUERY_VALUE = &H1

Permission to query subkey data.

KEY_READ = &H20019

Permission for general read access.

KEY_SET_VALUE = &H2

Permission to set subkey data.

KEY_WRITE = &H20006

Permission for general write access.

lpSecurityAttributes

For Windows NT, the level of security to give the key. For other versions of Windows, set its members to zero.

phkResult

Variable that receives the handle to the new/opened registry key.

lpdwDisposition

Variable that receives 1 if a new key was created, or 2 if an already-existing key was opened.

Example:

' Create a key called HKEY_CURRENT_USER\Software\MyCorp\MyProgram\Config.

' Then create a "username" value under that key and set its value to "Rimmer".

Dim hregkey As Long ' receives handle to the newly created or opened registry key

Dim secattr As SECURITY_ATTRIBUTES ' security settings of the key

Dim subkey As String ' name of the subkey to create

Dim neworused As Long ' receives 1 if new key was created or 2 if an existing key was opened

Dim stringbuffer As String ' the string to put into the registry

Dim retval As Long ' return value

' Set the name of the new key and the default security settings

subkey = "Software\MyCorp\MyProgram\Config"

secattr.nLength = Len(secattr) ' size of the structure

secattr.lpSecurityDescriptor = 0 ' default security level

secattr.bInheritHandle = True ' the default value for this setting

' Create or open the registry key

retval = RegCreateKeyEx(HKEY_CURRENT_USER, subkey, 0, "", 0, KEY_WRITE, secattr, hregkey, neworused)

If retval <> 0 Then ' error during open

 Debug.Print "Error opening or creating registry key -- aborting."

 End ' terminate the program

End If

' Write the string to the registry. Note that because Visual Basic is being used, the string passed to the

' function must explicitly be passed ByVal.

stringbuffer = "Rimmer" & vbNullChar ' note how a null character must be appended to the string

retval = RegSetValueEx(hregkey, "username", 0, REG_SZ, stringbuffer, Len(stringbuffer)) ' write the string

' Close the registry key

retval = RegCloseKey(hregkey)

Related Calls: RegCloseKey, RegDeleteKey, RegOpenKeyEx

Category: Registry

RegDeleteKey Function

Declare Function RegDeleteKey Lib "advapi32.dll" Alias "RegDeleteKeyA" (ByVal hKey As Long, ByVal lpSubKey As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

RegDeleteKey deletes a key from the registry. The key to delete cannot have any subkeys under it or else the delete operation will fail. Under Win NT, the function will also fail if there are any values still under the key to delete. However, under Win 95/98, the function will still work; the key and all its associated values will be deleted. The function returns 0 if successful, or a non-zero error code if an error occured.

hKey

Either a handle to a registry key which the key to delete is under (note that this cannot itself be the key to delete), or one of the following flags specifying a base registry key:

HKEY_CLASSES_ROOT = &H80000000

The HKEY_CLASSES_ROOT base key.

HKEY_CURRENT_CONFIG = &H80000005

The HKEY_CURRENT_CONFIG base key.

HKEY_CURRENT_USER = &H80000001

The HKEY_CURRENT_USER base key.

HKEY_DYN_DATA = &H80000006

The HKEY_DYN_DATA base key.

HKEY_LOCAL_MACHINE = &H80000002

The HKEY_LOCAL_MACHINE base key.

HKEY_PERFORMANCE_DATA = &H80000004

The HKEY_PERFORMANCE_DATA base key.

HKEY_USERS = &H80000003

The HKEY_USERS base key.

lpSubKey

The name of the subkey under hKey to delete.

Example:

' Delete the registry key "Software\MyProgram\Config" under the base

' key HKEY_LOCAL_MACHINE. Indicate any failure conditions.

Dim retval As Long ' return value

' Attempt to delete the desired registry key.

retval = RegDeleteKey(HKEY_LOCAL_MACHINE, "Software\MyProgram\Config")

If retval <> 0 Then

 Debug.Print "Delete operation failed. The key may have subkeys and/or values under it."

 Debug.Print "Of course, the key might just not exist at all."

End If

Related Calls: RegCreateKeyEx, RegDeleteValue

Category: Registry

RegDeleteValue Function

Declare Function RegDeleteValue Lib "advapi32.dll" Alias "RegDeleteValueA" (ByVal hKey As Long, ByVal lpValueName As String) As Long

Platforms: Win 95/98, Win NT

RegDeleteValue deletes a value stored under a specified key in the registry. This function only works with values stored; it cannot delete subkeys. The value can of course be of any registry data type. The function returns 0 if successful, or a non-zero error code if an error occured.

hKey

A handle to the open registry key which contains the value to delete.

lpValueName

The name of the value to delete.

Example:

' Delete the value "SplashScreen" under the hypothetical registry key

' "HKEY_LOCAL_MACHINE\Software\MyProgram\Config". Note how error conditions are checked.

Dim hkey As Long ' handle to the open registry key

Dim retval As Long ' return value

' First, open up the registry key which holds the value to delete.

retval = RegOpenKeyEx(HKEY_LOCAL_MACHINE, "Software\MyProgram\Config", 0, KEY_ALL_ACCESS, hkey)

If retval = 0 Then ' successfully opened registry key

 ' Now delete the desired value from the key.

 retval = RegDeleteValue(hkey, "SplashScreen") ' if it existed, it is now deleted

 ' Note that we only have to close the registry key if it was successfully opened.

 retval = RegCloseKey

End If

Related Calls: RegDeleteKey, RegQueryValueEx, RegSetValueEx

Category: Registry

RegEnumKeyEx Function

Declare Function RegEnumKeyEx Lib "advapi32.dll" Alias "RegEnumKeyExA" (ByVal hKey As Long, ByVal dwIndex As Long, ByVal lpName As String, lpcbName As Long, lpReserved As Long, ByVal lpClass As String, lpcbClass As Long, lpftLastWriteTime As FILETIME) As Long

Platforms: Win 95/98, Win NT

RegEnumKeyEx enumerates all of the subkeys under a given key. The function retrieves the subkey name, class name, and last write time of each subkey. The key under which the subkeys are enumerated must have been opened with subkey-enumeration access (see the example). The program must use the function in a loop, incrementing the index value (which determines which subkey is identified) until the list has been exhaused. The subkeys are not retrieved in any clear order. The function returns 0 if successful, or a non-zero error code if an error occured.

hKey

A handle to the open registry key containing the subkeys to be enumerated (having been opened with subkey-enumeration access). This could also be exactly one of the following flags identifying one of the predefined base keys:

HKEY_CLASSES_ROOT = &H80000000

The HKEY_CLASSES_ROOT base key.

HKEY_CURRENT_CONFIG = &H80000005

The HKEY_CURRENT_CONFIG base key.

HKEY_CURRENT_USER = &H80000001

The HKEY_CURRENT_USER base key.

HKEY_DYN_DATA = &H80000006

The HKEY_DYN_DATA base key.

HKEY_LOCAL_MACHINE = &H80000002

The HKEY_LOCAL_MACHINE base key.

HKEY_PERFORMANCE_DATA = &H80000004

The HKEY_PERFORMANCE_DATA base key.

HKEY_USERS = &H80000003

The HKEY_USERS base key.

dwIndex

The index of the particular subkey to retrieve information about. Valid indices begin with 0 and go up to one less than the number of subkeys.

lpName

String which receives the name of the subkey whose information is being retrieved. This must be initialized to a sufficient size to receive the string.

lpcbName

The size of the string passed as lpName. This also receives the length of the string the function places in lpName.

lpReserved

Reserved -- set to 0. Visual Basic users must use the ByVal keyword immediately before the 0.

lpClass

String which receives the name of the subkey's class. This must be initialized to a sufficient size to receive the string.

lpcbClass

The size of the string passed as lpClass. This also receives the length of the string the function places in lpClass.

lpftLastWriteTime

Receives the time and date on which the subkey was last written to.

Example:

' Enumerate the subkeys under HKEY_LOCAL_MACHINE\Software. The name

' and class of each subkey is displayed for the user. Note the use of the loop which

' starts at 0 and keeps incrementing the index until no more subkeys exist.

Dim keyname As String ' receives name of each subkey

Dim keylen As Long ' length of keyname

Dim classname As String ' receives class of each subkey

Dim classlen As Long ' length of classname

Dim lastwrite As FILETIME ' receives last-write-to time, but we ignore it here

Dim hkey As Long ' handle to the HKEY_LOCAL_MACHINE\Software key

Dim index As Long ' counter variable for index

Dim retval As Long ' function's return value

' Open the desired registry key. Note the access level requested.

retval = RegOpenKeyEx(HKEY_LOCAL_MACHINE, "Software", 0, KEY_ENUMERATE_SUB_KEYS, hkey)

' Test to make sure the key was opened successfully.

If retval <> 0 Then

 Debug.Print "Registry key could not be opened -- aborting."

 End ' terminate the program

End If

' List through each possible subkey. Note how the strings receiving the information

' must be reinitialized each loop iteration.

index = 0 ' initial index value

While retval = 0 ' while we keep having success (retval equals 0 from the above API call)

 keyname = Space(255): classname = Space(255) ' make room in string buffers

 keylen = 255: classname = 255 ' identify the allocated space

 ' Get information about the next subkey, if one exists.

 retval = RegEnumKeyEx(hkey, index, keyname, keylen, ByVal 0, classname, classlen, lastwrite)

 If retval = 0 ' only display info if another subkey was found

 ' Extract the useful information from the string buffers.

 keyname = Left(keyname, keylen) ' trim off the excess space

 classname = Left(classname, classlen)

 ' Display the returned information.

 Debug.Print "HKEY_LOCAL_MACHINE\Software\"; keyname ' display full subkey name

 Debug.Print " (class: "; classname ' display subkey's class

 End If

 index = index + 1 ' increment the index counter

Wend ' end the loop

' Close the registry key after enumeration is complete.

retval = RegCloseKey

Related Call: RegEnumValue

Category: Registry

RegEnumValue Function

Declare Function RegEnumValue Lib "advapi32.dll" Alias "RegEnumValueA" (ByVal hkey As Long, ByVal dwIndex As Long, ByVal lpValueName As String, lpcbValueName As Long, lpReserved As Long, lpType As Long, lpData As Byte, lpcbData As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

RegEnumValues enumerates all of the values under a given registry key. The function must be used in a loop because each call only retrieves information about the value identified by the given index. Besides merely listing the names of each value, the function can also retrieve the data associated with each value. This data, which could be in any vaid registry data format, is placed in an array of bytes passed as lpData. It is the program's responsibility to correctly interpret the information. The key whose values are enumerated must have been opened with query-level access. The values which are enumerated are not retrived in any obvious order. The function returns 0 if successful, or a non-zero error code if an error occured.

hkey

A handle to the opened registry key containing the values to enumerate (having been opened with query-level access). This could also be exactly one of the following flags identifying one of the predefined base keys:

HKEY_CLASSES_ROOT = &H80000000

The HKEY_CLASSES_ROOT base key.

HKEY_CURRENT_CONFIG = &H80000005

The HKEY_CURRENT_CONFIG base key.

HKEY_CURRENT_USER = &H80000001

The HKEY_CURRENT_USER base key.

HKEY_DYN_DATA = &H80000006

The HKEY_DYN_DATA base key.

HKEY_LOCAL_MACHINE = &H80000002

The HKEY_LOCAL_MACHINE base key.

HKEY_PERFORMANCE_DATA = &H80000004

The HKEY_PERFORMANCE_DATA base key.

HKEY_USERS = &H80000003

The HKEY_USERS base key.

dwIndex

The index of the particular value to retrieve information about. Valid indices range from 0 to one less than the total number of values.

lpValueName

String which receives the name of the value whose information is being retrieved. This must be initialized to a sufficient size to receive the string.

lpcbValueName

The size of the string passed as lpValueName. This also receives the size of the string the function places inside of it.

lpReserved

Reserved -- set to 0. Visual Basic users must include the ByVal keyword explicitly.

lpType

Receives exactly one of the following flags identifying the data type of the value:

REG_BINARY = 3

A non-text sequence of bytes.

REG_DWORD = 4

Same as REG_DWORD_LITTLE_ENDIAN.

REG_DWORD_BIG_ENDIAN = 5

A 32-bit integer stored in big-endian format. This is the opposite of the way Intel-based computers normally store numbers -- the byte order is reversed.

REG_DWORD_LITTLE_ENDIAN = 4

A 32-bit integer stored in little-endian format. This is the way Intel-based computers store numbers.

REG_EXPAND_SZ = 2

A null-terminated string which contains unexpanded environment variables.

REG_LINK = 6

A Unicode symbolic link.

REG_MULTI_SZ = 7

A series of strings, each separated by a null character and the entire set terminated by a two null characters.

REG_NONE = 0

No data type.

REG_RESOURCE_LIST = 8

A list of resources in the resource map.

REG_SZ = 1

A string terminated by a null character.

lpData

A byte array receiving the data stored in the value. If you do not want to retrieve the data, set this parameter to 0. (Visual Basic users must include the ByVal keyword if setting this to 0.)

lpcbData

The size in bytes of the array passed as lpData. This also receives the size in bytes of the data placed into the array. If you do not want to retrieve any data, set this parameter to 0. (Visual Basic users must include the ByVal keyword if setting this to 0.)

Example:

' List the values under the following registry key:

' HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion

' Display the names of all values under the key. Also display the values' data if they are

' either null-terminated strings or binary data. (This example could be extended to include

' the rest of the registry data types, but it doesn't to save space). Note how the

' byte array is used to buffer the data before it might be copied to the string.

Dim valuename As String ' name of the value being retrieved

Dim valuelen As Long ' length of valuename

Dim datatype As Long ' receives data type of value

Dim data(0 To 254) As Byte ' 255-byte data buffer for read information

Dim datalen As Long ' size of data buffer information

Dim datastring As String ' will receive data converted to a string, if necessary

Dim hkey As Long ' handle to the registry key to enumerate the values of

Dim index As Long ' counter for the index of the value to enumerate

Dim c As Long ' counter variable

Dim retval As Long ' functions' return value

' Open the registry key to enumerate the values of.

retval = RegOpenKeyEx(HKEY_LOCAL_MACHINE, "Software\Microsoft\Windows\CurrentVersion", 0, KEY_QUERY_VALUE, hkey)

' Check to see if an error occured.

If retval <> 0 Then

 Debug.Print "Registry key could not be opened -- aborting."

 End ' abort the program

End If

' Begin enumerating the values. Get each one, displaying its name. If it's a null-

' terminated string or binary data, display it. If not, say so.

index = 0 ' initialize the counter

While retval = 0 ' loop while successful -- retval is already 0 to begin with

 ' Initialize the value name buffer.

 valuename = Space(255) ' 255-space buffer

 valuelen = 255 ' length of the string

 datalen = 255 ' size of data buffer

 ' Get the next value to be enumerated

 retval = RegEnumValue(hkey, index, valuename, valuelen, ByVal 0, datatype, data(0), datalen)

 If retval = 0 Then ' if successful, display information

 ' Extract the useful information from the value name buffer and display it.

 valuename = Left(valuename, valuelen)

 Debug.Print "Value Name: "; valuename

 ' Determine the data type of the value and display it.

 Select Case datatype

 Case REG_SZ ' null-terminated string

 ' Copy the information from the byte array into the string via the memory copying

 ' function. We subtract one because we don't want the trailing null. (Note the necessary

 ' usage of ByVal when passing a string to the following function.)

 datastring = Space(datalen - 1) ' make just enough room in the string

 CopyMemory ByVal datastring, data(0), datalen - 1 ' copy useful data

 Debug.Print " Data (string): "; datastring

 Case REG_BINARY ' binary data

 ' Display the hexadecimal values of each byte of data, separated by spaces.

 ' Use the datastring buffer to allow us to assure each byte is represented

 ' by a two-character string.

 Debug.Print " Data (binary):"; ' get ready to output

 For c = 0 To datalen - 1 ' loop through returned information

 datastring = Hex(data(c)) ' convert value into hex

 ' If needed, add leading zero(s) to make to a two-character string.

 If Len(datastring) < 2 Then datastring = String(2 - Len(datastring), "0") & datastring

 Debug.Print " "; datastring;

 Next c

 Debug.Print ' end the line

 Case Else ' a data type this example doesn't handle

 Debug.Print "This example doesn't know how to read that kind of data."

 End Select

 End If

 index = index + 1 ' increment the index counter

Wend ' end the loop

' Close the registry key.

retval = RegCloseKey

Related Call: RegEnumKeyEx

Category: Registry

RegOpenKeyEx Function

Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias "RegOpenKeyExA" (ByVal hKey As Long, ByVal lpSubKey As String, ByVal ulOptions As Long, ByVal samDesired As Long, phkResult As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

RegOpenKeyEx opens a key in the Windows registry. The handle it gives must be used when you read to or write from any values under that key. Unlike RegCreateKeyEx, this function will not create the key if it does not exist. The function puts a handle to the opened key into the variable passed as phkResult. The function returns 0 if successful, or a non-zero value error code if an error occured.

hKey

Either the handle to an open registry key or exactly one of the following flags that the desired key is under:

HKEY_CURRENT_USER = &H80000001

The HKEY_CURRENT_USER base key, which stores program information for the current user.

HKEY_LOCAL_MACHINE = &H80000002

The HKEY_LOCAL_MACHINE base key, which stores program information for all users.

HKEY_USERS = &H80000003

The HKEY_USERS base key, which has all the information for any user (not just the one provided by HKEY_CURRENT_USER).

HKEY_CURRENT_CONFIG = &H80000005

The HKEY_CURRENT_CONFIG base key, which stores computer configuration information.

HKEY_DYN_DATA = &H80000006

The HKEY_DYN_DATA base key, which stores dynamic data.

lpSubKey

The name of the key to open.

ulOptions

Reserved. Set to 0.

samDesired

One or more of the following flags specifying the desired read/write access:

KEY_ALL_ACCESS = &HF003F

Permission for all types of access.

KEY_CREATE_LINK = &H20

Permission to create symbolic links.

KEY_CREATE_SUB_KEY = &H4

Permission to create subkeys.

KEY_ENUMERATE_SUB_KEYS = &H8

Permission to enumerate subkeys.

KEY_EXECUTE = &H20019

Same as KEY_READ.

KEY_NOTIFY = &H10

Permission to give change notification.

KEY_QUERY_VALUE = &H1

Permission to query subkey data.

KEY_READ = &H20019

Permission for general read access.

KEY_SET_VALUE = &H2

Permission to set subkey data.

KEY_WRITE = &H20006

Permission for general write access.

phkResult

Receives the handle to the registry key.

Example:

' Open a key called HKEY_CURRENT_USER\Software\MyCorp\MyProgram\Config.

' Then create a "username" value under that key and set its value to "Rimmer".

Dim hregkey As Long ' receives handle to the opened registry key

Dim subkey As String ' name of the subkey to create

Dim retval As Long ' return value

' Set the name of the new key and the default security settings

subkey = "Software\MyCorp\MyProgram\Config"

' Open the registry key

retval = RegOpenKeyEx(HKEY_CURRENT_USER, subkey, 0, KEY_WRITE, hregkey)

If retval <> 0 Then ' error during open

 Debug.Print "Error opening registry key -- aborting."

 End ' terminate the program

End If

' Insert rest of code here.....

' Close the registry key

retval = RegCloseKey(hregkey)

Related Calls: RegCloseKey, RegCreateKeyEx

Category: Registry

RegQueryValueEx Function

Declare Function RegQueryValueEx Lib "advapi32.dll" Alias "RegQueryValueExA" (ByVal hKey As Long, ByVal lpValueName As String, ByVal lpReserved As Long, lpType As Long, lpData As Any, lpcbData As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

RegQueryValueEx reads a value from a registry key. It can read many different types of data, including integer types and strings. In Visual Basic, when reading a type of string from the registry, you must pass the string variable explicitly ByVal. The function returns 0 if successful, or a non-zero value error code if an error occured.

hKey

A handle to the registry key to read the value from. This cannot be one of the base keys (ie., HKEY_).

lpValueName

The name of the value to read.

Reserved

Reserved. Set to 0.

lpType

Variable which receives one of the following flags identifying the data type of the data read:

REG_BINARY = 3

A non-text sequence of bytes.

REG_DWORD = 4

Same as REG_DWORD_LITTLE_ENDIAN.

REG_DWORD_BIG_ENDIAN = 5

A 32-bit integer stored in big-endian format. This is the opposite of the way Intel-based computers normally store numbers -- the byte order is reversed.

REG_DWORD_LITTLE_ENDIAN = 4

A 32-bit integer stored in little-endian format. This is the way Intel-based computers store numbers.

REG_EXPAND_SZ = 2

A null-terminated string which contains unexpanded environment variables.

REG_LINK = 6

A Unicode symbolic link.

REG_MULTI_SZ = 7

A series of strings, each separated by a null character and the entire set terminated by a two null characters.

REG_NONE = 0

No data type.

REG_RESOURCE_LIST = 8

A list of resources in the resource map.

REG_SZ = 1

A string terminated by a null character.

lpData

Variable or whatever object receives the information read from the registry. In Visual Basic, a string variable passed as this must explicitly be passed ByVal.

lpcbData

Receives the length in bytes of the data returned. If a type of string is used, set this variable to the length in bytes of the string passed as lpData.

Example:

' Create a key called HKEY_CURRENT_USER\Software\MyCorp\MyProgram\Config.

' Then read the string value called "username" and display it.

Dim hregkey As Long ' receives handle to the newly created or opened registry key

Dim secattr As SECURITY_ATTRIBUTES ' security settings of the key

Dim subkey As String ' name of the subkey to create

Dim neworused As Long ' receives 1 if new key was created or 2 if an existing key was opened

Dim stringbuffer As String ' receives data read from the registry

Dim slength As Long ' receives length of returned data

Dim retval As Long ' return value

' Set the name of the new key and the default security settings

subkey = "Software\MyCorp\MyProgram\Config"

secattr.nLength = Len(secattr) ' size of the structure

secattr.lpSecurityDescriptor = 0 ' default security level

secattr.bInheritHandle = True ' the default value for this setting

' Create or open the registry key

retval = RegCreateKeyEx(HKEY_CURRENT_USER, subkey, 0, "", 0, KEY_READ, secattr, hregkey, neworused)

If retval <> 0 Then ' error during open

 Debug.Print "Error opening or creating registry key -- aborting."

 End ' terminate the program

End If

' Read the "username" string from the registry key. Note how in Visual Basic the string must be passed

' using the ByVal keyword.

stringbuffer = Space(255) ' make room in the buffer to receive the information

slength = 255 ' this must be set if passing a string to the function

retval = RegQueryValueEx(hregkey, "username", 0, REG_SZ, ByVal stringbuffer, slength) ' read data

stringbuffer = Left(stringbuffer, slength) ' extract the returned data from the buffer

If retval = 0 Then Debug.Print "User name: "; stringbuffer ' only display it if no error occured

' Close the registry key

retval = RegCloseKey(hregkey)

Related Call: RegDeleteValue, RegSetValueEx

Category: Registry

RegSetValueEx Function

Declare Function RegSetValueEx Lib "advapi32.dll" Alias "RegSetValueExA" (ByVal hKey As Long, ByVal lpValueName As String, ByVal Reserved As Long, ByVal dwType As Long, lpData As Any, ByVal cbData As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

RegSetValueEx writes a value to a registry key. If the value does not already exist, it will be created. The value can be of a number of different data types. In Visual Basic, if some sort of string value is written to the registry, the string must explicitly be passed ByVal. The function returns zero if successful, or a non-zero value error code if an error occured.

hKey

A handle to the registry key to write the value under. This cannot be one of the base keys (HKEY_).

lpValueName

The name of the value to set.

Reserved

Reserved. Set to 0.

dwType

Exactly one of the following flags identifying the data type of the data to write:

REG_BINARY = 3

A non-text sequence of bytes.

REG_DWORD = 4

Same as REG_DWORD_LITTLE_ENDIAN.

REG_DWORD_BIG_ENDIAN = 5

A 32-bit integer stored in big-endian format. This is the opposite of the way Intel-based computers normally store numbers -- the byte order is reversed.

REG_DWORD_LITTLE_ENDIAN = 4

A 32-bit integer stored in little-endian format. This is the way Intel-based computers store numbers.

REG_EXPAND_SZ = 2

A null-terminated string which contains unexpanded environment variables.

REG_LINK = 6

A Unicode symbolic link.

REG_MULTI_SZ = 7

A series of strings, each separated by a null character and the entire set terminated by a two null characters.

REG_NONE = 0

No data type.

REG_RESOURCE_LIST = 8

A list of resources in the resource map.

REG_SZ = 1

A string terminated by a null character.

lpData

The number, string, or other data to write. NOTE: You must use the alternate declare for any type of string when using Visual Basic!

cbData

The size in bytes of the data to set, including any vbNullChars. For numbers, set the number of bytes of memory the number uses.

Example:

' Create a key called HKEY_CURRENT_USER\Software\MyCorp\MyProgram\Config.

' Then create a "username" value under that key and set its value to "Rimmer".

Dim hregkey As Long ' receives handle to the newly created or opened registry key

Dim secattr As SECURITY_ATTRIBUTES ' security settings of the key

Dim subkey As String ' name of the subkey to create

Dim neworused As Long ' receives 1 if new key was created or 2 if an existing key was opened

Dim stringbuffer As String ' the string to put into the registry

Dim retval As Long ' return value

' Set the name of the new key and the default security settings

subkey = "Software\MyCorp\MyProgram\Config"

secattr.nLength = Len(secattr) ' size of the structure

secattr.lpSecurityDescriptor = 0 ' default security level

secattr.bInheritHandle = True ' the default value for this setting

' Create or open the registry key

retval = RegCreateKeyEx(HKEY_CURRENT_USER, subkey, 0, "", 0, KEY_WRITE, secattr, hregkey, neworused)

If retval <> 0 Then ' error during open

 Debug.Print "Error opening or creating registry key -- aborting."

 End ' terminate the program

End If

' Write the string to the registry. Note that because Visual Basic is being used, the string passed to the

' function must explicitly be passed ByVal.

stringbuffer = "Rimmer" & vbNullChar ' note how a null character must be appended to the string

retval = RegSetValueEx(hregkey, "username", 0, REG_SZ, stringbuffer, Len(stringbuffer)) ' write the string

' Close the registry key

retval = RegCloseKey(hregkey)

Related Call: RegDeleteValue, RegQueryValueEx

Category: Registry

ReleaseDC Function

Declare Function ReleaseDC Lib "user32.dll" (ByVal hWnd As Long, ByVal hdc As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

ReleaseDC frees up the resources used when you use GetDC to get an object's device context. This function should not be used to destroy a device context obtained from CreateDC -- for those, use DeleteDC instead. This should be done after your program finishes using the device context. The function returns 0 if an error occured or a 1 if successful.

hWnd

The handle of the object to free the resources of.

hdc

The device context of the object to free the resources of.

Example:

' Get the device context of the desktop window. This example doesn't

' use the DC for anything, but it could be used to copy the desktop image to another window.

Dim deskhwnd As Long ' receives handle to the desktop window

Dim deskhdc As Long ' receives device context of the desktop window

Dim retval As Long ' return value

' Figure out the desktop's device context

deskhwnd = GetDesktopWindow() ' get the desktop's handle

deskhdc = GetDC(deskhwnd) ' get its device context

' deskhdc could be used here to do any number of things....

' Release the device context to free up resources

retval = ReleaseDC(deskhwnd, deskhdc)

Related Call: DeleteDC, GetDC

Category: Devices

RemoveDirectory Function

Declare Function RemoveDirectory Lib "kernel32.dll" Alias "RemoveDirectoryA" (ByVal lpPathName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

RemoveDirectory deletes a directory from a disk. The function will not delete any files or subdirectories inside the directory. If the directory to delete is not completely empty, the function will fail. The function returns 1 if successful, or 0 if an error occured.

lpPathName

The directory to delete. The directory must be completely empty.

Example:

' Delete the directory C:\MyPrograms\TempData.

Dim retval As Long ' return value

retval = RemoveDirectory("C:\MyPrograms\TempData") ' delete the directory

If retval = 1 Then ' success

 Debug.Print "C:\MyPrograms\TempData was successfully deleted."

Else

 Debug.Print "Deletion failed. Make sure C:\MyPrograms\TempData is empty."

End If

Related Call: CreateDirectory

Category: Files

RoundRect Function

Declare Function RoundRect Lib "gdi32.dll" (ByVal hdc As Long, X1 As Long, Y1 As Long, X2 As Long, Y2 As Long, X3 As Long, Y3 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

RoundRect draws a rectangle with rounded corners on a graphics-capable device. The rounded rectangle is drawn in the device's current drawing color and is filled using its current filling color and brush, if any. The first two (x,y) coordinate pairs specified are the upper-left and lower-right corners of a comparable square-cornered rectangle. The third pair specifies the width and height of the rounded corner to use. The function returns 0 if an error occured, or 1 if successful.

hdc

The device context of the object to draw on.

X1

The x coordinate of the upper-left corner of the corresponding square-edged rectangle.

Y1

The y coordinate of the upper-left corner of the corresponding square-edged rectangle.

X2

The x coordinate of the lower-right corner of the corresponding square-edged rectangle.

Y2

The y coordinate of the lower-right corner of the corresponding square-edged rectangle.

X3

The width of each rounded corner.

Y3

The height of each rounded corner.

Example:

' Draw a green rounded rectangle on window Form1 with an upper-left

' corner of (25,30), a lower-right corner of (100,50), and rounded corners

' 10 pixels wide and 5 high

Dim retval As Long ' return value

Form1.ForeColor = RGB(0, 255, 0) ' set the foreground-drawing color to green

retval = RoundRect(Form1.hdc, 25, 30, 100, 50, 10, 5) ' draw the rectangle

Related Call: Rectangle

Category: Filled Shapes

SelectObject Function

Declare Function SelectObject Lib "gdi32.dll" (ByVal hdc As Long, ByVal hObject As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SelectObject selects a given object for use on a device. Possible objects to use with this function include bitmaps, brushes, fonts, pens, and regions. Once selected, this object will be used by the device whenever necessary. (For example, the selected brush will be used whenever the device needs to perform a fill.) The function returns a handle to the object previously selected by the device to do that task (e.g., the old brush). The program should re-select the old object when it is finished using it in order to preserve the device's default objects (see the example for a demonstration of this).

hdc

A device context to the device to select an object for.

hObject

A handle to the bitmap, brush, font, pen, or region to select for the device.

Example:

' Draw a rectangle with corners (10,20) and (175,100)

' on window Form1. Use a solid yellow brush to fill the rectangle.

Dim hbrush As Long ' receives handle to the solid yellow brush

Dim holdbrush As Long ' receives handle to Form1's default brush

Dim retval As Long ' return value

hbrush = CreateSolidBrush(RGB(255, 255, 0)) ' create a solid yellow brush

' Save Form1's default brush so we can restore it after the program is finished

holdbrush = SelectObject(Form1.hDC, hbrush) ' select the brush

' Draw the rectangle filled using the solid yellow brush

retval = Rectangle(Form1.hDC, 10, 20, 175, 100)

' Restore Form1's previous brush before destroying the created one

retval = SelectObject(Form1.hDC, holdbrush) ' select old brush

retval = DeleteObject(hbrush) ' destroy the solid yellow brush

Category: Devices

SendInput Function

Declare Function SendInput Lib "user32.dll" (ByVal nInputs As Long, pInputs As INPUT_TYPE, ByVal cbSize As Long) As Long

Platforms

Windows 95: Not Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 4.0 with Service Pack 3 (SP3) or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 2.0 or later.

Description & Usage

SendInput synthesizes a series of keyboard, mouse, or other hardware inputs and adds them the input stream. The events generated by the function are not intersperced with any other input messages, user-created or otherwise.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns the number of input events which were successfully added to the input stream.

Visual Basic-Specific Issues

None.

Parameters

nInputs

The number of elements in the array passed as pInputs.

pInputs

An array holding information about each input event to insert into the input stream. Each element corresponds to a single input event.

cbSize

The size in bytes of a single INPUT_TYPE structure (not the total size of the array passed as pInputs.

Example

' Synthesize the user typing the letter P followed by clicking

' the right mouse button. Note how the information for each individual input

' event is placed in its associated structure before copying it into the

' input array.

Dim inputevents(0 To 3) As INPUT_TYPE ' holds information about each event

Dim keyevent As KEYBDINPUT ' temporarily hold keyboard input info

Dim mouseevent As MOUSEINPUT ' temporarily hold mouse input info

' Load the information needed to synthesize pressing the P key.

keyevent.wVk = VK_P ' the P key

keyevent.wScan = 0 ' not needed

keyevent.dwFlags = 0 ' press the key down

keyevent.time = 0 ' use the default

keyevent.dwExtraInfo = 0 ' not needed

' Copy the structure into the input array's buffer.

inputevents(0).dwType = INPUT_KEYBOARD ' keyboard input

CopyMemory inputevents(0).xi(0), keyevent, Len(keyevent)

' Do the same as above, but for releasing the P key.

keyevent.wVk = VK_P ' the P key

keyevent.wScan = 0 ' not needed

keyevent.dwFlags = KEYEVENTF_KEYUP ' release the key

keyevent.time = 0 ' use the default

keyevent.dwExtraInfo = 0 ' not needed

inputevents(1).dwType = INPUT_KEYBOARD ' keyboard input

CopyMemory inputevents(1).xi(0), keyevent, Len(keyevent)

' Load the information needed to synthesize pressing the right mouse button.

mouseevent.dx = 0 ' no horizontal movement

mouseevent.dy = 0 ' no vertical movement

mouseevent.mouseData = 0 ' not needed

mouseevent.dwFlags = MOUSEEVENTF_RIGHTDOWN ' right button down

mouseevent.dwTime = 0 ' use the default

mouseevent.dwExtraInfo = 0 ' not needed

' Copy the structure into the input array's buffer.

inputarray(2).dwType = INPUT_MOUSE ' mouse input

CopyMemory inputevents(2).xi(0), mouseevent, Len(mouseevent)

' Do the same as above, but for releasing the right mouse button.

mouseevent.dx = 0 ' no horizontal movement

mouseevent.dy = 0 ' no vertical movement

mouseevent.mouseData = 0 ' not needed

mouseevent.dwFlags = MOUSEEVENTF_RIGHTUP ' right button up

mouseevent.dwTime = 0 ' use the default

mouseevent.dwExtraInfo = 0 ' not needed

' Copy the structure into the input array's buffer.

inputarray(3).dwType = INPUT_MOUSE ' mouse input

CopyMemory inputevents(3).xi(0), mouseevent, Len(mouseevent)

' Now that all the information for the four input events has been placed

' into the array, finally send it into the input stream.

SendInput(4, inputarray(0), Len(inputarray(0)) ' place the events into the stream

Related Functions

keybd_event, mouse_event

SetActiveWindow Function

Declare Function SetActiveWindow Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetActiveWindow makes a given window the active window for the program, giving it the focus. This window only becomes the foreground window if the application which owns it is the currently active program. This function can only be used on windows which the program owns. This function should be used carefully, since the user normally does not expect the active window to change unexpectedly. The function returns 1 if successful, or 0 if an error occured.

hwnd

A handle to the window to set as the active window.

Example:

' Make the window Form1 the active window for the program. Note that

' this function will not make the window the foreground window if the user is currently

' working with a separate program.

Dim retval As Long ' return value

retval = SetActiveWindow(Form1.hWnd) ' set Form1 as the application's active window

Related Calls: GetActiveWindow, SetForegroundWindow

Category: Windows

SetArcDirection Function

Declare Function SetArcDirection Lib "gdi32.dll" (ByVal hdc As Long, ByVal ArcDirection As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetArcDirection sets the direction that arcs are drawn in on a graphics-capable device. Arcs can be drawn either clockwise or counterclockwise from the starting point to the ending point. Although Win 95/98 implements this function, that platform ignores the setting specified and always draws arcs counterclockwise! The function returns 1 if successful, or 0 if an error occured.

hdc

The device context of the device to set the arc-drawing direction of.

ArcDirection

Exactly one of the following flags specifying which direction to draw arcs in:

AD_CLOCKWISE = 2

Draw arcs clockwise from the starting point to the ending point.

AD_COUNTERCLOCKWISE = 1

Draw arcs counterclockwise from the starting point to the ending point.

Example:

' Draw the arc that forms the top half of an ellipse. The ellipse

' is centered at (100, 100), has a width of 200, and has a height of 100. The arc is drawn

' in red on the window Form1.

Dim retval As Long ' return value

Form1.ForeColor = RGB(255, 0, 0) ' set the drawing color to red

retval = SetArcDirection(Form1.hDC, AD_COUNTERCLOCKWISE) ' draw the arc counterclockwise

' The ellipse is determined by the bounding rectangle (0,50)-(200,150).

' The ray to (200, 100) is due right; the ray to (0, 100) is due left.

retval = Arc(Form1.hDC, 0, 50, 200, 150, 200, 100, 0, 100)

Related Calls: AngleArc, Arc, ArcTo, GetArcDirection

Category: Lines & Curves

SetBrushOrgEx Function

Declare Function SetBrushOrgEx Lib "gdi32.dll" (ByVal hdc As Long, ByVal nXOrg As Long, ByVal nYOrg As Long, lppt As POINT_TYPE) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetBrushOrgEx sets the origin point for using a brush on a given device. Note that this function only takes effect on the next brush the device selects -- the currently selected brush in unaffected! The brush origin point determines the offset of the 8x8 block used to fill in areas (the brush). For example, an origin point of (2,3) would shift the fill pattern 2 pixels to the right and 3 pixels downward. The old brush origin point is put into the variable passed as lppt. The function returns 1 if successful, or 0 if an error occured.

hdc

A device context to the device to set the brush origin point of.

nXOrg

The x-coordinate of the new brush origin point. This must be between 0 and 7 inclusive.

nYOrg

The y-coordinate of the new brush origin point. This must be between 0 and 7 inclusive.

lppt

Receives the former brush origin point.

Example:

' Fill in rectange (10,20)-(200,150) on window Form1 with a double diagonal-

' cross hatch pattern: one in green, one in blue. After the first draw/paint, the brush

' origin is adjusted to make a nice overlay effect.

Dim hbrush As Long ' receives handle to the brushes the program creates

Dim holdbrush As Long ' receives handle to the device's default brush

Dim oldorg As POINT_TYPE ' receives original origin point

Dim xorg As POINT_TYPE ' throw-away value

Dim retval As Long ' return value

' ** First, draw the rectangle using the green hatched pattern **

' Create the green hatched brush

hbrush = CreateHatchBrush(HS_DIAGCROSS, RGB(0, 255, 0))

' Set the brush origin point to (0,0) and store the old value (we'll restore it later)

retval = SetBrushOrgEx(Form1.hDC, 0, 0, oldorg)

' Select the hatched brush and create the rectangle

holdbrush = SelectObject(Form1.hDC, hbrush) ' select the brush

retval = Rectangle(Form1.hDC, 10, 20, 200, 150) ' make the rectangle

' Restore the default brush temporarily and destroy the hatched brush

retval = SelectObject(Form1.hDC, holdbrush) ' restore old brush

retval = DeleteObject(hbrush) ' delete the hatched brush

' ** Now, redraw the rectangle using an offset blue hatched pattern **

' Create the blue hatched brush

hbrush = CreateHatchBrush(HS_DIAGCROSS, RGB(0, 0, 255))

' Set the brush origin point to (4,4) and ignore the old value

retval = SetBrushOrgEx(Form1.hDC, 0, 0, xorg) ' we don't care about xorg

' Select the hatched brush and recreate the rectangle

holdbrush = SelectObject(Form1.hDC, hbrush) ' select the brush

retval = Rectangle(Form1.hDC, 10, 20, 200, 150) ' make the rectangle

' Restore the default brush and destroy the hatched brush

retval = SelectObject(Form1.hDC, holdbrush) ' restore old brush

retval = DeleteObject(hbrush) ' delete the hatched brush

' Now, restore the device's old brush origin point

retval = SetBrushOrgEx(Form1.hDC, oldorg.x, oldorg.y, xorg)

Related Call: GetBrushOrgEx

Category: Brushes

SetCursor Function

Declare Function SetCursor Lib "user32.dll" (ByVal hCursor As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetCursor sets the image used to represent the mouse cursor. The new cursor can be any valid cursor that has either been created or loaded. If successful, the function returns a handle to the old cursor image. If unsuccessful, the function returns 0.

hCursor

The handle to the new cursor to use to represent the mouse pointer.

Example:

' Display the application starting (arrow and hourglass) Windows

' cursor for three seconds. The cursor resource is loaded from Windows. Then

' restore the old cursor (whatever it happens to be).

Dim hcursor As Long ' receives handle to application starting cursor

Dim holdcursor As Long ' receives handle to previously used cursor

Dim retval As Long ' throw-away return value

hcursor = LoadCursor(0, IDC_APPSTARTING) ' load Windows's application starting cursor

holdcursor = SetCursor(hcursor) ' set it to the new cursor

Sleep 3000 ' wait for 3 seconds

retval = SetCursor(holdcursor) ' set it to the previous cursor

Related Calls: GetCursor, SetSystemCursor

Category: Cursor

SetCursorPos Function

Declare Function SetCursorPos Lib "user32.dll" (ByVal x As Long, ByVal y As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetCursorPos sets the position of the mouse cursor. If you try to set the coordinates outside of the range of the display (for example, to (700,40) on a 640x480 display) or outside the confining rectangle (set by ClipCursor), the cursor will just go to the edge of the screen or the rectangle. The function returns 0 if an error occured, or 1 if successful.

x

The x coordinate to move the cursor to.

y

The y coordinate to move the cursor to.

Example:

' Move the mouse cursor to the point (100,200) on the screen

Dim retval As Long ' return value

retval = SetCursorPos(100, 200) ' move the cursor to (100,200)

Related Call: GetCursorPos

Category: Cursor

SetDoubleClickTime Function

Declare Function SetDoubleClickTime Lib "user32.dll" (ByVal wCount As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetDoubleClickTime sets the maximum amount of time allowed between successive mouse clicks for Windows to determine it as a double click. This function alters how Windows interprets a double click, so of course all applications as well as Windows itself will be affected. Be careful using this function, since the user usually sets the double click speed via Windows's Control Panel, so he/she may not expect a change in the double click speed. The function returns 1 if successful, or 0 if an error occured.

wCount

The maximum amount of time, in milliseconds, to allow between successive clicks for Windows to interpret it as a double click. A value of 0 restores Windows's default double click speed of 500 milliseconds.

Example:

' Set the maximum double click speed to 1 second.

Dim retval As Long ' return value

retval = SetDoubleClickTime(1000) ' set the double click speed to 1 second

Debug.Print "The double click speed is now 1 second (1000 milliseconds)."

Related Call: GetDoubleClickTime

Category: Mouse

SetFileAttributes Function

Declare Function SetFileAttributes Lib "kernel32.dll" Alias "SetFileAttributesA" (ByVal lpFileName As String, ByVal dwFileAttributes As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetFileAttributes changes the attributes of a file or a directory. The four attributes you can set are archive, read-only, hidden, and system status -- the other attributes merely reflect unchangeable properties of the file. Any of the four can be on or off in any order. The function returns 0 if an error occured, or 1 if successful.

lpFileName

The filename or directory, including the full path, to change the attributes of.

dwFileAttributes

One or more of the following flags specifying the attributes to set (those that can only be set by the operating system are not listed here):

FILE_ATTRIBUTE_ARCHIVE = &H20

An archive file (which most files are).

FILE_ATTRIBUTE_HIDDEN = &H2

A hidden file, not normally visible to the user.

FILE_ATTRIBUTE_NORMAL = &H80

An attribute-less file (cannot be combined with other attributes).

FILE_ATTRIBUTE_READONLY = &H1

A read-only file.

FILE_ATTRIBUTE_SYSTEM = &H4

A system file, used exclusively by the operating system.

Example:

' Set the file C:\MyProgram\secret.dat to a hidden, read-only,

' archive file.

Dim fileattrs As Long ' file attributes

Dim retval As Long ' return value

fileattrs = FILE_ATTRIBUTES_ARCHIVE Or FILE_ATTRIBUTES_HIDDEN Or FILE_ATTRIBUTES_READONLY

retval = SetFileAttributes("C:\MyProgram\secret.dat", fileattrs) ' set the file's attributes

Related Call: GetFileAttributes

Category: Files

SetFilePointer Function

Declare Function SetFilePointer Lib "kernel32.dll" (ByVal hFile As Long, ByVal lDistanceToMove As Long, lpDistanceToMoveHigh As Long, ByVal dwMoveMethod As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetFilePointer moves the position of the file pointer of a currently open file. The file pointer identifies the position in a synchronous (non-overlapped) file where reading from and writing to the file begins. The file must have been opened with at least either read-level or write-level access (or both). The actual distance to move is a combination of lDistanceToMove and lpDistanceToMoveHigh. The binary or hexadecimal values of each are put one after another to create the actual value. Mathematically, it is determined by the formula lpDistanceToMoveHigh * 2^32 + lDistanceToMove. (If the value is negative, you have to perform a binary Not (inverse) on both values, and then add 1 to the lower half.) The function returns -1 if an error occured. If successful, the function returns the lower half of the new position of the file pointer, and the upper half is put into the variable passed as lpDistanceToMoveHigh, which can be combined in the same way. Remember that the first byte of the file is considered to have a position of 0.

hFile

The handle of the open file to move the file pointer of.

lDistanceToMove

The lower half of the number of bytes to move the file pointer. For negative values, see the paragraph above.

lpDistanceToMoveHigh

Variable that contains the upper half of the number of bytes to move the file pointer. For negative values, see the paragraph above. After the call, the variable receives the upper half of the new file pointer.

dwMoveMethod

Exactly one of the following flags specifying the reference point to move the file pointer from:

FILE_BEGIN = 0

The beginning of the file; i.e., the very first byte of the file.

FILE_CURRENT = 1

The current position of the file pointer.

FILE_END = 2

The end of the file; i.e., immediately after the very last byte of the file.

Example:

' Read the third character from the beginning and the fifth character

' from the end of file C:\Test\myfile.txt. Note that some of the file access API functions need to use

' an alternate declare when used in Windows 95 or 98. See those functions' pages for more

' information.

Dim charbuffer As String * 1 ' receives single character from file

Dim lowbyte As Long, highbyte As Long ' components of file pointer position

Dim numread As Long ' receives number of bytes read from file

Dim hfile As Long ' handle of the open file

Dim retval As Long ' return value

' Use CreateFile's alternate declare because this isn't Win NT (see its page for the reason why).

hfile = CreateFileNS("C:\Test\myfile.txt", GENERAL_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' the file could not be opened

 Debug.Print "Unable to open the file -- probably does not exist."

 End ' abort the program

End If

' Set the file pointer to 2 bytes after the beginning of the file -- i.e., the third byte position.

lowbyte = 2: highbyte = 0 ' this equals 2

lowbyte = SetFilePointer(hfile, lowbyte, highbyte, FILE_BEGIN) ' move the file pointer there

' Now read a single character and display it.

retval = ReadFileNO(hfile, ByVal charbuffer, 1, numread, 0) ' read the character

Debug.Print "Character at byte position 3: "; charbuffer

' Set the file pointer to 5 bytes before the beginning of the file. Note how the lowbyte and highbyte

' numbers must be manipulated to represent a negative value.

lowbyte = (Not 5) + 1: highbyte = Not 0 ' this represents -5

lowbyte = SetFilePointer(hfile, lowbyte, highbyte, FILE_END) ' move the file pointer there

' Now read this character and display it.

retval = ReadFileNO(hfile, ByVal charbuffer, 1, numread, 0) ' read the character

Debug.Print "Character 5 bytes from the end position: "; charbuffer

retval = CloseHandle(hfile) ' close the file

Related Calls: ReadFile, WriteFile

Category: Files

SetForegroundWindow Function

Declare Function SetForegroundWindow Lib "user32.dll" (ByVal hwnd As Long) As Long

Platforms: Win 95/98, Win NT

SetForegroundWindow makes the specified window the current foreground window and gives it the focus. This function should only be used with windows which your program owns. Of course this function should be used with caution, since the user usually doesn't expect the foreground window to change unexpectedly. The function tells Windows to somehow draw the user's attention to the window, such as by flashing its icon in the taskbar. The function returns 1 if successful, or 0 if an error occured.

hwnd

A handle to the window to set as the foreground window.

Example:

' Make the window Form1 the current foreground window. The operating

' system will somehow draw the user to the window.

Dim retval As Long ' return value

retval = SetForegroundWindow(Form1.hWnd) ' set Form1 as the foreground window

Related Calls: GetForegroundWindow, SetActiveWindow

Category: Windows

SetParent Function

Declare Function SetParent Lib "user32.dll" (ByVal hWndChild As Long, ByVal hWndNewParent As Long) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Requires Windows CE 1.0 or later.

Description & Usage

SetParent moves a window from having one parent window to another. If needed, the window itself moves so it can be "inside" its new parent. The child window can also become independent by making it a child of the desktop.

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a handle to the child window's former parent window.

Visual Basic-Specific Issues

None.

Parameters

hWndChild

The handle of the window to change the parent of.

hWndNewParent

The handle of the window to become the new parent of the child window. To make the desktop the parent, pass 0 for this parameter.

Example

' Move button Command1, which is a child window, from its old

' parent window of Form1 to its new parent window of Form2.

Dim oldhwnd As Long ' receives handle of button's former parent

oldhwnd = SetParent(Command1.hWnd, Form2.hWnd) ' button is now in window Form2.

Related Functions

IsChild, GetParent

Category

Windows

SetPolyFillMode Function

Declare Function SetPolyFillMode Lib "gdi32.dll" (ByVal hdc As Long, ByVal nPolyFillMode As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetPolyFillMode sets the method used by a device to fill polygonal areas and shapes. The two modes differ only over complex overlapping polygons, where the edges of the polygon criss-cross each other inside the interior (see the example for an example of a complex overlapping polygon). The function returns 0 if an error occured, or exactly one of the polygon fill mode flags specifying the filling mode the device had previously been set to.

hdc

A device context to the device to set the polygon filling mode of.

nPolyFillMode

Exactly one of the following flags specifying the polygon filling mode to use:

ALTERNATE = 1

The device alternates between filling and not filling contiguous sections whose boundaries are determined by the edge(s) of the polygon crossing through the polygon's interior.

WINDING = 2

Any section inside the polygon is filled, regardless of any intra-polygonal boundaries and edges.

Example:

' Use the alternating fill mode to fill that five-pointed star that everyone

' knows so well. Alternating filling tells window Form1 not to fill in the pentagonal interior

' of the star. It's hard to describe, so just run the example!

Dim points(0 to 4) As POINT_TYPE ' points of the star

Dim retval As Long ' return value

' Load the coordinates of a somewhat distorted five-pointed "pentagram" star

' design into the array.

points(0).x = 200: points(0).y = 400 ' 1st point: (200,400)

points(1).x = 300: points(1).y = 200 ' 2nd point: (300,200)

points(2).x = 400: points(2).y = 400 ' 3rd point: (400,400)

points(3).x = 150: points(3).y = 300 ' 4th point: (150,300)

points(4).x = 450: points(4).y = 300 ' 5th point: (450,300)

' Draw the polygon using alternating fill mode

retval = SetPolyFillMode(Form1.hDC, ALTERNATE) ' set the fill mode

retval = Polygon(Form1.hDC, points(0), 5) ' draw the polygon

Related Call: GetPolyFillMode

Category: Regions

SetRect Function

Declare Function SetRect Lib "user32.dll" (lpRect As RECT, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetRect sets the position and size of a rectangle. The two coordinates specified are the upper-left and lower-right corners of the rectangle. The function returns 0 if an error occured, or 1 if successful.

lpRect

The rectangle to set the position and size of.

X1

The x coordinate of the upper-left corner of the rectangle.

Y1

The y coordinate of the upper-left corner of the rectangle.

X2

The x coordinate of the lower-right corner of the rectangle.

Y2

The y coordinate of the lower-right corner of the rectangle.

Example:

' Set rectangle r to represent the rectangle (20,30)-(100,50). Note

' that using this function is more efficient and takes less room than setting the rectangle's

' four member values individually.

Dim r As RECT ' the rectangle to set

Dim retval As Long ' return value

retval = SetRect(r, 20, 30, 100, 50) ' r now represents (20,30)-(100,50)

Related Call: SetRectEmpty

Category: Rectangles

SetRectEmpty Function

Declare Function SetRectEmpty Lib "user32.dll" (lpRect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetRectEmpty sets a rectangle to an empty state. An empty rectangle is one that has a nonpositive width and/or height. In this case, Windows sets the rectangle to (0,0)-(0,0). The function returns 0 if an error occured, or 1 if successful.

lpRect

The rectangle to set as empty.

Example:

' Set rectangle r to empty. Note this is much easier than manually

' setting its four member values to 0 individually.

Dim r As RECT ' the rectangle to make empty

Dim retval As Long ' return value

retval = SetRectEmpty(r) ' r now equals (0,0)-(0,0)

Related Calls: IsRectEmpty, SetRect

Category: Rectangles

SetSystemCursor Function

Declare Function SetSystemCursor Lib "user32.dll" (ByVal hcur As Long, ByVal id As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetSystemCursor changes one of the cursors that Windows provides. For example, this function can change the cursor used to represent the default arrow cursor. Be careful using this function, since this redefines the default cursors instead of simply setting the current look of the cursor. The function destroys the cursor handle passed to it once it sets the new default cursor. The function returns 1 if successful, or 0 if an error occured.

hcur

A handle to the cursor to use as the new default cursor for a given type of cursor. The function destroys this handle once the new cursor is set.

id

Exactly one of the following flags specifying which of the Windows default cursors to redefine:

OCR_APPSTARTING = 32650

The application starting (arrow and hourglass) cursor.

OCR_CROSS = 32515

The cross-shaped cursor.

OCR_IBEAM = 32513

The text selection (I-beam) cursor.

OCR_ICON = 32641

Win NT only: The empty icon cursor.

OCR_NO = 32648

The "no"-symbol (circle with slash through it) cursor.

OCR_NORMAL = 32512

The normal arrow cursor.

OCR_SIZE = 32640

Win NT only: The four-arrow resize/move cursor.

OCR_SIZEALL = 32646

The four-arrow resize/move cursor.

OCR_SIZENESW = 32643

The double-arrow resize/move cursor pointing to the upper-right and lower-left.

OCR_SIZENS = 32645

The double-arrow resize/move cursor pointing up and down.

OCR_SIZENWSE = 32642

The double-arrow resize/move cursor pointing to the upper-left and lower-right.

OCR_SIZEWE = 32644

The double-arrow resize/move cursor pointing left and right.

OCR_UP = 32516

The up arrow cursor.

OCR_WAIT = 32514

The waiting (hourglass) cursor.

Example:

' Set Windows's default "hourglass" cursor to the cursor in

' C:\MyProg\NewWait.ani.

Dim hcursor As Long ' receives handle to the cursor from the file

Dim retval As Long ' return value

' Load the desired cursor from the file:

hcursor = LoadCursorFromFile("C:\MyProg\NewWait.ani")

retval = SetSystemCursor(hcursor, OCR_WAIT) ' redefine hourglass cursor

' Now Windows will use NewWait.ani as the hourglass cursor.

Related Call: SetCursor

Category: Cursor

SetTextAlign Function

Declare Function SetTextAlign Lib "gdi32.dll" (ByVal hdc As Long, ByVal wFlags As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetTextAlign specifies how a device displays text relative to a given reference point. The reference point is the point used to identify where a line of text should be written. The function returns 1 if successful, or 0 if an error occured.

hdc

The device context of the device to set the reference point alignment of.

wFlags

Up to three of the following flags specifying where the text will be written in relation to a given reference point. Only one flag may be specified for horizontal alignment, vertical alignment, and current point updating.

TA_BASELINE = 24

The reference point will be on the baseline of the text.

TA_BOTTOM = 8

The reference point will be on the bottom edge of the bounding rectangle of the text.

TA_CENTER = 6

The reference point will be horizontally centered along the bounding rectangle of the text.

TA_LEFT = 0

The reference point will be on the left edge of the bounding rectangle of the text.

TA_NOUPDATECP = 0

Do not set the current point to the reference point.

TA_RIGHT = 2

The reference point will be on the right edge of the bounding rectangle of the text.

TA_RTLREADING = 256

Win 95/98 only:Display the text right-to-left (if the font is designed for right-to-left reading).

TA_TOP = 0

The reference point will be on the top edge of the bounding rectangle of the text.

TA_UPDATECP = 1

Set the current point to the reference point.

Example:

' Display the text "Hello, world!" on window Form1 at (100,50).

' Center the text horizontally at that point and have it appear below the point.

Dim retval As Long ' return value

' Set the reference point to be centered horizontally and on the top edge of the text:

retval = SetTextAlign(Form1.hDC, TA_CENTER Or TA_TOP Or TA_NOUPDATECP)

' Display the text:

retval = TextOut(Form1.hDC, 100, 50, "Hello, world!", 13)

Related Calls: GetTextAlign, TextOut

Category: Fonts & Text

SetWindowPos Function

Declare Function SetWindowPos Lib "user32.dll" (ByVal hwnd As Long, ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetWindowPos moves a window to a new location on the screen. Its physical coordinates, dimensions, and Z-order position (the Z-order determines which windows are on top of others) can be set. The function returns 0 if an error occured or 1 if successful.

hwnd

The handle of the window to move.

hWndInsertAfter

Either the handle of the window to position this window behind, or exactly one of the following flags stating where in the Z-order to put the window:

HWND_BOTTOM = 1

Put the window at the bottom of the Z-order.

HWND_NOTOPMOST = -2

Put the window below all topmost windows and above all non-topmost windows.

HWND_TOP = 0

Put the window at the top of the Z-order.

HWND_TOPMOST = -1

Make the window topmost (above all other windows) permanently.

x

The x coordinate of where to put the upper-left corner of the window.

y

The y coordinate of where to put the upper-left corner of the window.

cx

The x coordinate of where to put the lower-right corner of the window.

cy

The y coordinate of where to put the lower-right corner of the window.

wFlags

Zero or more of the following flags stating how to move the window:

SWP_DRAWFRAME = &H20

Same as SWP_FRAMECHANGED.

SWP_FRAMECHANGED = &H20

Fully redraw the window in its new position.

SWP_HIDEWINDOW = &H80

Hide the window from the screen.

SWP_NOACTIVATE = &H10

Do not make the window active after moving it unless it was already the active window.

SWP_NOCOPYBITS = &H100

Do not redraw anything drawn on the window after it is moved.

SWP_NOMOVE = &H2

Do not move the window.

SWP_NOSIZE = &H1

Do not resize the window.

SWP_NOREDRAW = &H8

Do not remove the image of the window in its former position, effectively leaving a ghost image on the screen.

SWP_NOZORDER = &H4

Do not change the window's position in the Z-order.

SWP_SHOWWINDOW = &H40

Show the window if it is hidden.

Example:

' Move window Form1 to the upper-left corner of the screen and make

' at appear above all other windows permanently. Note how the function is told not

' to resize the window, so we don't have to worry about the lower-right coordinate.

Dim flags As Long ' the flags specifying how to move the window

Dim retval As Long ' return value

' Do not resize the window, redraw the window in its new location

flags = SWP_NOSIZE Or SWP_DRAWFRAME

retval = SetWindowPos(Form1.hWnd, HWND_TOPMOST, 0, 0, 1, 1, flags) ' move the window

Related Calls: BringWindowToTop, GetWindowRect, MoveWindow

Category: Windows

SetWindowText Function

Declare Function SetWindowText Lib "user32.dll" Alias "SetWindowTextA" (ByVal hwnd As Long, ByVal lpString As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

SetWindowText changes the text that appears in the title bar of a window. Although this works with any window, including ones your program doesn't own, other programs won't expect their window titles to be changed, so use this with care on windows you didn't create. The function returns 0 if an error occured, or 1 if successful.

hwnd

The handle of the window to change the title of.

lpString

The text to set as the window's title.

Example:

' Set the title bar of window Form1 to "Generic Application 1.0".

Dim retval As Long ' return value

retval = SetWindowText(Form1.hWnd, "Generic Application 1.0")

Related Call: GetWindowText

Category: Windows

ShellExecute Function

Declare Function ShellExecute Lib "shell32.dll" Alias "ShellExecuteA" (ByVal hwnd As Long, ByVal lpOperation As String, ByVal lpFile As String, ByVal lpParameters As String, ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

ShellExecute uses the shell to open or print a file or run a program. Under Win 95/98, this function will also open a My Computer or Explorer window to a given directory. If an executable program is specified, Windows will run that program. If a document file is specified, Windows will open or print it using the associated program (whatever it happens to be). If successful, the function returns a handle to the instance of the opened program or (in the case of printing) a handle to the invoked DDE server application. If unsuccessful, the function returns either 0 (meaning out of memory or resources) or one of the following error code flags:

ERROR_FILE_NOT_FOUND = 2

The specified file could not be found.

ERROR_PATH_NOT_FOUND = 3

The specified directory could not be found.

ERROR_BAD_FORMAT = 11

The specified executable file (.EXE) was somehow invalid.

SE_ERR_ACCESSDENIED = 5

Win 95/98 only: Windows denied access to the specified file.

SE_ERR_ASSOCINCOMPLETE = 27

The filename association is either incomplete or invalid.

SE_ERR_DDEBUSY = 30

The DDE action could not run because other DDE actions are in process.

SE_ERR_DDEFAIL = 29

The DDE transaction failed.

SE_ERR_DDETIMEOUT = 28

The DDE transaction was not completed because the request timed out.

SE_ERR_DLLNOTFOUND = 32

Win 95/98 only: The specified DLL file was not found.

SE_ERR_FNF = 2

Same as ERROR_FILE_NOT_FOUND.

SE_ERR_NOASSOC = 31

There is no program associated with the specified type of file.

SE_ERR_OOM = 8

Win 95/98 only: Windows has insufficient memory to perform the operation.

SE_ERR_PNF = 3

Same as ERROR_PATH_NOT_FOUND.

SE_ERR_SHARE = 26

A sharing violation occured.

hwnd

The handle of the window calling the function.

lpOperation

The operation to perform on lpFile. "open" means open the file or run the program (or directory in Win 95/98). "print" means print the document. In Win 95/98, "explore" means open the directory in an Explorer window. The default is "open".

lpFile

The file to perform the operation on.

lpParameters

Any command-line parameters to pass to an opened application.

lpDirectory

The working directory for the operation.

nShowCmd

One of the following flags specifying how to display any window that the function opens:

SW_HIDE = 0

Hide the opened window.

SW_MAXIMIZE = 3

Maximize the opened window.

SW_MINIMIZE = 6

Minimize the opened window.

SW_RESTORE = 9

Restore the opened window (not maximized nor minimized).

SW_SHOW = 5

Show the opened window.

SW_SHOWMAXIMIZED = 3

Show the opened window maximized.

SW_SHOWMINIMIZED = 2

Show the opened window minimized.

SW_SHOWMINNOACTIVE = 7

Show the opened window minimized but do not activate the it.

SW_SHOWNA = 8

Show the opened window in its current state but do not activate it.

SW_SHOWNOACTIVATE = 4

Show the opened window in its most recent size and position but do not activate it.

SW_SHOWNORMAL = 1

Show the opened window and activate it (as usual).

Example:

' Perform the following tasks:

' 1. Run the program "C:\MyProg\startup.exe" with command line "-fast" maximized

' 2. Open the document "C:\Project\nucleus.doc" (with its associated program) restored

' 3. Print the document "C:\Project\picture.bmp" normally (!?)

Dim hStartup As Long ' handle to instance of startup.exe

Dim hNucleus As Long ' handle to instance of opened nucleus.doc

Dim hPicture As Long ' handle to DDE process printing picture.bmp

' 1. Run the program:

hStartup = ShellExecute(Form1.hWnd, "open", "C:\MyProg\startup.exe", "-fast", "C:\MyProg\", SW_SHOWMAXIMIZED)

' 2. Open the document:

hNucleus = ShellExecute(Form1.hWnd, "open", "C:\Project\nucleus.doc", "", "C:\Project\", SW_RESTORE)

' 3. Print the document:

hPicture = ShellExecute(Form1.hWnd, "print", "C:\Project\picture.bmp", "", "C:\Project\", SW_SHOWNORMAL)

Category: Shell

ShowCursor Function

Declare Function ShowCursor Lib "user32.dll" (ByVal bShow As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

ShowCursor either shows or hides the mouse cursor. This is not done directly, but rather by incrementing or decrementing a counter. Each function call raises or lowers the counter by 1. If the counter is negative, the cursor is invisible. It if it non-negative, the cursor is visible. The function returns the value of the counter after changing it.

bShow

If zero, decrement the counter by 1. If non-zero, increment the counter by 1.

Example:

' Hide the mouse cursor for 5 seconds.

Dim counter As Long ' receives value of cursor visibility counter

' Hide the cursor by decrementing the counter until it is negative

Do

 counter = ShowCursor(0) ' decrement by 1

Loop Until counter < 0 ' keep looping until cursor is hidden

Sleep 5000 ' pause execution for 5 seconds (5000 milliseconds)

' Show the cursor by incrementing the counter until it is not negative

Do

 counter = ShowCursor(1) ' increment by 1

Loop Until counter => 0 ' keep looping until cursor is visible

Category: Cursor

ShowWindow Function

Declare Function ShowWindow Lib "user32.dll" (ByVal hwnd As Long, ByVal nCmdShow As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

ShowWindow shows (or hides) a window in a certain manner. For example, the function can minimize, maximize, or restore a given window. The function returns 0 if the window had been hidden before the call, or a non-zero value if it had been visible.

hwnd

The handle of the window to change the show status of.

nCmdShow

Exactly one of the following flags specifying how to show the window:

SW_HIDE = 0

Hide the window.

SW_MAXIMIZE = 3

Maximize the window.

SW_MINIMIZE = 6

Minimize the window.

SW_RESTORE = 9

Restore the window (not maximized nor minimized).

SW_SHOW = 5

Show the window.

SW_SHOWMAXIMIZED = 3

Show the window maximized.

SW_SHOWMINIMIZED = 2

Show the window minimized.

SW_SHOWMINNOACTIVE = 7

Show the window minimized but do not activate it.

SW_SHOWNA = 8

Show the window in its current state but do not activate it.

SW_SHOWNOACTIVATE = 4

Show the window in its most recent size and position but do not activate it.

SW_SHOWNORMAL = 1

Show the window and activate it (as usual).

Example:

' Maximize the window Form1. Before doing so, make sure

' that the window is visible.

Dim retval As Long ' return value

retval = ShowWindow(Form1.hWnd, SW_SHOW) ' display the window if it's hidden

retval = ShowWindow(Form1.hWnd, SW_MAXIMIZE) ' maximize the window

Related Calls: IsIconic, IsZoomed

Category: Windows

Sleep Function

Declare Sub Sleep Lib "kernel32.dll" (ByVal dwMilliseconds As Long)

Platforms: Win 32s, Win 95/98, Win NT

Sleep pauses program execution for a certain amount of time. This is more accurate than using a do-nothing loop, waiting for a certain amount of time to pass. The function does not return a value.

dwMilliseconds

The number of milliseconds to halt program execution for.

Example:

' Pause the program for 2 seconds, displaying the system

' time before and after the pause.

Debug.Print "The time is "; Time$ ' display the current time

Sleep 2000 ' 2000 milliseconds = 2 seconds to delay

Debug.Print "The time is "; Time$ ' this time will be 2 seconds later

Category: Other

sndPlaySound Function

Declare Function sndPlaySound Lib "winmm.dll" Alias "sndPlaySoundA" (ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

NOTE: The function sndPlaySound is obsolete. It is superseded by the PlaySound function.

sndPlaySound plays either a .WAV file or a system-defined sound. If the SND_NODEFAULT flag is used, the function returns 0 if the .WAV file (or system sound) cannot be found and 1 if it is. If the flag is not set, the function always returns 1 and plays the Windows Default sound if the specified sound cannot be found.

lpszSoundName

Either the path and filename of the .WAV file to play, or the name of the system sound to play.

uFlags

Zero or more of the following flags specifying how to play the sound:

SND_ALIAS = &H10000

Play a Windows sound (such as SystemStart, Asterisk, etc.).

SND_ASYNC = &H1

Continue program execution immediately after starting to play the sound.

SND_FILENAME = &H20000

Play the specified filename.

SND_LOOP = &H8

Play the sound repeatedly until sndPlaySound is called again with lpszSoundName = "". SND_ASYNC must also be set.

SND_NODEFAULT = &H2

Do not play the Windows default sound if the specified sound cannot be found.

SND_NOSTOP = &H10

Do not stop playing any currently playing sounds.

SND_NOWAIT = &H2000

Do not wait if the sound driver is busy.

SND_SYNC = &H0

Wait until the sound has finished playing before continuing program execution.

Example:

 ' Play the Empty Recycle Bin system sound and pause

' program execution until the sound is finished playing.

Dim retval As Long

retval = sndPlaySound("EmptyRecycleBin", SND_ALIAS Or SND_SYNC) ' play the associated sound

Related Call: PlaySound

Category: Audio

StretchBlt Function

Declare Function StretchBlt Lib "gdi32.dll" (ByVal hdc As Long, ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, ByVal nHeight As Long, ByVal hSrcDC As Long, ByVal xSrc As Long, ByVal ySrc As Long, ByVal hSrcWidth As Long, ByVal nSrcHeight As Long, ByVal dwRop As Long) As Long

StretchBlt copies a section of an image from one device to another. This function also allows you to change the original size and dimensions of the image section, unlike the related function BitBlt. In addition to using the straight "copy" method, you can specify other ways of copying the image with the dwRop parameter. What the function actually does is perform a binary operation on the color of the source and destination pixel to calculate the color of the pixel in the transfered image. The point you specify as the location of the copied image in the target object will be the upper-left corner of the image portion. The function returns 0 if the function failed and 1 if it succeeded.

hDestDC

The device context of the target object (the one that receives the image piece).

x

The x coordinate of the point to put the image inside the target.

y

The y coordinate of the point to put the image inside the target.

nWidth

The width of the image piece in the target.

nHeight

The height of the image piece in the target.

xSrc

The x coordinate of the upper-left corner of the image piece in the source.

ySrc

The y coordinate of the upper-left corner of the image piece in the source.

nSrcWidth

The width of the image piece in the source.

nSrcHeight

The height of the image piece in the source.

dwRop

Exactly one of the following flags specifying what method to use to copy the source image:

SRCAND = &H8800C6

Logically And the two color values (destination = source And destination).

SRCCOPY = &HCC0020

Copy the source image exactly (destination = source).

SRCERASE = &H440328

Logically And the source image and the destination's binary inverse (destination = source And (Not destination).

SRCINVERT = &H660046

Logically Xor the two color values (destination = source Xor destination).

SRCPAINT = &HEE0086

Logically Or the two color values (destination = source Or destination).

Example:

' Copy a portion of the image in PictureBox1 to PictureBox2 and

' stretch it to triple its original width. The image's original dimensions are

' 16x32; its new ones are 48x32.

' Source image coordinates: (45,50)-(60,81)

' Target image coordinates: (0,0)-(47,31)

Dim retval As Long ' function return value

retval = BitBlt(PictureBox2.hdc, 0, 0, 48, 32, PictureBox1.hdc, 45, 50, 16, 32, SRCCOPY)

Related Call: BitBlt

Category: Bitmaps

SubtractRect Function

Declare Function SubtractRect Lib "user32.dll" (lprcDst As RECT, lprcSrc1 As RECT, lprcSrc2 As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

SubtractRect subtracts a smaller rectangle from a larger one. Rectangle subtraction is defined as follows. The large and small rectangles must intersect completely along one entire side, neither extanding farther along that side than the other. In other words, they must share a common side. If this is true, then all of the large rectangle that is not also part of the small rectangle is also a rectangle. This rectangle is the subtraction rectangle. This rectangle is put into the variable passed as lprcDst. If the two rectangles fail to meet the criteria, lprcDst is set equal to the large rectangle and the function returns 0. If subtraction is possible, the function returns 1.

lprcDst

Variable that receives the subtraction rectangle.

lprcSrc1

The large rectangle; that is, the rectangle subtracted from.

lprcSrc2

The small rectange; that is, the rectangle subtracted.

Example:

' A demonstration of rectangle subtract. target = big - small.

' big = (20,30)-(70,80). small = (20,30)-(40,80). Note that the left side of the two rectangles is

' common. target will be set to (41,30)-(70,80).

Dim target As RECT, big As RECT, small As RECT

Dim retval As Long ' return value

' Set the big and small rectangles

retval = SetRect(big, 20, 30, 70, 80) ' big = (20,30)-(70,80)

retval = SetRect(small, 20, 30, 40, 80) ' small = (20,30)-(40,80)

' Subtract small from big and put the result into target

retval = SubtractRect(target, big, small) ' now target = (41,30)-(70,80)

Related Calls: IntersectRect, UnionRect

Category: Rectangles

SwapMouseButton Function

Declare Function SwapMouseButton Lib "user32.dll" (ByVal bSwap As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SwapMouseButton alters the mapping used for the mouse buttons. Windows allows you to interpret left-button clicks as right-button clicks and vice versa. This functionality is designed for people who use the mouse left-handed. Of course, Windows is normally the only program to ever change this, so do it with caution -- it of course affects mouse usage in all programs as well as Windows itself. The function returns 1 if successful, or 0 if an error occured.

bSwap

Determines the mouse button mapping. 0 means do not swap the buttons (left means left, right means right). 1 means swap the left and right buttons (left means right, right means left). Note that "swapping" is relative to the normal left-left mapping, not to the current one.

Example:

' Swap the left and right mouse buttons. You probably would never

' do this in a program unless the user specifically asked for it (as he/she does in

' Windows's Control Panel).

Dim retval As Long ' return value

retval = SwapMouseButton(1) ' switch the left and right buttons

' Now left means right even if this had previously been the case.

Debug.Print "The mouse buttons are currently swapped."

Category: Mouse

SystemParametersInfo Function

Declare Function SystemParametersInfo Lib "user32.dll" Alias "SystemParametersInfoA" (ByVal uAction As Long, ByVal uiParam As Long, pvParam As Any, ByVal fWinIni As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

SystemParametersInfo reads or sets information about numerous settings in Windows. These include Windows's accessibility features as well as various settings for other things. The exact behavior of the function depends on the flag passed as uAction. All sizes and dimensions used by this function are measured in pixels. Whenever using a structure to receive information, the member identifying the size of the structure (if one exists) must be correctly set beforehand. Note that, when setting properties via this function, that the user may not expect such settings to be changed; normally only the Control Panel applets set many of these properties. The return value in almost all cases (there are exceptions, which are noted) is 0 if the function failed, or a non-zero value if the function succeeded. Note to Visual Basic users: Whenever passing a string as pvParam, must explictly add the ByVal keyword before it. This must also be done when explicitly setting the pvParam parameter to 0. See the examples for a demonstration of when and how this is done.

uAction

Exactly one of the following flags specifying the action taken by the function:

SPI_GETACCESSTIMEOUT = 60

Retrieve information about the time-out period associated with the accessibility features. uiParam must be the size of the ACCESSTIMEOUT structure. pvParam is an ACCESSTIMEOUT structure receiving the time-out settings.

SPI_GETANIMATION = 72

Win 95/98 only: Retrieve information about the animation effects associated with the user's actions. uiParam must be 0. pvParam is an ANIMATIONINFO structure receiving the animation effects settings.

SPI_GETBEEP = 1

Determine if the warning beeper is on or off. uiParam must be 0. pvParam is a Long-type variable which receives 0 if the warning beeper is off, or a non-zero value if it is on.

SPI_GETBORDER = 5

Retrieve the window sizing border multiplier factor, which determines the width of a window's sizing border. uiParam must be 0. pvParam is a Long-type variable which receives the current setting.

SPI_GETDEFAULTINPUTLANG = 89

Win 95/98 only: Retrieve a handle to the keyboard layout used for the system's default input language. uiParam must be 0. pvParam is a Long-type variable which receives the handle.

SPI_GETDRAGFULLWINDOWS = 38

Win 95/98 only: Determine if Windows displays the entire contents of a window when it is moved or resized (instead of merely displaying an outline of it). uiParam must be 0. pvParam is a Long-type variable which receives 0 if the contents are not displayed, or a non-zero value if they are.

SPI_GETFASTTASKSWITCH = 35

Determine if fast Alt-Tab task switching is enabled. uiParam must be 0. pvParam is a Long-type variable which receives 0 if fast task switching is not enabled, or a non-zero value if it is.

SPI_GETFILTERKEYS = 50

Retrieve the settings of the FilterKeys accessibility feature. uiParam must be the size of the FILTERKEYS structure. pvParam is a FILTERKEYS structure which receives the current settings of FilterKeys.

SPI_GETFONTSMOOTHING = 74

Determine whether font smoothing is enabled or not. uiParam must be 0. pvParam is a Long-type variable which receives 0 if font smoothing is not enabled, or a non-zero value if it is.

SPI_GETGRIDGRANULARITY = 18

Retrieve the current granularity of the desktop sizing grid. uiParam must be 0. pvParam is a Long-type variable which receives the current setting.

SPI_GETHIGHCONTRAST = 66

Win 95/98 only: Retrieve the settings of the HighContrast accessibility feature. uiParam must be 0. pvParam is a HIGHCONTRAST structure which receives the current settings of HighContrast.

SPI_GETICONMETRICS = 45

Win 95/98 only: Retrieve the metrics associated with icons, which determine how Windows displays icons. uiParam must be 0. pvParam is an ICONMETRICS structure which receives the icon metrics.

SPI_GETICONTITLELOGFONT = 31

Retrieve information about the logical font used to display the titles of icons. uiParam must be the size of the LOGFONT structure. pvParam is a LOGFONT structure which receives information about the logical font.

SPI_GETICONTITLEWRAP = 25

Determine if Windows word-wraps the text of icon titles. uiParam must be 0. pvParam is a Long-type variable which receives 0 if word-wrapping is not enabled, or a non-zero value if it is.

SPI_GETKEYBOARDDELAY = 22

Retrieve the current keyboard repeat delay setting, which is the time before a held key begins to repeat. uiParam must be 0. pvParam is a Long-type variable which receives the current delay setting (a value between 0 and 3).

SPI_GETKEYBOARDPREF = 68

Win 95/98 only: Determine if the user relies on the keyboard instead of the mouse and wants programs to display keyboard interfaces which are otherwise hidden. uiParam must be 0. pvParam is a Long-type variable which receives 0 if the user does not rely on the keyboard, or a non-zero value if the user does.

SPI_GETKEYBOARDSPEED = 10

Retrieve the current keyboard repeat speed setting, which is the speed between repeats when a key is held. uiParam must be 0. pvParam is a Long-type variable which receives the current speed setting (a value between 0 and 31).

SPI_GETLOWPOWERACTIVE = 83

Win 95/98 only: Determine if the system enters a low-power mode after a period of inactivity. uiParam must be 0. pvParam is a Long-type variable which receives 0 if low-power mode is not enabled, or a non-zero value if it is.

SPI_GETLOWPOWERTIMEOUT = 79

Win 95/98 only: Retrieve the time, in seconds, which must elapse before Windows enters low-power mode. uiParam must be 0. pvParam is a Long-type variable which receives the current timeout value.

SPI_GETMENUDROPALIGNMENT = 27

Determine if popup menus are left- or right-aligned. uiParam must be 0. pvParam is a Long-type variable which receives 0 if the menus are right-aligned, or a non-zero value if they are left-aligned.

SPI_GETMINIMIZEDMETRICS = 43

Win 95/98 only: Retrieve the metrics associated with minimized windows, which specify how Windows displays minimized windows. uiParam must be the size of the MINIMIZEDMETRICS structure. pvParam is a MINIMIZEDMETRICS structure which receives the minimized window metrics.

SPI_GETMOUSE = 3

Retrieve the x-axis and y-axis threshold values for the mouse as well as the mouse speed. uiParam must be 0. pvParam is a 3-element array of Long-type variables which receives the x-threshold, y-threshold, and mouse speed.

SPI_GETMOUSEKEYS = 54

Retrieve the settings of the MouseKeys accessibility feature. uiParam must be the size of the MOUSEKEYS structure. pvParam is a MOUSEKEYS structure which receives the current settings of MouseKeys.

SPI_GETMOUSETRAILS = 94

Win 95/98 only: Retrieve the current mouse trails setting. uiParam must be 0. pvParam receives 0 or 1 if mouse trails are not enabled, or a value greater than one identifying the number of cursor images making up the mouse trail.

SPI_GETNONCLIENTMETRICS = 41

Win 95/98 only: Retrieve the metrics associated with the nonclient areas of windows, which determine how Windows renders nonclient areas. uiParam must be 0. pvParam is a NONCLIENTMETRICS structure which receives the nonclient area metrics.

SPI_GETPOWEROFFACTIVE = 84

Win 95/98 only: Determine if the system enters a power-off mode after a period of inactivity. uiParam must be 0. pvParam is a Long-type variable which receives 0 if power-off mode is not enabled, or a non-zero value if power-off mode is enabled.

SPI_GETPOWEROFFTIMEOUT = 80

Win 95/98 only: Retrieve the time-out value, in seconds, that must elapse before Windows enters power-off mode. uiParam must be 0. pvParam is a Long-type variable which receives the time-out value for power-off mode.

SPI_GETSCREENREADER = 70

Win 95/98 only: Determine if a screen reader utility is running. If it is, applications should present more textual output instead of graphical output to help the reader function better. uiParam must be 0. pvParam is a Long-type variable which receives 0 if no screen reader is running, or a non-zero value if one is.

SPI_GETSCREENSAVEACTIVE = 16

Determine if a screen saver is set to run. uiParam must be 0. pvParam is a Long-type variable which receives 0 if no screen saver is set to run, or a non-zero value if one is.

SPI_GETSCREENSAVETIMEOUT = 14

Retrieve the time-out period, in seconds, which must elapse before the screen saver begins running. uiParam must be 0. pvParam is a Long-type variable which receives the time-out value.

SPI_GETSERIALKEYS = 62

Win 95/98 only: Retrieve the settings of the SerialKeys accessibility feature. uiParam must be 0. pvParam is a SERIALKEYS structure which receives the current settings of SerialKeys.

SPI_GETSHOWSOUNDS = 56

Determine if the user desires visual information to replace or suppliment otherwise audio-only output. uiParam must be 0. pvParam is a Long-type variable which receives 0 if programs should not display this added visual information, or a non-zero value if they should.

SPI_GETSOUNDSENTRY = 64

Retrieve the settings of the SoundSentry accessibility feature. uiParam must be the size of the SOUNDSENTRY structure. pvParam is a SOUNDSENTRY structure which receives the current settings of SoundSentry.

SPI_GETSTICKYKEYS = 58

Retrieve the settings of the StickyKeys accessibility feature. uiParam must be the size of the STICKYKEYS structure. pvParam is a STICKYKEYS structure which receives the settings of StickyKeys.

SPI_GETTOGGLEKEYS = 52

Retrieve the settings of the ToggleKeys accessibility feature. uiParam must be the size of the TOGGLEKEYS structure. pvParam is a TOGGLEKEYS structure which receives the current settings of ToggleKeys.

SPI_GETWINDOWSEXTENSION = 92

Win 95/98 only: Determine if the Windows extensions are installed. Win 95 requires that Microsoft Plus! be installed to get the extensions; the extensions are integrated as a part of Win 98. uiParam must be 1. pvParam must be 0. The function returns 0 if the extensions are disabled, or a non-zero value if they are enabled.

SPI_GETWORKAREA = 48

Win 95/98 only: Retrieve the size of the working area, which is a rectangle identifying the area of the desktop not obscured by the taskbar. uiParam must be 0. pvParam is a RECT structure which receives the rectangle of the working area.

SPI_ICONHORIZONTALSPACING = 13

Set the width of the icon spacing cell. uiParam is the new setting for the width. pvParam must be 0.

SPI_ICONVERTICALSPACING = 24

Set the height of the icon spacing cell. uiParam is the new setting for the height. pvParam must be 0.

SPI_LANGDRIVER = 12

Win 95/98 only: Retrieve the filename of the language driver. uiParam must be 0. pvParam is a String (with sufficient buffer space) which receives the filename of the language driver.

SPI_SETACCESSTIMEOUT = 61

Set information associated with the time-out period associated with the accessibility features. uiParam must be the size of the ACCESSTIMEOUT structure. pvParam is an ACCESSTIMEOUT structure holding the new time-out period settings.

SPI_SETANIMATION = 73

Win 95/98 only: Set information about the animation effects associated with the user's actions. uiParam must be 0. pvParam is an ANIMATIONINFO structure holding the new animation effects settings.

SPI_SETBEEP = 2

Turn the warning beeper on or off. uiParam is 0 to turn the beeper off, or a non-zero value to turn it on. pvParam must be 0.

SPI_SETBORDER = 6

Set the window sizing border multiplier factor, which determines the width of a window's sizing border. uiParam is the new setting. pvParam must be 0.

SPI_SETCURSORS = 87

Reload the images used for the system cursors. uiParam and pvParam must be 0.

SPI_SETDEFAULTINPUTLANG = 90

Win 95/98 only: Set the keyboard layout used for the system's default input language. uiParam is a handle to the keyboard layout to use. pvParam must be 0.

SPI_SETDESKPATTERN = 21

Set the current desktop pattern bitmap by causing Windows to reread the Pattern setting in the [Desktop] section of WIN.INI. Both uiParam and pvParam must be 0.

SPI_SETDESKWALLPAPER = 20

Set the current desktop wallpaper bitmap. uiParam must be 0. pvParam is a String holding the filename of the bitmap file to use as the wallpaper.

SPI_SETDOUBLECLICKTIME = 32

Set the time, in milliseconds, within which two successive mouse clicks must occur for Windows to interpret the input to be a double click. uiParam is the new double click time. pvParam must be 0.

SPI_SETDOUBLECLKHEIGHT = 30

Set the height of the rectangle within which two successive mouse clicks must occur for Windows to interpret the input to be a double click. uiParam is the new height. pvParam must be 0.

SPI_SETDOUBLECLKWIDTH = 29

Set the width of the rectangle within which two successive mouse clicks must occur for Windows to interpret the input to be a double click. uiParam is the new width. pvParam must be 0.

SPI_SETDRAGFULLWINDOWS = 37

Win 95/98 only: Turn dragging of full windows (displaying the contents of a window while moving or resizing instead of just an empty border) on or off. uiParam is 0 to turn dragging of full windows off, or a non-zero value to turn it on.

SPI_SETDRAGHEIGHT = 77

Win 95/98 only: Set the height of the rectangle which the cursor must move out of with a button depressed for Windows to begin a drag operation. uiParam is the new height. pvParam must be 0.

SPI_SETDRAGWIDTH = 76

Win 95/98 only: Set the width of the rectangle which the cursor must move out of with a button depressed for Windows to begin a drag operation. uiParam is the new width. pvParam must be 0.

SPI_SETFASTTASKSWITCH = 36

Turn fast Alt-Tab task switching on or off. uiParam is 0 to turn fast switching off, or a non-zero value to turn it on. pvParam must be 0.

SPI_SETFILTERKEYS = 51

Set the settings of the FilterKeys accessibility feature. uiParam must be the size of the FILTERKEYS structure. pvParam is a FILTERKEYS structure holding the new settings for FilterKeys.

SPI_SETFONTSMOOTHING = 75

Turn font smoothing on or off. uiParam is 0 to turn font smoothing off, or a non-zero value to turn it on.

SPI_SETGRIDGRANULARITY = 19

Set the granularity of the desktop sizing grid. uiParam is the new setting. pvParam must be 0.

SPI_SETHIGHCONTRAST = 67

Win 95/98 only: Set the settings of the HighContrast accessibility feature. uiParam must be 0. pvParam is a HIGHCONTRAST structure holding the new settings for HighContrast.

SPI_SETICONMETRICS = 46

Win 95/98 only: Set the metrics associated with icons, which specify how Windows displays icons. uiParam must be 0. pvParam is an ICONMETRICS structure holding the new icon metrics.

SPI_SETICONS = 88

Reload the images used for the system icons. uiParam and pvParam must be 0.

SPI_SETICONTITLELOGFONT = 34

Set the logical font used to display the text of icon titles. uiParam must be the size of the LOGFONT structure. pvParam is a LOGFONT structure holding the logical font to use.

SPI_SETICONTITLEWRAP = 26

Turn the word-wrapping of icon titles on or off. uiParam is 0 to turn word-wrapping off, or a non-zero value to turn it on. pvParam must be 0.

SPI_SETKEYBOARDDELAY = 23

Set the keyboard repeat-delay setting, which is the time that must elapse before a held key begins to repeat. uiParam is the new delay setting, between 0 and 3 inclusive. pvParam must be 0.

SPI_SETKEYBOARDPREF = 69

Win 95/98 only: Tell Windows whether the user depends on the keyboard as the main input device and wishes programs to display additional keyboard-based interfaces. uiParam is 0 to not indicate a keyboard preference, or a non-zero value to indicate one. pvParam must be 0.

SPI_SETKEYBOARDSPEED = 11

Set the keyboard repeat-speed setting, which specifies the rate at which keys are repeated. uiParam is the new speed setting, between 0 and 31 inclusive. pvParam must be 0.

SPI_SETLANGTOGGLE = 91

Win 95/98 only: Set the hot key used to switch keyboard input languages. The new value is read from the registry at HKEY_CURRENT_USER\keyboard layout\toggle: 1 sets the hot key to ALT+SHIFT, 2 sets the hot key to CTRL+SHIFT, and 3 disables the hot key. uiParam and pvParam must be 0.

SPI_SETLOWPOWERACTIVE = 85

Win 95/98 only: Turn the low-power mode after a period of inactivity on or off. uiParam is 0 to deactivate low-power mode, or 1 to activate to. pvParam must be 0.

SPI_SETLOWPOWERTIMEOUT = 81

Win 95/98 only: Set the time-out period (in seconds) which must elapse after user input before Windows enters low-power mode. uiParam is the new time-out period. pvParam must be 0.

SPI_SETMENUDROPALIGNMENT = 28

Set whether pop-up menus open to the left or to the right. uiParam is 0 if they open to the left, or a non-zero value if they open to the right. pvParam must be 0.

SPI_SETMINIMIZEDMETRICS = 44

Win 95/98 only: Set the metrics associated with minimized windows, which determine how Windows displays minimized windows. uiParam must be 0. pvParam is a MINIMIZEDMETRICS structure holding the new metrics.

SPI_SETMOUSE = 4

Set the x-axis and y-axis threshold values for the mouse as well as the mouse speed. uiParam must be 0. pvParam is a three-element Long-type array; the first element is the x-threshold, the second element is the y-threshold, and the third element is the mouse speed.

SPI_SETMOUSEBUTTONSWAP = 33

Swap or unswap the meanings of the left and right mouse buttons. uiParam is 0 to restore the left-to-left/right-to-right mapping, or a non-zero value to swap the buttons into a left-to-right/right-to-left mapping. pvParam must be 0.

SPI_SETMOUSEKEYS = 55

Set the settings of the MouseKeys accessibility feature. uiParam must be the size of the MOUSEKEYS structure. pvParam is a MOUSEKEYS structure holding the new settings for MouseKeys.

SPI_SETMOUSETRAILS = 93

Win 95/98 only: Set the length of the mouse trail. uiParam is 0 or 1 to turn mouse trails off, or a value greater than one identifying the number of cursor images used to make up the mouse trail. pvParam must be 0.

SPI_SETNONCLIENTMETRICS = 42

Win 95/98 only: Set the metrics associated with the non-client areas of windows, which determine how Windows displays the non-client areas. uiParam must be 0. pvParam is a NONCLIENTMETRICS structure holding the new metrics.

SPI_SETPENWINDOWS = 49

Win 95/98 only: Load or unload Microsoft Pen for Windows, if available. uiParam is 0 to unload Pen, or a non-zero value to load Pen. pvParam must be 0.

SPI_SETPOWEROFFACTIVE = 86

Win 95/98 only: Set whether the system powers down after a period of inactivity. uiParam is 0 to not enter power-off mode, or a non-zero value to enter power-off mode. pvParam must be 0.

SPI_SETPOWEROFFTIMEOUT = 82

Win 95/98 only: Set the time-out period, in seconds, which must elapse without user input before Windows enters power-off mode. uiParam is the new time-out period. pvParam must be 0.

SPI_SETSCREENREADER = 71

Win 95/98 only: Set whether a screen-reading program is currently running. uiParam is 0 if no reader is in use, or a non-zero value if one is. pvParam must be 0.

SPI_SETSCREENSAVEACTIVE = 17

Set whether Windows activates a screen saver after a period of inactivity. uiParam is 0 to turn the screen saver off, or a non-zero value to turn it on. pvParam must be 0.

SPI_SETSCREENSAVETIMEOUT = 15

Set the time-out period, in seconds, which must elapse before Windows launches a screen saver. uiParam is the new time-out period. pvParam must be 0.

SPI_SETSERIALKEYS = 63

Win 95/98 only: Set the settings of the SerialKeys accessibility feature. uiParam must be 0. pvParam is a SERIALKEYS structure holding the new settings for SerialKeys.

SPI_SETSHOWSOUNDS = 57

Turn the ShowSounds accessibility feature on or off. uiParam is 0 to turn ShowSounds off, or a non-zero value to turn ShowSounds on. pvParam must be 0.

SPI_SETSOUNDSENTRY = 65

Set the settings of the SoundSentry accessibility feature. uiParam must be the size of the SOUNDSENTRY structure. pvParam is a SOUNDSENTRY structure holding the new settings for SoundSentry.

SPI_SETSTICKYKEYS = 59

Set the settings of the StickyKeys accessibility feature. uiParam is the size of the STICKYKEYS structure. pvParam is a STICKYKEYS structure holding the new settings for StickyKeys.

SPI_SETTOGGLEKEYS = 53

Set the settings of the ToggleKeys accessibility feature. uiParam is the size of the TOGGLEKEYS structure. pvParam is a TOGGLEKEYS structure holding the new settings for ToggleKeys.

SPI_SETWORKAREA = 47

Win 95/98 only: Set the rectangle defining the working area of the desktop. The working area is the area of the desktop not obscured by the taskbar. uiParam must be 0. pvParam is a RECT structure holding the new working area rectangle.

uiParam

The purpose of this parameter varies with uAction.

pvParam

The purpose of this parameter varies with uAction. In VB, if this is to be set as a string or to 0, the ByVal keyword must preceed it.

fWinIni

Zero or more of the following flags specifying the change notification to take place. Generally, this can be set to 0 if the function merely queries information, but should be set to something if the function sets information.

SPIF_SENDWININICHANGE = &H2

Broadcast the change made by the function to all running programs.

SPIF_UPDATEINIFILE = &H1

Save the change made by the function to the user profile.

Example #1:

' Set the desktop wallpaper to the Clouds.bmp that comes with Windows.

' Note how the string passed to the function is preceeded by the ByVal keyword.

Dim windir As String ' receives the path of the Windows directory

Dim cloudpath As String ' filename of Clouds.bmp

Dim retval As Long ' return value

' Get the path of the Windows directory.

windir = Space(255) ' make room in the buffer

retval = GetWindowsDirectory(windir, 255) ' get the path name

windir = Left(windir, InStr(windir, vbNullChar) - 1) ' trim the null character and unused characters

cloudpath = windir & "Clouds.bmp" ' add the filename to the path

' Set the Windows wallpaper, saving the change and notifying all programs

retval = SystemParametersInfo(SPI_SETDESKWALLPAPER, 0, ByVal cloudpath, SPIF_SENDWININICHANGE Or SPIF_UPDATEINIFILE)

Example #2:

' Tell the user whether the MouseKeys accessibility feature is on

' or off. Note how the structure's cbSize parameter must be set first.

Dim mk As MOUSEKEYS ' holds settings for MouseKeys

Dim retval As Long ' return value

mk.cbSize = Len(mk) ' set the size of the structure

' Load the MouseKeys settings into the structure.

retval = SystemParametersInfo(SPI_GETMOUSEKEYS, Len(mk), mk, 0) ' don't need to notify

' Display whether MouseKeys is on or off.

If (mk.dwFlags And MKF_MOUSEKEYSON) = MKF_MOUSEKEYSON Then

 Debug.Print "MouseKeys is on."

Else

 Debug.Print "MouseKeys is off."

End If

Related Call: GetSystemMetrics

Category: Accessibility

SystemTimeToFileTime Function

Declare Function SystemTimeToFileTime Lib "kernel32.dll" (lpSystemTime As SYSTEMTIME, lpFileTime As FILETIME) As Long

Platforms: Win 32s, Win 95/98, Win NT

SystemTimeToFileTime converts a time and date stored in a SYSTEMTIME structure to an identical time and date stored in a FILETIME structure. The former structure provides a easier way to access a date and time, whereas the latter is used by Windows to identify times and dates associated with files. The data put into the FILETIME structure identifies the same time and date as the source structure does. The function returns 0 if an error occured, or 1 if successful.

lpSystemTime

The date and time, in SYSTEMTIME format, to convert.

lpFileTime

Receives the date and time converted to FILETIME format.

Example:

' Determine if file C:\MyProgram\datafile.txt was created before

' Jan 5, 1999. Note how CreateFile's alternate declare must be used under Win 95/98 --

' see that function's page for more information.

Dim hfile As Long ' receives the handle to the file

Dim ctime As FILETIME ' receives creation date and time of the file

Dim atime As FILETIME ' receives last access date and time of the file

Dim wtime As FILETIME ' receives last write-to date and time of the file

Dim jantime As SYSTEMTIME ' will be set to Jan 5, 1999

Dim janfiletime As FILETIME ' will receive analogous time as jantime

Dim comptimes As Long ' receives comparison of ctime and janfiletime

Dim retval As Long ' return value

' Get a handle to the file (note how the alternate declare is used):

hfile = CreateFileNS("C:\MyProgram\datafile.txt", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' if the file could not be opened

 Debug.Print "Could not open the file C:\MyProgram\datafile.txt."

 End ' abort the program

End If

' Get the various times and dates associated with the file:

retval = GetFileTime(hfile, ctime, atime, wtime)

' Load jantime with the date January 5, 1999 at midnight:

jantime.wMonth = 1: jantime.wDay = 5: jantime.wYear = 1999

jantime.wHour = 0: jantime.wMinute = 0: jantime.wSecond = 0

' Convert jantime into FILETIME format so it can be compared with ctime:

retval = SystemTimeToFileTime(jantime, janfiletime)

' Compare the two times and display the relation:

comptimes = CompareFileTime(ctime, janfiletime)

If comptimes = -1 Then Debug.Print "File was created before midnight, January 5, 1999."

If comptimes = 0 Then Debug.Print "File was created at midnight, January 5, 1999."

If comptimes = 1 Then Debug.Print "File was created after midnight, January 5, 1999."

' Close the file

retval = CloseHandle(hfile)

Related Call: FileTimeToSystemTime

Category: Time

TextOut Function

Declare Function TextOut Lib "gdi32.dll" Alias "TextOutA" (ByVal hdc As Long, ByVal x As Long, ByVal y As Long, ByVal lpString As String, ByVal nCount As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

TextOut displays a line of text on a device. The relation of the text to the (x,y) pair passed to the function can be set using SetTextAlign. The text will be displayed using the device's currently selected font and text drawing color. The function returns 1 if successful, or 0 if an error occured.

hdc

The device context of the device to display the line of text on.

x

The x coordinate of the reference point to display the text at.

y

The y coordinate of the reference point to display the text at.

lpString

The string to display on the device.

nCount

The size in characters of lpString.

Example:

' Display the text "Hello, world!" on window Form1 at (100,50).

' Center the text horizontally at that point and have it appear below the point.

Dim retval As Long ' return value

' Set the reference point to be centered horizontally and on the top edge of the text:

retval = SetTextAlign(Form1.hDC, TA_CENTER Or TA_TOP Or TA_NOUPDATECP)

' Display the text:

retval = TextOut(Form1.hDC, 100, 50, "Hello, world!", 13)

Related Calls: GetTextAlign, SetTextAlign

Category: Fonts & Text

UnionRect Function

Declare Function UnionRect Lib "user32.dll" (lpDestRect As RECT, lpSrc1Rect As RECT, lpSrc2Rect As RECT) As Long

Platforms: Win 32s, Win 95/98, Win NT

UnionRect determines the smallest possible rectangle that contains two other rectangles. This rectangle is called the union rectangle because it is derived from the union of the areas that the two source rectangles occupy. The union rectangle is put into the variable passed as lpDestRect. The function returns 0 if an error occured, or 1 if successful.

lpDestRect

Variable that receives the union rectangle.

lpSrc1Rect

The first of the two source rectangles.

lpSrc2Rect

The second of the two source rectangles.

Example:

' Create a large rectangle that contains the areas occupied by

' rectangles s and t. The new rectangle will fully contain both smaller rectangles.

' s = (20,30)-(60,80); t = (100,110)-(200,300)

Dim s As RECT, t As RECT ' small rectangles

Dim urect As RECT ' receives the union rectangle

Dim retval As Long ' return value

' Set the small rectangles

retval = SetRect(s, 20, 30, 60, 80) ' set s = (20,30)-(60,80)

retval = SetRect(t, 100, 110, 200, 300) ' set t = (100,110)-(200,300)

' Figure out the union rectangle

retval = UnionRect(urect, s, t) ' now urect = (20,30)-(200,300)

Related Calls: IntersectRect, SubtractRect

Category: Rectangles

waveOutGetDevCaps Function

Declare Function waveOutGetDevCaps Lib "winmm.dll" Alias "waveOutGetDevCapsA" (ByVal uDeviceID As Long, lpCaps As WAVEOUTCAPS, ByVal uSize As Long) As Long

Platforms: Win 95/98, Win NT

waveOutGetDevCaps reads the capabilities and other information about a given waveform output device. This information is placed in the structure passed as lpCaps. This function can determine what operations a waveform output device can perform. The function returns 0 if successful, or a non-zero error code if an error occured.

uDeviceID

The device identifier of the waveform output device to get information about. Remember that the first device has an identifier of 0.

lpCaps

Receives the information about the waveform output device.

uSize

The size in bytes of lpCaps.

' List the names and number of channels of every installed waveform output

' device. Note how we only check the valid device identifiers.

Dim outinfo As WAVEOUTCAPS ' receives info about each device

Dim numdevs As Long ' number of installed devices

Dim thisdev As Long ' counter for which device we're checking

Dim outname As String ' buffer for device's name

Dim retval As Long ' return value

' First, determine the number of waveform output devices.

numdevs = waveOutGetNumDevs()

' Loop through each device and display the desired information. Keep in mind that the first

' device has an identifier of 0, etc.

For thisdev = 0 To numdevs - 1

 ' Get the capabilities of the device

 retval = waveOutGetDevCaps(thisdev, outinfo, Len(outinfo))

 If retval = 0 Then ' only continue if the above function succeeded

 Debug.Print "Device #"; thisdev

 ' Extract device name from fixed-length string

 outname = Left(outinfo.szPname, InStr(outinfo.szPname, vbNullChar) - 1)

 Debug.Print " "; outname;

 ' Display number of channels -- i.e., is it mono or stereo?

 If outinfo.nChannels = 1 Then

 Debug.Print " (mono)"

 Else

 Debug.Print " (stereo)"

 End If

 End If

Next thisdev

Category: Audio

waveOutGetNumDevs Function

Declare Function waveOutGetNumDevs Lib "winmm.dll" () As Long

Platforms: Win 95/98, Win NT

waveGetNumDevs find the number of waveform output devices installed on the computer. This function can be used to determine the valid range in device identifiers for waveform output devices. The function returns the number of installed waveform output devices.

Example:

' List the names and number of channels of every installed waveform output

' device. Note how we only check the valid device identifiers.

Dim outinfo As WAVEOUTCAPS ' receives info about each device

Dim numdevs As Long ' number of installed devices

Dim thisdev As Long ' counter for which device we're checking

Dim outname As String ' buffer for device's name

Dim retval As Long ' return value

' First, determine the number of waveform output devices.

numdevs = waveOutGetNumDevs()

' Loop through each device and display the desired information. Keep in mind that the first

' device has an identifier of 0, etc.

For thisdev = 0 To numdevs - 1

 ' Get the capabilities of the device

 retval = waveOutGetDevCaps(thisdev, outinfo, Len(outinfo))

 If retval = 0 Then ' only continue if the above function succeeded

 Debug.Print "Device #"; thisdev

 ' Extract device name from fixed-length string

 outname = Left(outinfo.szPname, InStr(outinfo.szPname, vbNullChar) - 1)

 Debug.Print " "; outname;

 ' Display number of channels -- i.e., is it mono or stereo?

 If outinfo.nChannels = 1 Then

 Debug.Print " (mono)"

 Else

 Debug.Print " (stereo)"

 End If

 End If

Next thisdev

Category: Audio

waveOutGetVolume Function

Declare Function waveOutGetVolume Lib "winmm.dll" (ByVal uDeviceID As Long, lpdwVolume As Long) As Long

Platforms: Win 95/98, Win NT

waveOutGetVolume finds the current volume setting for a waveform output device. The volume setting is placed in the variable passed as lpdwVolume and is split into a high-order word and a low-order word. If the device supports separate left and right channel volumes, the low-order word contains the left volume and the high-order word contains the right volume. If it does not, the low-order word contains the overall volume and the high-order word is ignored. Volume values range from silence (&H0) to maximum (&HFFFF). The function returns 0 if successful, or a non-zero error code if an error occured.

uDeviceID

Either the device ID or a handle to the waveform output device to poll the volume of.

lpdwVolume

Receives the volume setting of the device as described above.

Example:

' Display the current volume setting for waveform output device 0. Note

' that we must first determine if separate volumes are returned or not, in order to know

' how to interpret the volume returned. (We assume waveform output device #0 exists.)

Dim volume As Long ' receives volume(s)

Dim lvolume As Long, rvolume As Long ' separate channel volumes

Dim spkrcaps As WAVEOUTCAPS ' needed to find volume interpretation

Dim numvols As Integer ' will be 1 if only one volume setting or 2 if there are two

Dim retval As Long ' return value

' First, find out whether the left and right channels have separate volumes.

retval = waveOutGetDevCaps(0, spkrcaps, Len(spkrcaps)) ' get information

If (spkrcaps.dwSupport And WAVECAPS_LRVOLUME) = WAVECAPS_LRVOLUME Then

 numvols = 2 ' separate channel volumes

Else

 numvols = 1 ' only one volume

End If

' Get the volume setting(s) and display them in hexadecimal.

retval = waveOutGetVolume(0, volume)

If numvols = 1 Then ' if only one channel volume

 volume = volume And &HFFFF ' destroy irrelevant high-order word

 Debug.Print "Waveform Output Device #0 volume: "; Hex(volume)

Else ' if separate channel volumes

 lvolume = volume And &HFFFF ' isolate left speaker volume

 rvolume = (volume And &HFFFF0000) / &H10000 ' isolate right speaker volume

 Debug.Print "Waveform Output Device #0 left channel volume: "; Hex(lvolume)

 Debug.Print "Waveform Output Device #0 right channel volume: "; Hex(rvolume)

End If

Related Call: waveOutSetVolume

Category: Audio

waveOutSetVolume Function

Declare Function waveOutSetVolume Lib "winmm.dll" (ByVal uDeviceID As Long, ByVal dwVolume As Long) As Long

Platforms: Win 95/98, Win NT

waveOutSetVolume sets the volume level for a waveform output device. Depending on the capabilities of the device, this function either sets the independent left and right channel volumes or the overall volume. Each volume setting must be in the range between &H0 (silence) and &HFFFF (maximum volume). The function returns 0 if successful, or a non-zero error code if and error occured.

uDeviceID

Either the device identifier or a handle to the waveform output device to set the volume of.

dwVolume

The new volume setting(s) for the device. If separate left/right volumes are supported, the low-order word is the left channel volume and the high-order word is the right channel volume. If not, the low-order word contains the overall volume and the high-order word is ignored.

Example:

' Set the volume on waveform output device #0 to 50% of maximum.

' Note how we don't care if there are separate volumes or not -- we set both to the

' setting and, if only one channel volume exists, the extra data is ignored.

Dim retval As Long ' return value

' First, verify that waveform output device #0 does exist.

retval = waveOutGetNumDevs() ' get number of such devices

If retval >= 1 Then ' at least one exists, so device #0 is there!

 ' Set the volume for all channels to &H7FFF (50%)

 retval = waveOutSetVolume(0, &H7FFF7FFF) ' for both channels, if needed

End If

Related Call: waveOutGetVolume

Category: Audio

WindowFromPoint Function

Declare Function WindowFromPoint Lib "user32.dll" (ByVal xPoint As Long, ByVal yPoint As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

WindowFromPoint determines the handle of the window located at a specific point on the screen. Note that the active window could be a text box, list box, button, or some other object sitting inside a program window. In this case, the handle returned will be to this control and not the program window. If successful, the function returns the handle to the window at that point. If there is no window at that point, or if an error occured, the function instead returns 0.

xPoint

The x-coordinate of the point to look for a window at.

yPoint

The y-coordinate of the point to look for a window at.

Example:

' Display the title bar text of whatever window the mouse

' cursor is currently over. Note that this could be a control on a program window.

Dim mousepos As POINT_TYPE ' coordinates of the mouse cursor

Dim wintext As String, slength As Long ' receive title bar text and its length

Dim hwnd As Long ' handle to the window found at the point

Dim retval As Long ' return value

' Determine the window the mouse cursor is over.

retval = GetCursorPos(mousepos) ' get the location of the mouse

hwnd = WindowFromPoint(mousepos.x, mousepos.y) ' determine the window that's there

If hwnd = 0 Then ' error or no window at that point

 Debug.Print "No window exists at that location."

 End

End If

' Display that window's title bar text

slength = GetWindowTextLength(hwnd) ' get length of title bar text

wintext = Space(slength + 1) ' make room in the buffer to receive the string

slength = GetWindowText(hwnd, wintext, slength + 1) ' get the text

wintext = Left(wintext, slength) ' extract the returned string from the buffer

Debug.Print "Title bar text of the window: "; wintext

Category: Windows

WinHelp Function

Declare Function WinHelp Lib "user32.dll" Alias "WinHelpA" (ByVal hWndMain As Long, ByVal lpHelpFile As String, ByVal uCommand As Long, dwData As Any) As Long

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

WinHelp opens a Windows Help file or somehow manipulates an open Help file. The precise action taken by the function depends on the value passed as uCommand, but all of them work with Windows Help files. This function is used to provide all access points between an application and its help file(s).

Return Value

If an error occured, the function returns 0 (use GetLastError to get the error code). If successful, the function returns a non-zero value.

Visual Basic-Specific Issues

Whenever passing a String or a Long (not including an array of Longs) as dwData, you must preceed it with the ByVal keyword. Do not use the keyword when passing any data structure or an array.

Parameters

hWndMain

In most cases, a handle to the window which is opening the Help file. If uCommand is either HELP_CONTEXTMENU or HELP_WM_HELP, this is a handle to the particular control to open up context-sensitive Help about.

lpszHelp

The filename of the Help file to display. The filename can be followed by the > character and the name of a secondary Help window (defined in the Help file) to open instead of the primary one.

uCommand

Exactly one of the following flags specifying which action the function is to take on the Help file:

HELP_COMMAND

Execute a Help macro or macro string. dwData is a string specifying the name(s) of the Help macro(s) to run. If more than one is specified, separate each name with semicolons.

HELP_CONTENTS

Display the Contents topic of the Help file. dwData must be 0. This flag is obsolete; use the HELP_FINDER flag instead.

HELP_CONTEXT

Display the topic identified by the value passed as dwData.

HELP_CONTEXTMENU

Display the Help topic associated with the window's selected control in a pop-up window. dwData is an array of pairs of Longs (dwords): the first in a pair is a control identifier, and the second in a pair is the context identifier of the associated Help topic. The array's last pair must be two zeros.

HELP_CONTEXTPOPUP

Display the topic identified by the value passed as dwData in a pop-up window.

HELP_FINDER

Display the Help Topics dialog box. dwData must be 0.

HELP_FORCEFILE

Ensure that Windows Help is displaying the correct Help file; if it is not, then display the correct one instead. dwData must be 0.

HELP_HELPONHELP

Display the Help on using Windows Help Help file, which is part of Windows. dwData must be 0.

HELP_INDEX

Same as HELP_CONTENTS.

HELP_KEY

Display the topic in the keyword table that matches the keyword(s) in the string passed as dwData. If multiple matches are found, display the Index topic with each found topic in the Topics Found dialog box. Multiple keywords in dwData must be separated by semicolons.

HELP_MULTIKEY

Display the topic specified by a keyword in an alternative keyword table. dwData is a MULTIKEYHELP structure which specifies a table footnote character and a keyword.

HELP_PARTIALKEY

Same as HELP_KEY, except that to display the index without passing a keyword, pass an empty string as dwData.

HELP_QUIT

Close Windows Help unless other programs currently need it.

HELP_SETCONTENTS

Set which Help topic is considered to be the Contents topic. dwData is the context identifer of the topic to set as the Contents.

HELP_SETINDEX

Same as HELP_SETCONTENTS.

HELP_SETPOPUP_POS

Set the position of a subsequent pop-up window. dwData is a POINT_TYPE structure identifying the coordinates of the upper-left corner of the subsequent pop-up window.

HELP_SETWINPOS

Display the Help window, if it is minimized or hidden, and set its size and position. dwData is a HELPWININFO structure holding the size and position information of the desired Help window.

HELP_TCARD

Indicate that the topic to display is for a training card. This must be combined with another flag.

HELP_WM_HELP

Display the topic for the control identified by hWndMain. dwData is an array of pairs of Longs (dwords): the first in a pair is a control identifier, and the second in a pair is the context identifier of the associated Help topic. The array's last pair must be two zeros.

dwData

Depends on the value of uCommand.

Constant Definitions

Const HELP_COMMAND = &H102

Const HELP_CONTENTS = &H3

Const HELP_CONTEXT = &H1

Const HELP_CONTEXTMENU = &HA

Const HELP_CONTEXTPOPUP = &H8

Const HELP_FINDER = &HB

Const HELP_FORCEFILE = &H9

Const HELP_HELPONHELP = &H4

Const HELP_INDEX = &H3

Const HELP_KEY = &H101

Const HELP_MULTIKEY = &H201

Const HELP_PARTIALKEY = &H105

Const HELP_QUIT = &H2

Const HELP_SETCONTENTS = &H5

Const HELP_SETINDEX = &H5

Const HELP_SETPOPUP_POS = &HD

Const HELP_SETWINPOS = &H203

Const HELP_TCARD = &H8000

Const HELP_WM_HELP = &HC

Example

' Display the Help Topics dialog box of the Help file C:\MyApp\appehelp.hlp.

' The window Form1 is opening Windows Help.

Dim retval As Long ' return value

' Display the Help file as mentioned above. Note how the ByVal keyword must

' be used because we're passing a regular Long to it.

retval = WinHelp(Form1.hWnd, "C:\MyApp\apphelp.hlp", HELP_FINDER, ByVal 0)

Category

Help

WriteFile Function

Declare Function WriteFile Lib "kernel32.dll" (ByVal hFile As Long, lpBuffer As Any, ByVal nNumberOfBytesToWrite As Long, lpNumberOfBytesWritten As Long, lpOverlapped As OVERLAPPED) As Long

Alternate Declare for use with synchronous (non-overlapped) files:

Declare Function WriteFileNO Lib "kernel32.dll" Alias "WriteFile" (ByVal hFile As Long, lpBuffer As Any, ByVal nNumberOfBytesToWrite As Long, lpNumberOfBytesWritten As Long, ByVal lpOverlapped As Long) As Long

Platforms: Win 32s, Win 95/98, Win NT

WriteFile writes data to an open file. The function also puts the number of bytes of data actually written into the variable passed as lpNumberOfBytesWritten. The file must of course have been opened with write-level access. The function starts writing to the position specified by the file pointer and sets the file pointer to the position immediately after the data written if the file is synchronous (non-overlapped). If it is asynchronous (overlapped), the writing starts at the point specified by lpOverlapped. For Visual Basic users, the alternate declare must be used when not using an overlapped file; pass a value of 0 as lpOverlapped in the alternate declare. Note that Win 95/98 does not support overlapped files at all. The function returns 1 if successful, or 0 if an error occured.

hFile

The handle to the file to write to. The file must have write-level access.

lpBuffer

The data to write to the file. If this is a string, Visual Basic users must pass the string explicitly ByVal (see example).

nNumberOfBytesToWrite

The number of bytes of data to write to the file (i.e., the size of lpBuffer).

lpNumberOfBytesWritten

Receives the number of bytes of data actually written to the file.

lpOverlapped

Specifies where to begin writing to if the file is asynchronous (overlapped). If not, this must be 0. VB users need to use the alternate Declares to pass 0 as this value.

Example:

' Write both a Long (32-bit) number and a String to the file

' C:\Test\myfile.txt. Since this is under Win 95/98, the alternate declare is used. Notice

' how the ByVal keyword must be used when writing a string variable.

Dim longbuffer As Long ' long to write to the file

Dim stringbuffer As String ' string to write to the file

Dim numwritten As Long ' receives number of bytes written to the file

Dim hfile As Long ' handle of the open file

Dim retval As Long ' return value

' Use CreateFile's alternate declare because this isn't Win NT (see its page for the reason why).

hfile = CreateFileNS("C:\Test\myfile.txt", GENERAL_WRITE, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_ARCHIVE, 0)

If hfile = -1 Then ' the file could not be opened

 Debug.Print "Unable to open the file -- probably does not exist."

 End ' abort the program

End If

' Write a Long-type number (27) to the file

longbuffer = 27 ' the Long value to write to the file

retval = WriteFileNO(hfile, longbuffer, Len(longbuffer), numwritten, 0)

' Write a 10-character string to the file

stringbuffer = "Anonymous!" ' the String to write to the file

retval = WriteFileNO(hfile, ByVal stringbuffer, 10, numwritten, 0)

retval = CloseHandle(hfile) ' close the file

Related Calls: ReadFile, SetFilePointer

Category: Files

WritePrivateProfileString Function

Declare Function WritePrivateProfileString Lib "kernel32.dll" Alias "WritePrivateProfileStringA" (ByVal lpApplicationName As String, ByVal lpKeyName As String, ByVal lpString As String, ByVal lpFileName As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

WritePrivateProfileString sets a value inside of an INI file. This function can also be used to set numerical values if they are in string form, for example using "1" to represent the number 1. If the INI file you try to write to does not exist, it will be created. Likewise, if the section or value does not exist, it will also be created. The function returns 0 if an error occurs, or 1 if successful. Note that INI file support is only provided in Windows for backwards compatibility; using the registry to store information is preferred.

lpApplicationName

The section of the INI file to write to.

lpKeyName

The name of the value to set.

lpString

The string to set as the value.

lpFileName

The filename of the INI file to write to.

Example:

' Set the "username" setting in the [Default] section of

' C:\MyProgram\config.ini to "Rimmer". Also set the "useinfo" setting under the same

' section to 1 (i.e., "1").

Dim retval As Long ' return value

' Set the string value.

retval = WritePrivateProfileString("Default", "username", "Rimmer", "C:\MyPrograms\config.ini")

' Set the numeric value.

retval = WritePrivateProfileString("Default", "useinfo", "1", "C:\MyPrograms\config.ini")

Related Calls: GetPrivateProfileString, WriteProfileString

Category: INI Files

WriteProfileString Function

Declare Function WriteProfileString Lib "kernel32.dll" Alias "WriteProfileStringA" (ByVal lpszSection As String, ByVal lpszKeyName As String, ByVal lpszString As String) As Long

Platforms: Win 32s, Win 95/98, Win NT

WriteProfileString sets a value inside of the WIN.INI file. This function can also be used to set numerical values if they are in string form, for example using "1" to represent the number 1. If the section or value does not exist, it will be created. Note that, since Windows normally handles the WIN.INI file by iself, extreme care should be taken when writing directly to it. This function if basically a watered-down version of WritePrivateProfileString because, unlike this function, it works with any INI file. The function returns 0 if an error occurs, or a non-zero value if successful. Note that INI file support is only provided in Windows for backwards compatibility; using the registry to store information is preferred.

lpszSection

The section of WIN.INI to write to.

lpszKeyName

The name of the value to set.

lpszString

The string to set as the value.

Example:

' Set the "Wallpaper" setting in the [Desktop] section of WIN.INI

' to C:\Windows\Clouds.bmp.

' WARNING: Use extreme caution when editing the WIN.INI file, because writing bad data to

' it could have unpredictable and disasterous results to the system!

Dim retval As Long ' return value

' Set the value.

retval = WriteProfileString("Desktop", "Wallpaper", "C:\Windows\Clouds.bmp")

Related Calls: GetProfileString, WritePrivateProfileString

Category: INI Files

ZeroMemory Function

Declare Sub ZeroMemory Lib "kernel32.dll" Alias "RtlZeroMemory" (Destination As Any, ByVal Length As Long)

Platforms

Windows 95: Supported.

Windows 98: Supported.

Windows NT: Requires Windows NT 3.1 or later.

Windows 2000: Supported.

Windows CE: Not Supported.

Description & Usage

ZeroMemory fills a location in memory with zeros. The function sets each byte starting at the given memory location to zero. The memory location is identified by a pointer to the memory address.

Return Value

ZeroMemory does not return a value.

Visual Basic-Specific Issues

A pointer to any variable can be automatically generated merely by passing that variable as Destination. However, if either a String or a Long holding the desired memory address is passed, the ByVal keyword must preceed it.

Parameters

Destination

A pointer to the location in memory (often the memory address of a variable) to begin filling with zeros.

Length

The number of memory bytes, beginning with the address identified by Destination, to set to zeros.

Example

' Initialize all the elements in an array to the value 0.

Dim bytearray(0 To 9) as Byte ' array of 10 bytes

Dim c As Integer ' counter variable

' Fill the memory at bytearray() with zeros. Note that, to identify the pointer

' to bytearray()'s memory location, it is passed as normal.

ZeroMemory bytearray(0), 10 ' zero out 10 bytes

' Display the results to verify that it worked.

For c = 0 To 9 ' loop through each element

 Debug.Print bytearray(c); ' each value displayed will be 0

Next c

Related Function

FillMemory

Category

Memory

Alphabetical Listing of the API Structures

A

ACCESSTIMEOUT

ACL

ANIMATIONINFO

B

BY_HANDLE_FILE_INFORMATION

C

CHOOSECOLOR_TYPE

CHOOSEFONT_TYPE

D

DEVMODE

DEVNAMES

E

F

FILETIME

FILTERKEYS

G

H

HARDWAREINPUT NEW

HELPWININFO

HIGHCONTRAST

I

ICONMETRICS

INPUT_TYPE NEW

J

JOYCAPS

JOYINFO

K

KEYBDINPUT NEW

L

LOGFONT

M

MINIMIZEDMETRICS

MOUSEINPUT NEW

MOUSEKEYS

MULTIKEYHELP

N

NONCLIENTMETRICS

O

OPENFILENAME

OSVERSIONINFO

OVERLAPPED

P

POINT_TYPE

PRINTDLG_TYPE

PRINTER_INFO_1

PRINTER_INFO_2

PRINTER_INFO_4

PRINTER_INFO_5

Q

R

RECT

S

SECURITY_ATTRIBUTES

SECURITY_DESCRIPTOR

SERIALKEYS

SOUNDSENTRY

STICKYKEYS

SYSTEMTIME

T

TIME_ZONE_INFORMATION

TOGGLEKEYS

U

ULARGE_INTEGER

V

W

WAVEOUTCAPS

WIN32_FIND_DATA

X

Y

Z

ACCESSTIMEOUT Structure

Type ACCESSTIMEOUT

 cbSize As Long

 dwFlags As Long

 iTimeOutMSec As Long

End Type

ACCESSTIMEOUT-type variables specify information about the time-out feature of the Windows accessibility features. After the time-out period elapses (beginning with the last user input), the FilterKeys, HighContrast, MouseKeys, StickyKeys, and ToggleKeys accessibility features are disabled. The structure specifies settings for the time-out feature.

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying the settings of the time-out feature:

ATF_AVAILABLE = &H4

The time-out period can be changed (this flag can be read but not set).

ATF_ONOFFFEEDBACK = &H2

Play a sound when the time-out period elapses and the accessibility features are deactivated.

ATF_TIMEOUTON = &H1

The time-out feature is activated.

iTimeOutMSec

The number of milliseconds after the last mouse or keyboard input to wait (the time-out period) before deactivating the accessibility features.

Used by: SystemParametersInfo

ACL Structure

Type ACL

 AclRevision As Byte

 Sbz1 As Byte

 AclSize As Integer

 AceCount As Integer

 Sbz2 As Integer

End Type

ACL-type variables store information about an access-control list (ACL). The ACL structure is followed by zero or more access-control entries (ACEs) which the ACL is made up of. Note how the ACEs are not actually stored inside the ACL structure.

AclRevision

Must be set to the following flag which specifies the ACL's revision level:

ACL_REVISION = 2

The only valid revision level.

Sbz1

Reserved -- set to 0. This member merely aligns the structure's other members in memory.

AclSize

The combined size in bytes of this structure and all of the ACEs which follow it.

AceCount

The number of ACEs which follow this structure.

Sbz2

Reserved -- set to 0. This member merely aligns the structure's other members in memory.

Used by: SECURITY_DESCRIPTOR

ANIMATIONINFO Structure

Type ANIMATIONINFO

 cbSize As Long

 iMinAnimate As Long

End Type

ANIMATIONINFO-type variables identify the settings of animation effects in Windows. The structure specifies whether Windows displays the animation when maximizing, restoring, or minimizing a window.

cbSize

The size in bytes of the structure.

iMinAnimate

If 0, then do not display the animations when maximizing, restoring, or minimizing a window. If non-zero, then display the animations.

Used by: SystemParametersInfo

BY_HANDLE_FILE_INFORMATION Structure

Type BY_HANDLE_FILE_INFORMATION

 dwFileAttributes As Long

 ftCreationTime As FILETIME

 ftLastAccessTime As FILETIME

 ftLastWriteTime As FILETIME

 dwVolumeSerialNumber As Long

 nFileSizeHigh As Long

 nFileSizeLow As Long

 nNumberOfLinks As Long

 nFileIndexHigh As Long

 nFileIndexLow As Long

End Type

BY_HANDLE_FILE_INFORMATION-type variables hold various pieces of information about a file. This information includes the file's attributes; its creation, last-access, and last-modified times and dates; the serial number of the disk the file is on; the file's size; the number of links to the file in the file system; and the unique file identifier value. Notice how the file size and file index, both being 64-bit values, are split into high-order and low-order halves of 32 bits each. To get the value they represent, you can append the hexadecimal or binary values of the two halves together. You can also use the formula actualvalue = high_order * 2^32 + low_order to calculate it.

dwFileAttributes

One or more of the following flags which specify the file's various attributes:

FILE_ATTRIBUTE_ARCHIVE = &H20

An archive file (which most files are).

FILE_ATTRIBUTE_COMPRESSED = &H800

A file residing in a compressed drive or directory.

FILE_ATTRIBUTE_DIRECTORY = &H10

A directory instead of a file.

FILE_ATTRIBUTE_HIDDEN = &H2

A hidden file, not normally visible to the user.

FILE_ATTRIBUTE_NORMAL = &H80

An attribute-less file (cannot be combined with other attributes).

FILE_ATTRIBUTE_READONLY = &H1

A read-only file.

FILE_ATTRIBUTE_SYSTEM = &H4

A system file, used exclusively by the operating system.

ftCreationTime

The time and date of when the file was created.

ftLastAccessTime

The time and date of when the file was last accessed.

ftLastWriteTime

The time and date of when the file was last modified or written to.

dwVolumeSerialNumber

The serial number of the disk which the file is stored on.

nFileSizeHigh

The high-order half of the file's size.

nFileSizeLow

The low-order half of the file's size.

nNumberOfLinks

The number of links to the file in the file system. In NTFS (Win NT File System), this can be greater than one. In the FAT or FAT32 system (Win 32s, Win 95/98), this will always be 1.

nFileIndexHigh

The high-order half of a unique 64-bit identifier of the file.

nFileIndexLow

The low-order half of a unique 64-bit identifier of the file.

Used by: GetFileInformationByHandle

CHOOSECOLOR_TYPE Structure

Type CHOOSECOLOR_TYPE

 lStructSize As Long

 hwndOwner As Long

 hInstance As Long

 rgbResult As Long

 lpCustColors As Long

 Flags As Long

 lCustData As Long

 lpfnHook As Long

 lpTemplateName As String

End Type

Description & Usage

The CHOOSECOLOR_TYPE structure stores the information passed to and from the Choose Color common dialog box. The structure's data members specify both the user's selection(s) as well as other information specifying how to create the Choose Color box.

Visual Basic-Specific Issues

Officially, this structure is called CHOOSECOLOR. However, that violates the case-sensitive name spacing of Visual Basic because Visual Basic cannot then distinguish it from the ChooseColor API function. The Windows API Guide calls this structure CHOOSECOLOR_TYPE to avoid the naming collision.

Data Members

lStructSize

The size in bytes of the structure.

hwndOwner

A handle to the window opening the ChooseColor box, if any.

hInstance

A handle to a dialog template to use in place of the default box. If this is not being used, set to 0.

rgbResult

Set to the RGB value of the default selected color before calling ChooseColor. The function places the RGB value of the color the user selected into this member.

lpCustColors

A pointer to the memory block which holds the list of 16 custom colors.

Flags

A combination of the following flags specifying how to create the Choose Color box:

CC_ANYCOLOR = &H100

Allow the user to select any color.

CC_ENABLEHOOK = &H10

Use the hook function specified by lpfnHook to process the Choose Color box's messages.

CC_ENABLETEMPLATE = &H20

Use the dialog box template identified by hInstance and lpTemplateName.

CC_ENABLETEMPLATEHANDLE = &H40

Use the preloaded dialog box template identified by hInstance, ignoring lpTemplateName.

CC_FULLOPEN = &H2

Automatically display the Define Custom Colors half of the dialog box.

CC_PREVENTFULLOPEN = &H4

Disable the button that displays the Define Custom Colors half of the dialog box.

CC_RGBINIT = &H1

Make the color specified by rgbResult be the initially selected color.

CC_SHOWHELP = &H8

Display the Help button.

CC_SOLIDCOLOR = &H80

Only allow the user to select solid colors. If the user attempts to select a non-solid color, convert it to the closest solid color.

lCustData

Application-defined value to pass to the hook function specified by lpfnHook whenever it is called.

lpfnHook

A pointer to the CCHookProc hook function to use to process the Choose Color box's messages. To have the dialog box process its own messages, set this to 0.

lpTemplateName

The name of the dialog box template to use in the module identified by hInstance. If this is not needed, set this to 0.

Constant Definitions

Const CC_ANYCOLOR = &H100

Const CC_ENABLEHOOK = &H10

Const CC_ENABLETEMPLATE = &H20

Const CC_ENABLETEMPLATEHANDLE = &H40

Const CC_FULLOPEN = &H2

Const CC_PREVENTFULLOPEN = &H4

Const CC_RGBINIT = &H1

Const CC_SHOWHELP = &H8

Const CC_SOLIDCOLOR = &H80

Used By

ChooseColor

CHOOSEFONT_TYPE Structure

Type CHOOSEFONT_TYPE

 lStructSize As Long

 hwndOwner As Long

 hdc As Long

 lpLogFont As Long

 iPointSize As Long

 flags As Long

 rgbColors As Long

 lCustData As Long

 lpfnHook As Long

 lpTemplateName As String

 hInstance As Long

 lpszStyle As String

 nFontType As Integer

 MISSING_ALIGNMENT As Integer

 nSizeMin As Long

 nSizeMax As Long

End Type

CHOOSEFONT_TYPE-type variables are designed to pass information to and from the Choose Font common dialog. Its members both specify initialization settings for rendering the box and receive information about the user's selection after the function completes. (Note: Officially this structure is called CHOOSEFONT, but in this guide I refer to it as CHOOSEFONT_TYPE to avoid naming conflicts with the ChooseFont function. Case-insensitive languages such as Visual Basic demand this change.)

lStructSize

The size in bytes of this structure.

hwndOwner

A handle to the window which is opening the Choose Font common dialog box, if any.

hdc

A device context to the printer to read the printer fonts of. This must be specified if you want to display printer fonts in the font list.

lpLogFont

The address of a memory block which receives the contents of a LOGFONT structure specifying the attributes of the font the user selected. Optionally, this data block can also be initialized with the font to select by default in the dialog box. See the example for ChooseFont for how to obtain this address to a memory block.

iPointSize

The point size of the font, measured in units of 1/10 of a point (for example, 120 means 12 point).

flags

Zero or more of the following flags specifying options for creating the common dialog box:

CF_ANSIONLY = &H400

Win NT only: List all fonts using a Windows or Unicode character set.

CF_APPLY = &H200

Display and enable the Apply button.

CF_BOTH = &H3

List all printer and screen fonts.

CF_EFFECTS = &H100

Allow the strikeout, underline, and color attributes to be set.

CF_ENABLEHOOK = &H8

Use the hook function specified by lpfnHook to process the Choose Font dialog's messages.

CF_ENABLETEMPLATE = &H10

Use the dialog box template specified by lpTemplateName.

CF_ENABLETEMPLATEHANDLE = &H20

Use the preloaded dialog box template specified by hInstance.

CF_FIXEDPITCHONLY = &H4000

List only fixed-pitch fonts.

CF_FORCEFONTEXIST = &H10000

Do not allow the user to select a non-listed font.

CF_INITTOLOGFONTSTRUCT = &H40

Use the settings specified in lpLogFont to select a default font in the dialog box.

CF_LIMITSIZE = &H2000

Limit the point size selection to values between nSizeMin and nSizeMax inclusive.

CF_NOOEMFONTS = &H800

Same as CF_NOVECTORFONTS.

CF_NOFACESEL = &H80000

Do not select a default font face name for the user.

CF_NOSCRIPTSEL = &H800000

Do not select a default script setting for the user.

CF_NOSTYLESEL = &H100000

Do not select a default style for the user.

CF_NOSIZESEL = &H200000

Do not select a default point size for the user.

CF_NOSIMULATIONS = &H1000

Do not display a sample of the selected font.

CF_NOVECTORFONTS = &H800

Do not list vector fonts.

CF_NOVERTFONTS = &H1000000

Win 95/98 only: Do not list vertically-oriented fonts.

CF_PRINTERFONTS = &H2

List printer fonts.

CF_SCALABLEONLY = &H20000

Only list scalable fonts.

CF_SCREENFONTS = &H1

List screen fonts.

CF_SCRIPTSONLY = &400

Win NT only: Same as CF_ANSIONLY.

CF_SELECTSCRIPT = &H400000

Win 95/98 only: Only list fonts with the proper character set.

CF_SHOWHELP = &H4

Display the Help button.

CF_TTONLY = &H40000

Only list TrueType fonts.

CF_USESTYLE = &H80

Use information in lpStyle to initialize the dialog box.

CF_WYSIWYG = &H8000

List only fonts common to the printer and the screen (must be used with CF_BOTH and CF_SCALABLEONLY).

rgbColors

The RGB value for the color of the font.

lCustData

Program-defined parameter to pass to the hook function specified by lpfnHook.

lpfnHook

A handle to a hook function to process the dialog box's messages.

lpTemplateName

The name of the dialog box template to use.

hInstance

A handle to the instance of the program that contains the pre-loaded dialog box template to use.

lpszStyle

Receives a string specifying the selected font's style settings. If used, this string must be large enough to receive the returned string.

nFontType

One or more of the following flags specifying the type of font that is selected:

BOLD_FONTTYPE = &H100

Boldface font.

ITALIC_FONTTYPE = &H200

Italicized font.

PRINTER_FONTTYPE = &H4000

Printer font.

REGULAR_FONTTYPE = &H400

Regular font -- i.e., not boldface.

SCREEN_FONTTYPE = &H2000

Screen font.

SIMULATED_FONTTYPE = &H8000

Font that can be simulated in the dialog box.

MISSING_ALIGNMENT

Never set this variable. It is there only to align the other members of the structure in memory.

nSizeMin

The minimum allowable point size selection.

nSizeMax

The maximum allowable point size selection.

Used by: ChooseFont

DEVMODE Structure

Type DEVMODE

 dmDeviceName As String * 32

 dmSpecVersion As Integer

 dmDriverVersion As Integer

 dmSize As Integer

 dmDriverExtra As Integer

 dmFields As Long

 dmOrientation As Integer

 dmPaperSize As Integer

 dmPaperLength As Integer

 dmPaperWidth As Integer

 dmScale As Integer

 dmCopies As Integer

 dmDefaultSource As Integer

 dmPrintQuality As Integer

 dmColor As Integer

 dmDuplex As Integer

 dmYResolution As Integer

 dmTTOption As Integer

 dmCollate As Integer

 dmFormName As String * 32

 dmUnusedPadding As Integer

 dmBitsPerPixel As Integer

 dmPelsWidth As Long

 dmPelsHeight As Long

 dmDisplayFlags As Long

 dmDisplayFrequency As Long

 ' the following members are only valid under Win 95/98 -- omit them in Win NT:

 dmICMMethod As Long

 dmICMIntent As Long

 dmMediaType As Long

 dmDitherType As Long

 dmReserved1 As Long

 dmReserved2 As Long

End Type

DEVMODE-type variables store information about various settings and properties of a device, such as a printer. Some of the properties only apply to certain devices; for example, the dmDisplayFrequency has no meaning for a printer. Look at the dmFields member to determine which of the structure's member values have meaningful information.

dmDeviceName

The name of the device.

dmSpecVersion

The version number of the device's initialization information specification.

dmDriverVersion

The version number of the device driver.

dmSize

The size of the structure, in bytes.

dmDriverExtra

The number of bytes of information trailing the structure in memory.

dmFields

One or more of the following flags specifying which of the rest of the structure's members contain information about the device:

DM_BITSPERPEL = &H40000

dmBitsPerPel contains information.

DM_COLLATE = &H8000

dmCollate contains information.

DM_COLOR = &H800

dmColor contains information.

DM_COPIES = &H100

dmCopies contains information.

DM_DEFAULTSOURCE = &H200

dmDefaultSource contains information.

DM_DISPLAYFLAGS = &H200000

dmDisplayFlags contains information.

DM_DISPLAYFREQUENCY = &H400000

dmDisplayFrequency contains information.

DM_DITHERTYPE = &H4000000

Win 95/98 only: dmDitherType contains information.

DM_DUPLEX = &H1000

dmDuplex contains information.

DM_FORMNAME = &H10000

dmFormName contains information.

DM_ICMINTENT = &H1000000

Win 95/98 only: dmICMIntent contains information.

DM_ICMMETHOD = &H800000

Win 95/98 only: dmICMMethod contains information.

DM_LOGPIXELS = &H20000

dmLogPixels contains information.

DM_MEDIATYPE = &H2000000

Win 95/98 only: dmMediaType contains information.

DM_ORIENTATION = &H1

dmOrientation contains information.

DM_PAPERLENGTH = &H4

dmPaperLength contains information.

DM_PAPERSIZE = &H2

dmPaperSize contains information.

DM_PAPERWIDTH = &H8

dmPaperWidth contains information.

DM_PELSHEIGHT = &H100000

dmPelsHeight contains information.

DM_PELSWIDTH = &H80000

dmPelsWidth contains information.

DM_PRINTQUALITY = &H400

dmPrintQuality contains information.

DM_SCALE = &H10

dmScale contains information.

DM_TTOPTION = &H4000

dmTTOption contains information.

DM_YRESOLUTION = &H2000

dmYResolution contains information.

dmOrientation

Exactly one of the following flags specifying the orientation of the printer paper:

DMORIENT_LANDSCAPE = 2

Landscape (wide) mode.

DMORIENT_PORTRAIT = 1

Portrait (tall) mode.

dmPaperSize

If nonzero, exactly one of the following flags specifying the size of the printer paper. If zero, the paper size is determined by dmPaperLength and dmPaperWidth.

DMPAPER_10X11 = 45

10 x 11 inches.

DMPAPER_10X14 = 16

10 x 14 inches.

DMPAPER_11X17 = 17

11 x 17 inches.

DMPAPER_15X11 = 46

15 x 11 inches.

DMPAPER_9X11 = 44

9 x 11 inches.

DMPAPER_A_PLUS = 57

A plus sheet.

DMPAPER_A2 = 66

A2 sheet.

DMPAPER_A3 = 8

A3 sheet, 297 x 420 millimeters.

DMPAPER_A3_EXTRA = 63

A3 extra sheet.

DMPAPER_A3_EXTRA_TRANSVERSE = 68

A3 extra transverse sheet.

DMPAPER_A3_TRANSVERSE = 67

A3 transverse sheet.

DMPAPER_A4 = 9

A4 sheet, 210 x 297 millimeters.

DMPAPER_A4_EXTRA = 53

A4 extra sheet.

DMPAPER_A4_PLUS = 60

A4 plus sheet.

DMPAPER_A4_TRANSVERSE = 55

A4 transverse sheet.

DMPAPER_A4SMALL = 10

A4 small sheet, 210 x 297 millimeters.

DMPAPER_A5 = 11

A5 sheet, 148 x 210 millimeters.

DMPAPER_A5_EXTRA = 64

A5 extra sheet.

DMPAPER_A5_TRANSVERSE = 61

A5 transverse sheet.

DMPAPER_B_PLUS = 58

B plus sheet.

DMPAPER_B4 = 12

B4 sheet, 250 x 354 millimeters.

DMPAPER_B5 = 13

B5 sheet, 192 x 257 millimeters.

DMPAPER_B5_EXTRA = 65

B5 extra sheet.

DMPAPER_B5_TRANSVERSE = 62

B5 transverse sheet.

DMPAPER_CSHEET = 24

C sheet, 17 x 22 inches.

DMPAPER_DSHEET = 25

D sheet, 22 x 34 inches.

DMPAPER_ENV_10 = 20

#10 envelope, 4.125 x 9.5 inches.

DMPAPER_ENV_11 = 21

#11 envelope, 4.5 x 10.375 inches.

DMPAPER_ENV_12 = 22

#12 envelope, 4.75 x 11 inches.

DMPAPER_ENV_14 = 23

#14 envelope, 5 x 11.5 inches.

DMPAPER_ENV_9 = 19

#9 envelope, 3.875 x 8.875 inches.

DMPAPER_ENV_B4 = 33

B4 envelope, 250 x 353 millimeters.

DMPAPER_ENV_B5 = 34

B5 envelope, 176 x 250 millimeters.

DMPAPER_ENV_B6 = 35

B6 envelope, 176 x 125 millimeters.

DMPAPER_ENV_C3 = 29

C3 envelope, 324 x 458 millimeters.

DMPAPER_ENV_C4 = 30

C4 envelope, 229 x 324 millimeters.

DMPAPER_ENV_C5 = 28

C5 envelope, 162 x 229 millimeters.

DMPAPER_ENV_C6 = 31

C6 envelope, 114 x 162 millimeters.

DMPAPER_ENV_C65 = 32

C65 envelope, 114 x 229 millimeters.

DMPAPER_ENV_DL = 27

DL envelope, 110 x 220 millimeters.

DMPAPER_ENV_INVITE = 47

Invitation envelope.

DMPAPER_ENV_ITALY = 36

Italy envelope, 110 x 230 millimeters.

DMPAPER_ENV_MONARCH = 37

Monarch envelope, 3.875 x 7.5 inches.

DMPAPER_ENV_PERSONAL = 38

Personal (6.75) envelope, 3.625 x 6.5 inches.

DMPAPER_ESHEET = 26

E sheet, 34 x 44 inches.

DMPAPER_EXECUTIVE = 7

Executive, 7.25 x 10.5 inches.

DMPAPER_FANFOLD_LGL_GERMAN = 41

German legal fanfold, 8.5 x 13 inches.

DMPAPER_FANFOLD_STD_GERMAN = 40

German standard fanfold, 8.5 x 12 inches.

DMPAPER_FANFOLD_US = 39

US standard fanfold, 14.875 x 11 inches.

DMPAPER_FIRST = 1

Same as DMPAPER_LETTER.

DMPAPER_FOLIO = 14

Folio, 8.5 x 13 inches.

DMPAPER_ISO_B4 = 42

ISO B4 sheet.

DMPAPER_JAPANESE_POSTCARD = 43

Japanese postcard.

DMPAPER_LAST = 41

Same as DMPAPER_FANFOLD_LGL_GERMAN.

DMPAPER_LEDGER = 4

Ledger, 17 x 11 inches.

DMPAPER_LEGAL = 5

Legal, 8.5 x 14 inches.

DMPAPER_LEGAL_EXTRA = 51

Legal extra.

DMPAPER_LETTER = 1

Letter, 8.5 x 11 inches.

DMPAPER_LETTER_EXTRA = 50

Letter extra.

DMPAPER_LETTER_EXTRA_TRANSVERSE = 56

Letter extra transverse.

DMPAPER_LETTER_PLUS = 59

Letter plus.

DMPAPER_LETTER_TRANSVERSE = 54

Letter transverse.

DMPAPER_LETTERSMALL = 2

Letter small, 8.5 x 11 inches.

DMPAPER_NOTE = 18

Note, 8.5 x 11 inches.

DMPAPER_QUARTO = 15

Quarto, 215 x 275 millimeters.

DMPAPER_STATEMENT = 6

Statement, 5.5 x 8.5 inches.

DMPAPER_TABLOID = 3

Tabloid, 11 x 17 inches.

DMPAPER_TABLOID_EXTRA = 52

Tabloid extra.

DMPAPER_USER = 256

User-defined size (?).

dmPaperLength

The length of the printer paper, measured in tenths of a millimeter.

dmPaperWidth

The width of the printer paper, measured in tenths of a millimeter.

dmScale

The scale percentage factor (e.g., 100 means 100%, or no, scaling; 200 means two times the size, etc.).

dmCopies

The number of document copies to print, if the device supports it.

dmDefaultSource

Reserved -- set to 0.

dmPrintQuality

Either exactly one of the following flags specifying the printer's print quality setting, or a positive value specifying the printer's dots per inch (DPI) rating.

DMRES_DRAFT = -1

Draft-quality output.

DMRES_HIGH = -4

High-quality output.

DMRES_LOW = -2

Low-quality output.

DMRES_MEDIUM = -3

Medium-quality output.

dmColor

Exactly one of the following flags specifying whether the device supports color:

DMCOLOR_COLOR = 2

The device supports color output.

DMCOLOR_MONOCHROME = 1

The device does not support color output.

dmDuplex

Exactly one of the following flags specifying the printer's double-sided (duplex) printing capability:

DMDUP_HORIZONTAL = 3

Configured for double-sided printing with horizontal page turning (?).

DMDUP_SIMPLEX = 1

Configured for single-sided printing (?).

DMDUP_VERTICAL = 2

Configured for double-sided printing with vertical page turning (?).

dmYResolution

The number of the vertical dots per inch of the printer. If this value contains useful data, the number of horizontal dots per inch is inside dmPrintQuality.

dmTTOption

Exactly one of the following flags specifying how the printer prints TrueType fonts:

DMTT_BITMAP = 1

The printer prints TrueType fonts as graphics (default for dot-matrix printers).

DMTT_DOWNLOAD = 2

The printer downloads TrueType fonts as soft fonts (default for Hewlett-Packerd printers using Printer Control Language).

DMTT_SUBDEV = 4

The printer substitutes device fonts for TrueType fonts (default for PostScript printers).

dmCollate

Exactly one of the following flags specifying whether the printer can collate copies:

DMCOLLATE_FALSE = 0

Does not collate pages when printing multiple copies.

DMCOLLATE_TRUE = 1

Does collate pages when printing multiple copies.

dmFormName

Win NT only: The name of the type of paper loaded in the printer.

dmUnusedPadding

Reserved -- set to 0. This member merely takes up space to align other members in memory.

dmBitsPerPel

The number of color bits used per pixel on the display device.

dmPelsWidth

The width of the display, measured in pixels.

dmPelsHeight

The height of the display, measured in pixels.

dmDisplayFlags

Zero or more of the following flags specifying the device's display mode:

DM_GRAYSCALE = 1

The display does not support color. (If this flag is omitted, assume color is supported.)

DM_INTERLACED = 2

The display is interlaced.

dmDisplayFrequency

The display frequency of the display, measured in Hz.

dmICMMethod

Win 95/98 only: Either exactly one of the following flags specifying how image color matching (ICM) is supported, or a device-defined value greater than 256:

DMICMMETHOD_DEVICE = 4

ICM is handled by the device.

DMICMMETHOD_DRIVER = 3

ICM is handled by the device driver.

DMICMMETHOD_NONE = 1

ICM is disabled.

DMICMMETHOD_SYSTEM = 2

ICM is handled by Windows.

dmICMIntent

Win 95/98 only: Either exactly one of the following flags specifying the image color matching (ICM) method used when ICM is not intrinsically supported, or a device-defined value greater than 256:

DMICM_COLORMETRIC = 3

Color matching attempts to match the exact color requested.

DMICM_CONTRAST = 2

Color matching attempts to optimize color contrast.

DMICM_SATURATE = 1

Color matching attempts to optimize color saturation.

dmMediaType

Win 95/98 only: Either exactly one of the following flags specifying what type of medium the printer is printing on, or a device-defined value greater than 256:

DMMEDIA_GLOSSY = 2

Glossy paper.

DMMEDIA_STANDARD = 1

Plain paper.

DMMEDIA_TRANSPARECNY = 3

Transparent film.

dmDitherType

Win 95/98 only: Either exactly one of the following flags specifying the dithering method used by the device, or a device-defined value greater than 256:

DMDITHER_COARSE = 2

Dithering with a coarse brush.

DMDITHER_FINE = 3

Dithering with a fine brush.

DMDITHER_GRAYSCALE = 5

Grayscaling.

DMDITHER_LINEART = 4

Line art dithering, which makes well-defined borders between black, white, and gray.

DMDITHER_NONE = 1

No dithering.

dmReserved1

Win 95/98 only: Reserved -- set to 0.

dmReserved2

Win 95/98 only: Reserved -- set to 0.

Used by: CreateDC, PRINTDLG_TYPE, PRINTER_INFO_2

DEVNAMES Structure

Type DEVNAMES

 wDriverOffset As Integer

 wDeviceOffset As Integer

 wOutputOffset As Integer

 wDefault As Integer

 extra As String * 100

End Type

DEVNAMES-type variables store some information about a device. This information includes the device driver name, the device name, and the names of any output ports it uses. Note that instead of storing strings in the usual way, this structure puts all three strings into extra, where null characters separate them. The offset values specify the location of these strings in extra, measured in bytes from the beginning of the structure. For example, the very first character in extra would have an offset of 8. See the example for the PrintDlg function for a demonstration of using this structure.

wDriverOffset

The offset of the string in extra identifying the name of the device driver filename (without the extension).

wDeviceOffset

The offset of the string in extra identifying the name of the device.

wOutputOffset

The offset of the string in extra identifying the output port(s) which the device uses, separated by commas.

wDefault

If non-zero, the information in the structure identifies the default device of its type. If zero, the information does not necessarily descibe the default device.

extra

Buffer which holds the three strings identified by wDriverOffset, wDeviceOffset, and wOutputOffset.

Used by: PRINTDLG_TYPE

FILETIME Structure

Type FILETIME

 dwLowDateTime As Long

 dwHighDateTime As Long

End Type

FILETIME-type variables hold a 64-bit value identifying a time and date (usually one associated with a file). The structure holds a time by specifying the number of 100-nanosecond intervals since January 1, 1601. The 64-bit data is divided into the two member values, each holding either the high-order or low-order half of the time and date. The hexadecimal or binary values can be stuck together to give the 64-bit value, or you could use the formula time = dwHighDateTime * 2^32 + dwLowDateTime to calculate the corresponding value.

dwLowDateTime

Holds the low-order half of the date and time.

dwHighDateTime

Holds the high-order half of the date and time.

Used by: BY_HANDLE_FILE_INFORMATION, CompareFileTime, FileTimeToLocalFileTime, FileTimeToSystemTime, GetFileTime, LocalFileTimeToFileTime, RegEnumKeyEx, SystemTimeToFileTime, WIN32_FIND_DATA

FILTERKEYS Structure

Type FILTERKEYS

 cbSize As Long

 dwFlags As Long

 iWaitMSec As Long

 iDelayMSec As Long

 iRepeatMSec As Long

 iBounceMSec As Long

End Type

FILTERKEYS-type variables store information relating to the FilterKeys accessibility feature. FilterKeys helps filter out unwanted and accidental keypresses by controlling settings such as the repeat rate and requiring keys to be held for a certain time before they are accepted. This structure stores the settings of FilterKeys.

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying various FilterKeys settings and properties:

FKF_AVAILABLE = &H2

The FilterKeys accessibility feature is available.

FKF_CLICKON = &H40

Play a clicking sound whenever a key is pressed or accepted.

FKF_CONFIRMHOTKEY = &H8

Win 95/98 only: Display a confirmation dialog whenever the user activates FilterKeys via the hot key.

FKF_FILTERKEYSON = &H1

FilterKeys is currently on.

FKF_HOTKEYACTIVE = &H4

The user can toggle FilterKeys by using the hot key: holding the right Shift key for eight seconds.

FKF_HOTKEYSOUND = &H10

Play a sound when the user toggles FilterKeys via the hot key.

FKF_INDICATOR = &H20

Win 95/98 only: Display an icon in the tray while FilterKeys in on.

iWaitMSec

The length of time, in milliseconds, the user must hold down a key before it is accepted.

iDelayMSec

The length of time, in milliseconds, the user must hold down a key before it begins to repeat.

iRepeatMSec

The length of time, in milliseconds, between each repetition of a key.

iBounceMSec

The length of time, in milliseconds, before subsequent presses of the same key will be accepted.

Used by: SystemParametersInfo

HARDWAREINPUT Structure

Type HARDWAREINPUT

 uMsg As Long

 wParamL As Integer

 wParamH As Integer

End Type

Description & Usage

The HARDWAREINPUT structure holds information about a message synthesized by some generic (non-keyboard, non-mouse) input hardware. The data members of the structure specify the information associated with the message generated.

Visual Basic-Specific Issues

None.

Data Members

uMsg

The message identifier of the message generated by the input hardware.

wParamL

The low-order word of the message's first parameter.

wParamH

The high-order word of the message's first parameter.

Used By

INPUT_TYPE

HELPWININFO Structure

Type HELPWININFO

 wStructSize As Long

 x As Long

 y As Long

 dx As Long

 dy As Long

 wMax As Long

 rgchMember As String * 2

End Type

Description & Usage

The HELPWININFO structure holds information about the size and position of a primary or secondary Windows Help window. This information is used to reposition such a window. "Normal" screen coordinates are not used by this structure! Instead, the screen is divided into 1024 units both horizontally and vertically (regardless of the actual resolution). This coordinate system is used by the data members which specify coordinates.

Visual Basic-Specific Issues

None.

Data Members

wStructSize

The size in bytes of the structure.

x

The x-coordinate of the upper-left corner of the window.

y

The y-coordinate of the upper-left corner of the window.

dx

The width of the window.

dy

The height of the window.

wMax

Exactly one of the following flags specifying how to show the window:

SW_HIDE

Hide the window and make a different window the active window.

SW_MINIMIZE

Minimize the window and activate the top window in the z-order.

SW_RESTORE

Same as SW_SHOWNORMAL.

SW_SHOW

Activate the window and display it in its current size and position.

SW_SHOWMAXIMIZED

Activate and maximize the window.

SW_SHOWMINIMIZED

Activate and minimize the window.

SW_SHOWMINNOACTIVE

Minimize the window, leaving whichever window was previously the active window active.

SW_SHOWNA

Display the window in its current size and position, leaving whichever window was previously the active window active.

SW_SHOWNOACTIVATE

Display the window in its most recent size and position, leaving whichever window was previously the active window active.

SW_SHOWNORMAL

Activate and display the window, restoring it to its original size and position.

rgchMember

The name of the window to set the size and position of.

Constant Definitions

Const SW_HIDE = 0

Const SW_MINIMIZE = 6

Const SW_RESTORE = 9

Const SW_SHOW = 5

Const SW_SHOWMAXIMIZED = 3

Const SW_SHOWMINIMIZED = 2

Const SW_SHOWMINNOACTIVE = 7

Const SW_SHOWNA = 8

Const SW_SHOWNOACTIVATE = 4

Const SW_SHOWNORMAL = 1

Used By

WinHelp

HIGHCONTRAST Structure

Type HIGHCONTRAST

 cbSize As Long

 dwFlags As Long

 lpszDefaultScheme As String

End Type

HIGHCONTRAST-type variables store information about the HighContrast accessibility feature. HighContrast aids users with poor vision by utilizing a high-contrast Windows color scheme to maximize visibility. The structure stores the settings for the HighContrast accessibility feature.

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying various settings and properties of HighContrast:

HCF_AVAILABLE = &H2

The HighContrast accessibility feature is available.

HCF_CONFIRMHOTKEY = &H8

Open a confirmation dialog box when the user activates HighContrast via the hot key.

HCF_HIGHCONTRASTON = &H1

HighContrast is currently on.

HCF_HOTKEYACTIVE = &H4

Allow the user to toggle HighContrast using the hot key: pressing Left Alt, Left Shift, and Print Screen simultaneously.

HCF_HOTKEYAVAILABLE = &H40

The hot key can be enabled (this flag cannot be changed).

HCF_HOTKEYSOUND = &H10

Play a sound when the user toggles HighContrast via the hot key.

HCF_INDICATOR = &H20

Display an icon in the system tray while HighContrast is on.

lpszDefaultScheme

The name of the color scheme for HighContrast to use.

Used by: SystemParametersInfo

ICONMETRICS Structure

Type ICONMETRICS

 cbSize As Long

 iHorzSpacing As Long

 iVertSpacing As Long

 iTitleWrap As Long

 lfFont As LOGFONT

End Type

ICONMETRICS-type variables hold information about various icon metrics. The icon metrics specify information about icons in Windows, such as the font used for their titles and the spacing used to display them. The structure stores these metrics.

cbSize

The size in bytes of the structure.

iHorzSpacing

The horizontal space, in pixels, alloted to each arranged icon.

iVertSpacing

The vertical space, in pixels, alloted to each arranged icon.

iTitleWrap

Specifies whether the titles of icons are word-wrapped or not. Zero means the titles are not wrapped; a non-zero value means the titles are wrapped.

lfFont

Information about the logical font used to display the icon titles.

Used by: SystemParametersInfo

INPUT_TYPE Structure

Type INPUT_TYPE

 dwType As Long

 xi(0 To 23) As Byte

End Type

Description & Usage

The INPUT_TYPE structure holds information about an input event to be placed in the input stream. The input can be from the keyboard, the mouse, or some other hardware. Essentially, this structure merely identifies the source of an input event.

Visual Basic-Specific Issues

Officially, this structure is called INPUT. However, that violates the case-sensitive name spacing of Visual Basic because Visual Basic contains an intrinsic Input command. The Windows API Guide calls this structure INPUT_TYPE to avoid the naming collision.

Also, this structure does not officially have a data member called xi. That space in the structure is actually a "union" of three members: mi, ki, and hi, all of which occupy the same physical space in the structure and of which only one can be used at any one time. Each of those actual members are the contents of one of the three structures discussed below physically embedded in the structure. Because, unlike C++, Visual Basic does not have any analogous construct, a workaround must be reached. Therefore, as far as Visual Basic is concerned, a byte array called xi occupies that space, into which the contents of one of the possible structures must be copied. See the example for SendInput for a demonstration.

Data Members

dwType

Exactly one of the following flags specifying which type of input event this structure contains:

INPUT_MOUSE

The structure identifies a mouse input event.

INPUT_KEYBOARD

The structure identifies a keyboard input event.

INPUT_HARDWARE

Windows 98: The structure identifies some other hardware input event.

xi

Buffer which holds the contents of a data structure, depending on the value of dwType. A MOUSEINPUT structure is used for mouse events, a KEYBDINPUT structure for keyboard events, and a HARDWAREINPUT structure for other hardware events. (See the SendInput example for a demonstration of using this parameter.)

Used By

SendInput

JOYCAPS Structure

Type JOYCAPS

 wMid As Integer

 wPid As Integer

 szPname As String * 32

 wXmin As Long

 wXmax As Long

 wYmin As Long

 wYmax As Long

 wZmin As Long

 wZmax As Long

 wNumButtons As Long

 wPeriodMin As Long

 wPeriodMax As Long

 wRmin As Long

 wRmax As Long

 wUmin As Long

 wUmax As Long

 wVmin As Long

 wVmax As Long

 wMaxAxes As Long

 wNumAxes As Long

 wMaxButtons As Long

 szRegKey As String * 32

 szOEMVxD As String * 240

End Type

JOYCAPS-type variables hold information about a joystick (not to be confused with the current position of the joystick). Namely, this structure holds the axes' ranges and the number of buttons the joystick has.

wMid

The manufacturer identifier of the device.

wPid

The product identifier of the device.

szPname

The name of the joystick's device driver.

wXmin

The minimum x-axis coordinate value.

wXmax

The maximum x-axis coordinate value.

wYmin

The minimum y-axis coordinate value.

wYmax

The maximum y-axis coordinate value.

wZmin

The minimum z-axis coordinate value.

wZmax

The maximum z-axis coordinate value.

wNumButtons

The number of buttons on the joystick.

wPeriodMin

The minimum supported polling frequency.

wPeriodMax

The maximum supported polling frequency.

wRmin

The minimum r-axis (rudder, fourth axis) coordinate value.

wRmax

The maximum r-axis (rudder, fourth axis) coordinate value.

wUmin

The minimum u-axis (fifth axis) coordinate value.

wUmax

The maximum u-axis (fifth axis) coordinate value.

wVmin

The minimum v-axis (sixth axis) coordinate value.

wVmax

The maximum v-axis (sixth axis) coordinate value.

wCaps

Zero or more flags specifying various capabilities or characteristics of the joystick:

JOYCAPS_HASPOV = &H10

Joystick provides point-of-view information.

JOYCAPS_HASR = &H2

Joystick provides rudder (fourth axis) information.

JOYCAPS_HASU = &H4

Joystick provides u-axis (fifth axis) information.

JOYCAPS_HASV = &H8

Joystick provides v-axis (sixth axis) information.

JOYCAPS_HASZ = &H1

Joystick provides z-axis information.

JOYCAPS_POV4DIR = &H20

Joystick's point-of-view indicator supports discrete values (e.g., centered, left, right, up, down, etc.).

JOYCAPS_POVCTS = &H40

Joystick's point-of-view indicator supports continuous degree bearings.

wMaxAxes

The maximum number of axes supported by the joystick.

wNumAxes

The number of axes currently used by the joystick.

wMaxButtons

The maximum number of buttons supported by the joystick.

szRegKey

The registry key that holds the joystick's information.

szOEMVxD

Identifies the original equipment manufacturer (OEM) of the joystick.

Used by: joyGetDevCaps

JOYINFO Structure

Type JOYINFO

 wXpos As Long

 wYpos As Long

 wZpos As Long

 wButtons As Long

End Type

JOYINFO-type variables hold the current position of a joystick. This structure can store the positions of the x, y, and z axes, as well as the buttons pushed. Note that this structure can only receive information about buttons 1 through 4 on the joystick -- if there are more, they are ignored.

wXpos

The current x-axis coordinate.

wYpos

The current y-axis coordinate.

wZpos

The current z-axis coordinate.

wButtons

Zero or more of the following flags, specifying which buttons are being depressed:

JOY_BUTTON1 = &H1

Button #1 is depressed.

JOY_BUTTON2 = &H2

Button #2 is depressed.

JOY_BUTTON3 = &H4

Button #3 is depressed.

JOY_BUTTON4 = &H8

Button #4 is depressed.

Used by: joyGetPos

KEYBDINPUT

Type KEYBDINPUT

 wVk As Integer

 wScan As Integer

 dwFlags As Long

 time As Long

 dwExtraInfo As Long

End Type

Description & Usage

The KEYBDINPUT structure holds information about a keyboard input event. The various data members describe the exact nature of the keyboard input event. Windows 2000: This structure can also be used to synthisized keyboard input generated by a hardware device imitating the keyboard.

Visual Basic-Specific Issues

None.

Data Members

wVk

The virtual-key code of the key to simulate pressing or releasing. If dwFlags contains the KEYEVENTF_UNICODE tag, this must be 0.

wScan

If dwFlags contains the KEYEVENTF_UNICODE flag, this specifies the hardware scan code of the Unicode character key to simulate pressing or releasing. If that flag is not used, this must be 0.

dwFlags

A combination of the following flags specifying what kind of keyboard input to synthesize:

KEYEVENTF_EXTENDEDKEY

Prefix the scan code with a prefix byte having the value &HE0.

KEYEVENTF_KEYUP

The key specified in bVk is being released. If this flag is not specified, the key is being pressed.

KEYEVENTF_UNICODE

Windows 2000: Use a Unicode character key generated by a non-keyboard hardware input which is imitating keyboard input.

time

The time stamp of the keyboard input event, in milliseconds. If 0, the system creates a time stamp by default.

dwExtraInfo

An additional 32-bit value associated with the keyboard event.

Constant Definitions

Const KEYEVENTF_EXTENDEDKEY = &H1

Const KEYEVENTF_KEYUP = &H2

Const KEYEVENTF_UNICODE = &H4

Used By

INPUT_TYPE

LOGFONT Structure

Type LOGFONT

 lfHeight As Long

 lfWidth As Long

 lfEscapement As Long

 lfOrientation As Long

 lfWeight As Long

 lfItalic As Byte

 lfUnderline As Byte

 lfStrikeOut As Byte

 lfCharSet As Byte

 lfOutPrecision As Byte

 lfClipPrecision As Byte

 lfQuality As Byte

 lfPitchAndFamily As Byte

 lfFaceName As String * 32

End Type

Description & Usage

The LOGFONT structure holds information about a logical font. The various members of the structure specify properties of the logical font.

Visual Basic-Specific Issues

None.

Parameters

lfHeight

The height of the font's character cell, in logical units (also known as the em height). If positive, the font mapper converts this value directly into device units and matches it with the cell height of the possible fonts. If 0, the font mapper uses a default character height. If negative, the font mapper converts the absolute value into device units and matches it with the character height of the possible fonts.

lfWidth

The average width of the font's characters. If 0, the font mapper tries to determine the best value.

lfEscapement

The angle between the font's baseline and escapement vectors, in units of 1/10 degrees. Windows 95, 98: This must be equal to lfOrientation.

lfOrientation

The angle between the font's baseline and the device's x-axis, in units of 1/10 degrees. Windows 95, 98: This must be equal to lfEscapement.

lfWeight

One of the following flags specifying the boldness (weight) of the font:

FW_DONTCARE

Default weight.

FW_THIN

Thin weight.

FW_EXTRALIGHT

Extra-light weight.

FW_ULTRALIGHT

Same as FW_EXTRALIGHT.

FW_LIGHT

Light weight.

FW_NORMAL

Normal weight.

FW_REGULAR

Same as FW_NORMAL.

FW_MEDIUM

Medium weight.

FW_SEMIBOLD

Semi-bold weight.

FW_DEMIBOLD

Same As FW_SEMIBOLD.

FW_BOLD

Bold weight.

FW_EXTRABOLD

Extra-bold weight.

FW_ULTRABOLD

Same as FW_EXTRABOLD.

FW_HEAVY

Heavy weight.

FW_BLACK

Same as FW_HEAVY.

lfItalic

A non-zero value if the font is italicized, 0 if not.

lfUnderline

A non-zero value if the font is underlined, 0 if not.

lfStrikeOut

A non-zero value if the font is striked out, 0 if not.

lfCharSet

Exactly one of the following flags specifying the character set of the font:

ANSI_CHARSET

ANSI character set.

ARABIC_CHARSET

Windows NT, 2000: Arabic character set.

BALTIC_CHARSET

Windows 95, 98: Baltic character set.

CHINESEBIG5_CHARSET

Chinese Big 5 character set.

DEFAULT_CHARSET

Default character set.

EASTEUROPE_CHARSET

Windows 95, 98: Eastern European character set.

GB2312_CHARSET

GB2312 character set.

GREEK_CHARSET

Windows 95, 98: Greek character set.

HANGEUL_CHARSET

HANDEUL character set.

HEBREW_CHARSET

Windows NT, 2000: Hebrew character set.

JOHAB_CHARSET

Windows 95, 98: Johab character set.

MAC_CHARSET

Windows 95, 98: Mac character set.

OEM_CHARSET

Original equipment manufacturer (OEM) character set.

RUSSIAN_CHARSET

Windows 95, 98: Russian character set.

SHIFTJIS_CHARSET

ShiftJis character set.

SYMBOL_CHARSET

Symbol character set.

THAI_CHARSET

Windows NT, 2000: Thai character set.

TURKISH_CHARSET

Windows 95, 98: Turkish character set.

lfOutPrecision

Exactly one of the following flags specifying the desired precision (closeness of the match) between the logical font ideally described by the structure and the actual logical font. This value is used by the font mapper to produce the logical font.

OUT_DEFAULT_PRECIS

The default font mapping behavior.

OUT_DEVICE_PRECIS

Choose a device font if there are multiple fonts in the system with the same name.

OUT_OUTLINE_PRECIS

Windows NT, 2000: Choose a TrueType or other outline-based font.

OUT_RASTER_PRECIS

Choose a raster font if there are multiple fonts in the system with the same name.

OUT_STRING_PRECIS

Raster font (used for enumeration only).

OUT_STROKE_PRECIS

Windows 95, 98: Vector font (used for enumeration only). Windows NT, 2000: TrueType, outline-based, or vector font (used for enumeration only).

OUT_TT_ONLY_PRECIS

Choose only a TrueType font.

OUT_TT_PRECIS

Choose a TrueType font if there are multiple fonts in the system with the same name.

lfClipPrecision

Exactly one of the following flags specifying the clipping precision to use when the font's characters must be clipped:

CLIP_DEFAULT_PRECIS

The default clipping behavior.

CLIP_EMBEDDED

This flag must be set for an embedded read-only font.

CLIP_LH_ANGLES

The direction of any rotations is determined by the coordinate system (or else all rotations are counterclockwise).

CLIP_STROKE_PRECIS

Raster, vector, or TrueType font (used for enumeration only).

lfQuality

Exactly one of the following flags specifying the output quality of the logical font as compared to the ideal font:

ANTIALIASED_QUALITY

Windows 95, 98, NT 4.0 or later, 2000: The font is always antialiased if possible.

DEFAULT_QUALITY

The default quality: the appearance of the font does not matter.

DRAFT_QUALITY

The appearance of the font is less important then in PROOF_QUALITY.

NONANTIALIASED_QUALITY

Windows 95, 98, NT 4.0 or later, 2000: The font is never antialiased.

PROOF_QUALITY

The quality of the appearance of the font is more important than exactly matching the specified font attributes.

lfPitchAndFamily

A bitwise OR combination of exactly one *_PITCH flag specifying the pitch of the font and exactly one FF_* flag specifying the font face family of the font:

DEFAULT_PITCH

The default pitch.

FIXED_PITCH

Fixed pitch.

VARIABLE_PITCH

Variable pitch.

FF_DECORATIVE

Showy, decorative font face.

FF_DONTCARE

Do not care about the font face.

FF_MODERN

Modern font face (monospaced, sans serif font).

FF_ROMAN

Roman font face (proportional-width, serif font).

FF_SCRIPT

Script font face which imitates script handwriting.

FF_SWISS

Swiss font face (proportional-width, sans serif font).

lfFaceName

The name of the font face to use. This string must be terminated with a null character.

Constant Definitions

Const FW_DONTCARE = 0

Const FW_THIN = 100

Const FW_EXTRALIGHT = 200

Const FW_ULTRALIGHT = 200

Const FW_LIGHT = 300

Const FW_NORMAL = 400

Const FW_REGULAR = 400

Const FW_MEDIUM = 500

Const FW_SEMIBOLD = 600

Const FW_DEMIBOLD = 600

Const FW_BOLD = 700

Const FW_EXTRABOLD = 800

Const FW_ULTRABOLD = 800

Const FW_HEAVY = 900

Const FW_BLACK = 900

Const ANSI_CHARSET = 0

Const ARABIC_CHARSET = 178

Const BALTIC_CHARSET 186

Const CHINESEBIG5_CHARSET = 136

Const DEFAULT_CHARSET = 1

Const EASTEUROPE_CHARSET = 238

Const GB2312_CHARSET = 134

Const GREEK_CHARSET = 161

Const HANGEUL_CHARSET = 129

Const HEBREW_CHARSET = 177

Const JOHAB_CHARSET = 130

Const MAC_CHARSET = 77

Const OEM_CHARSET = 255

Const RUSSIAN_CHARSET = 204

Const SHIFTJIS_CHARSET = 128

Const SYMBOL_CHARSET = 2

Const THAI_CHARSET = 222

Const TURKISH_CHARSET = 162

Const OUT_DEFAULT_PRECIS = 0

Const OUT_DEVICE_PRECIS = 5

Const OUT_OUTLINE_PRECIS = 8

Const OUT_RASTER_PRECIS = 6

Const OUT_STRING_PRECIS = 1

Const OUT_STROKE_PRECIS = 3

Const OUT_TT_ONLY_PRECIS = 7

Const OUT_TT_PRECIS = 4

Const CLIP_DEFAULT_PRECIS = 0

Const CLIP_EMBEDDED = 128

Const CLIP_LH_ANGLES = 16

Const CLIP_STROKE_PRECIS = 2

Const ANTIALIASED_QUALITY = 4

Const DEFAULT_QUALITY = 0

Const DRAFT_QUALITY = 1

Const NONANTIALIASED_QUALITY = 3

Const PROOF_QUALITY = 2

Const DEFAULT_PITCH = 0

Const FIXED_PITCH = 1

Const VARIABLE_PITCH = 2

Const FF_DECORATIVE = 80

Const FF_DONTCARE = 0

Const FF_ROMAN = 16

Const FF_SCRIPT = 64

Const FF_SWISS = 32

Used By

CHOOSEFONT_TYPE, ICONMETRICS, NONCLIENTMETRICS, SystemParametersInfo

MINIMIZEDMETRICS Structure

Type MINIMIZEDMETRICS

 cbSize As Long

 iWidth As Long

 iHorzGap As Long

 iVertGap As Long

 iArrange As Long

End Type

MINIMIZEDMETRICS-type variable hold information about the metrics of minimized windows. The metrics of minimized windows specify various properties that Windows uses to work with all minimized windows. The structure stores these metrics.

cbSize

The size in bytes of the structure.

iWidth

The width in pixels of minimized windows.

iHorzGap

The horizontal space in pixels between arranged minimized windows.

iVertGap

The vertical space in pixels between arranged minimized windows.

iArrange

Exactly two of the following flags specifying the method used to display minimized windows. One flag specifies a starting position for the minimized icons and the other specifies the direction in which new ones are added:

ARW_BOTTOMLEFT = 0

Start placing the icons in the bottom-left corner of the screen.

ARW_BOTTOMRIGHT = 1

Start placing the icons in the bottom-right corner of the screen.

ARW_DOWN = 4

Add new icons below existing ones.

ARW_HIDE = 8

Do not place the icons anywhere on the screen (i.e., hide them).

ARW_LEFT = 0

Add new icons to the left of existing ones.

ARW_RIGHT = 4

Add new icons to the right of existing ones.

ARW_STARTRIGHT = 1

Same as ARW_BOTTOMRIGHT.

ARW_STARTTOP = 2

Same as ARW_TOPLEFT.

ARW_TOPLEFT = 2

Start placing the icons in the top-left corner of the screen.

ARW_TOPRIGHT = 3

Start placing the icons in the top-right corner of the screen.

ARW_UP = 0

Add new icons above existing ones.

Used by: SystemParametersInfo

MOUSEINPUT Structure

Type MOUSEINPUT

 dx As Long

 dy As Long

 mouseData As Long

 dwFlags As Long

 time As Long

 dwExtraInfo As Long

End Type

Description & Usage

The MOUSEINPUT structure holds information about a mouse input event. The various data members identify the nature of the input.

Visual Basic-Specific Issues

None.

Data Members

dx

Specifies either the x-coordinate of absolute mouse movement or the amount of relative movement along the x-axis. For relative motion, positive values move right and negative values move left.

dy

Specifies either the y-coordinate of absolute mouse movement or the amount of relative movement along the y-axis. For relative motion, positive values move down and negative values move up.

mouseData

Windows NT, 2000: If dwFlags contains MOUSEEVENTF_WHEEL, this specifies the amount of wheel movement, in integer multiples of WHEEL_DATA. Positive values mean forward (away) rotation, and negative values mean backwards (toward) rotation. Windows 2000: If dwFlags contains either MOUSEEVENTF_XDOWN or MOUSEEVENTF_XUP, this is a combination of the following flags specifying which X buttons have been pressed or released:

XBUTTON1

The first X button was pressed or released.

XBUTTON2

The second X button was pressed or released.

dwFlags

A combination of the following flags specifying which mouse input information the event describes. Only specify button status information for those which have changed. Note that scroll wheel movement and X button status cannot be simultaneously specified because they both use the mouseData data member.

MOUSEEVENTF_ABSOLUTE

The dx and dy data members contain absolute mouse coordinates. In the coordinate system used by the function, the screen's upper-left corner has coordinates (0,0) and the lower-right corner has coordinates (65535,65535), regardless of the actual screen size. If this flag is not set, dx and dy contain relative coordinates, whose actual amount of movement depends on the current mouse speed and acceleration settings.

MOUSEEVENTF_LEFTDOWN

The left button was pressed.

MOUSEEVENTF_LEFTUP

The left button was released.

MOUSEEVENTF_MIDDLEDOWN

The middle button was pressed.

MOUSEEVENTF_MIDDLEUP

The middle button was released.

MOUSEEVENTF_MOVE

The mouse moved. The dx and dy data members specify the amount or location of the movement.

MOUSEEVENTF_RIGHTDOWN

The right button was pressed.

MOUSEEVENTF_RIGHTUP

The right button was released.

MOUSEEVENTF_WHEEL

Windows NT, 2000: The scroll wheel has moved. The dwData data member specifies the amount of movement.

MOUSEEVENTF_XDOWN

Windows 2000: An X button was pressed. The dwData parameter identifies which X buttons.

MOUSEEVENTF_XUP

Windows 2000: An X button was released. The dwData parameter identifies which X buttons.

time

The time stamp of the mouse input event, in milliseconds. If this is 0, the system provides a time stamp.

dwExtraInfo

An additional 32-bit value associated with the mouse event.

Constant Definitions

Const MOUSEEVENTF_ABSOLUTE = &H8000

Const MOUSEEVENTF_LEFTDOWN = &H2

Const MOUSEEVENTF_LEFTUP = &H4

Const MOUSEEVENTF_MIDDLEDOWN = &H20

Const MOUSEEVENTF_MIDDLEUP = &H40

Const MOUSEEVENTF_MOVE = &H1

Const MOUSEEVENTF_RIGHTDOWN = &H8

Const MOUSEEVENTF_RIGHTUP = &H10

Const MOUSEEVENTF_WHEEL = &H80

Const MOUSEEVENTF_XDOWN = &H100

Const MOUSEEVENTF_XUP = &H200

Const WHEEL_DELTA = 120

Const XBUTTON1 = &H1

Const XBUTTON2 = &H2

Used By

INPUT_TYPE

MOUSEKEYS Structure

Type MOUSEKEYS

 cbSize As Long

 dwFlags As Long

 iMaxSpeed As Long

 iTimeToMaxSpeed As Long

 iCtrlSpeed As Long

 dwReserved1 As Long

 dwReserved2 As Long

End Type

MOUSEKEYS-type variables store information about the MouseKeys accessibility feature. MouseKeys allows the mouse cursor to be moved by the numeric keypad in addition to an actual mouse. The structure stores the settings about the MouseKeys accessibility feature.

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying various settings and properties of MouseKeys:

MKF_AVAILABLE = &H2

The MouseKeys feature is available.

MKF_CONFIRMHOTKEY = &H8

Win 95/98 only: Open a confirmation dialog box when the user activates MouseKeys via the hot key.

MKF_HOTKEYACTIVE = &H4

Allow the user to toggle MouseKeys via the hot key: press Left Alt, Left Shift, and Num Lock simultaneously.

MKF_HOTKEYSOUND = &H10

Play a sound when the user toggles MouseKeys via the hot key.

MKF_INDICATOR = &H20

Win 95/98 only: Display an icon in the system tray while MouseKeys is on.

MKF_MODIFIERS = &H40

Win 95/98 only: Multiply the mouse speed by iCtrlSpeed while the Ctrl key is held.

MKF_MOUSEKEYSON = &H1

The MouseKeys feature is currently on.

MKF_REPLACENUMBERS = &H80

Win 95/98 only: Only let the numeric keypad control the mouse cursor while Num Lock is on. If this flag is not set, only let the numeric keypad control the mouse cursor while Num Lock is off.

iMaxSpeed

The maximum speed of the mouse cursor. In Win NT, this must be between 10 and 360 inclusive. In Win 95/98, there is no limiting range.

iTimeToMaxSpeed

The length of time, in milliseconds, before the mouse cursor begins moving at the maximum speed. This must be between 1000 and 5000 inclusive.

iCtrlSpeed

Win 95/98: The multiplier to apply to the mouse speed when the Ctrl key is held. Win NT: Reserved -- set to 0.

dwReserved1

Reserved -- set to 0.

dwReserved2

Reserved -- set to 0.

Used by: SystemParametersInfo

MULTIKEYHELP Structure

Type MULTIKEYHELP

 mkSize As Long

 mkKeylist As Byte

 szKeyphrase As String * 255 ' can actually be any length

End Type

Description & Usage

The MULTIKEYHELP structure stores one or more keywords to search for in a Windows Help file as well as the identifier of the alternate keyword table to search. Note that szKeyphrase can be of any length needed -- 255 bytes is just one possible value.

Visual Basic-Specific Issues

None.

Data Members

mkSize

The size in bytes of the structure.

mkKeylist

The identifier of the alternate keyword table to search.

szKeyphrase

A null-terminated string holding one or more keywords to search for. If using more than one keyword, separate each keyword with a semicolon.

Used By

WinHelp

NONCLIENTMETRICS Structure

Type NONCLIENTMETRICS

 cbSize As Long

 iBorderWidth As Long

 iScrollWidth As Long

 iScrollHeight As Long

 iCaptionWidth As Long

 iCaptionHeight As Long

 lfCaptionFont As LOGFONT

 iSMCaptionWidth As Long

 iSMCaptionHeight As Long

 lfSMCaptionFont As LOGFONT

 iMenuWidth As Long

 iMenuHeight As Long

 lfMenuFont As LOGFONT

 lfStatusFont As LOGFONT

 lfMessageFont As LOGFONT

End Type

NONCLIENTMETRICS-type variables store information about the metrics associated with the non-client areas of windows. A window's non-client area includes its title bar, menu bar, and border -- i.e., the things around its area. The metrics specify various properies shared by all non-client areas. Note that all widths and heights referred to in the structure are measured in pixels.

cbSize

The size in bytes of the structure.

iBorderWidth

The thickness of a window's sizing border.

iScrollWidth

The width of a standard vertical scroll bar.

iScrollHeight

The height of a standard horizontal scroll bar.

iCaptionWidth

The width of a caption button.

iCaptionHeight

The height of a caption button.

lfCaptionFont

Information about the logical font used to display text in a window's caption (title bar).

iSMCaptionWidth

The width of a small caption button.

iSMCaptionHeight

The height of a small caption button.

iSMCaptionFont

Information about the logical font used to display text in a small caption.

iMenuWidth

The width of a menu bar button.

iMenuHeight

The height of a menu bar button.

lfMenuFont

Information about the logical font used to display text in a menu bar.

lfStatusFont

Information about the logical font used to display text in a status bar.

lfMessageFont

Information about the logical font used to display text in message boxes.

Used by: SystemParametersInfo

OPENFILENAME Structure

Type OPENFILENAME

 lStructSize As Long

 hwndOwner As Long

 hInstance As Long

 lpstrFilter As String

 lpstrCustomFilter As String

 nMaxCustomFilter As Long

 nFilterIndex As Long

 lpstrFile As String

 nMaxFile As String

 lpstrFileTitle As String

 nMaxFileTitle As String

 lpstrInitialDir As String

 lpstrTitle As String

 flags As Long

 nFileOffset As Integer

 nFileExtension As Integer

 lpstrDefExt As String

 lCustData As Long

 lpfnHook As Long

 lpTemplateName As String

End Type

OPENFILENAME-type variables work with the two Windows file dialog box APIs, GetOpenFileName and GetSaveFileName. This structure is used both to pass information to the function and to return data from it.

lStructSize

The size in bytes of the variable (use the Len() function).

hwndOwner

The handle of the window opening the file dialog box.

hInstance

If using a dialog box template, this is the handle to the memory block of the dialog box template to use. If using the default dialog box, set to 0.

lpstrFilter

The entries in the File Type drop box. The format of the string is "name of file type" & vbNullChar & "mask" & vbNullChar ... for as many types, where name of file type is the text that appears in the list and mask is the extension mask. The string must end with a double vbNullChar.

lpstrCustomFilter

Similar to lpstrFilter, but holds only one file type name/mask pair that specifies a user-defined file type. If unused, set to an empty string.

nMaxCustFilter

The size in bytes of the string contained in lpstrCustomFilter.

nFilterIndex

The number (#1, #2, etc.) of data type specified lpstrFilter should be the default one.

lpstrFile

Set it as a series of blank spaces. Receives the complete path and filename of the file(s) the user selects. If multiple files are selected, each filename is separated by vbNullChar, and the entire string will end with a double vbNullChar.

nMaxFile

The length in characters of lpstrFile.

lpstrFileTitle

Very similar to lpstrFile, but only receives the filename of the selected file. If multiple files are selected, this is not set to any useful data.

nMaxFileTitle

The length in characters of lpstrFileTitle.

lpstrInitialDir

The default directory to look in.

lpstTitle

The text that appears in the dialog box's title bar.

flags

Zero or more of the following flags specifying how to create the file dialog box. Some of these flags will be set by the function after the call to reflect the user's selections.

OFN_ALLOWMULTISELECT = &H200

Allow the user to select multiple files (Open File dialog box only).

OFN_CREATEPROMPT = &H2000

Prompt if a non-existing file is chosen.

OFN_ENABLEHOOK = &H20

Use the function specified by lpfnHook to process the dialog box's messages.

OFN_ENABLETEMPLATE = &H40

Use the dialog box template specifed by hInstance and lpTemplateName.

OFN_ENABLETEMPLATEHANDLE = &H80

Use the preloaded dialog box template specified by hInstance.

OFN_EXTENSIONDIFFERENT = &H400

The function sets this flag if the user selects a file with an extension different than the one specified by lpstrDefExt.

OFN_FILEMUSTEXIST = &H1000

Only allow the selection of existing files.

OFN_HIDEREADONLY = &H4

Hide the Open As Read Only check box (Open File dialog box only).

OFN_NOCHANGEDIR = &H8

Don't change Windows's current directory to match the one chosen in the dialog box.

OFN_NODEREFERENCELINKS = &H100000

If a shortcut file (.lnk or .pif) is chosen, return the shortcut file itself instead of the file or directory it points to.

OFN_NONETWORKBUTTON = &H20000

Hide and disable the Network button in the dialog box.

OFN_NOREADONLYRETURN = &H8000

The function sets this flag if the selected file is not read-only (Open File dialog box only).

OFN_NOVALIDATE = &H100

Don't check the filename for invalid characters.

OFN_OVERWRITEPROMPT = &H2

Prompt the user if the chosen file already exists (Save File dialog box only).

OFN_PATHMUSTEXIST = &H800

Only allow the selection of existing paths.

OFN_READONLY = &H1

Check the Open As Read Only box. This flag is set after the function call if the box is checked after the user clicks OK.

OFN_SHAREAWARE = &H4000

Ignore any file sharing violations.

OFN_SHOWHELP = &H10

Show the Help button in the dialog box.

nFileOffet

Receives the zero-based index specifying where in lpstrFile the pathname ends and the filename begins.

nFileExtension

Receives the zero-based index specifying where in lpstrFile the file extension begins.

lpstrDefExt

The default extension of a file (only for the Save dialog box). If a file is chosen with the *.* mask, the file gets this extension. Don't include the period.

lCustData

Information to pass to the hook function specified by lpfnHook whenever it is called.

lpfnHook

Points to a hook function that processes the dialog box's messages. The function should return 0 to pass the message back to the dialog box and 1 not to pass it. If not using a hook function, set to 0.

lpTemplateName

The name of the dialog box template specified by hInstance.

Used by: GetOpenFileName, GetSaveFileName

OSVERSIONINFO Structure

Type OSVERSIONINFO

 dwOSVersionInfoSize As Long

 dwMajorVersion As Long

 dwMinorVersion As Long

 dwBuildNumber As Long

 dwPlatformId As Long

 szCSDVersion As String * 128

End Type

OSVERSIONINFO-type variables hold information about the version of Windows currently running. This structure holds various pieces of information identifying the version number, platform, and more about Windows.

dwOSVersionInfoSize

The size of the structure.

dwMajorVersion

The major version number; i.e., the part of the version number before the first period.

dwMinorVersion

The minor version number; i.e., the part of the version number after the first period.

dwBuildNumber

The build number of the version.

dwPlatformID

Exactly one of the following flags identifying which platform of Windows is running (for example, Windows 95, Windows NT, etc.):

VER_PLATFORM_WIN32s = 0

Windows 3.x is running, using the Win32s pseudo-32-bit enhancements.

VER_PLATFORM_WIN32_WINDOWS = 1

Windows 95 or 98 is running.

VER_PLATFORM_WIN32_NT = 2

Windows NT is running.

szCSDVersion

More information about the operating system.

Used by: GetVersionEx

OVERLAPPED Structure

Type OVERLAPPED

 Internal As Long

 InternalHigh As Long

 offset As Long

 OffsetHigh As Long

 hEvent As Long

End Type

OVERLAPPED-type variables tell the file access functions what part of a file to read or write when asynchronous (overlapped) file access is used. Note that Windows 95/98 does not allow asynchronous file access for disk files, although Windows NT does. The actual offset is identified by combining offset and OffsetHigh in the formula (totaloffset) = OffsetHigh * 2^32 + offset (i.e., sticking the binary or hex values together).

Internal

Used by Windows -- do not set.

InternalHigh

Used by Windows -- do not set.

offset

Lower half of the position of the file to start reading or writing to.

OffsetHigh

Upper half of the position of the file to start reading or writing to.

hEvent

Identifies the event to send after data transfer is complete.

Used by: ReadFile, WriteFile

POINT_TYPE Structure

Type POINT_TYPE

 x As Long

 y As Long

End Type

Description & Usage

The POINT_TYPE structure holds the (x,y) coordinate of a point. This structure is used throughout the API for storing the coordinates of a point.

Visual Basic-Specific Issues

Officially, this structure is called POINT. However, that violates the case-sensitive name spacing of Visual Basic because Visual Basic contains an intrinsic function called Point. The Windows API Guide calls this structure POINT_TYPE to avoid the naming collision. (Microsoft instead likes to call this structure POINT_API in Visual Basic contexts.)

Data Members

x

The x coordinate of the point.

y

The y coordinate of the point.

Used By

CreatePolygonRgn, CreatePolyPolygonRgn, GetBrushOrgEx, GetCursorPos, MoveToEx, Polygon, Polyline, PolyPolygon, PolylineTo, PolyPolyline, SetBrushOrgEx, WinHelp

PRINTDLG_TYPE Structure

Type PRINTDLG_TYPE

 lStructSize As Long

 hwndOwner As Long

 hDevMode As Long

 hDevNames As Long

 hdc As Long

 flags As Long

 nFromPage As Integer

 nToPage As Integer

 nMinPage As Integer

 nMaxPage As Integer

 nCopies As Integer

 hInstance As Long

 lCustData As Long

 lpfnPrintHook As Long

 lpfnSetupHook As Long

 lpPrintTemplateName As String

 lpSetupTemplateName As String

 hPrintTemplate As Long

 hSetupTemplate As Long

End Type

PRINTDLG_TYPE-type variables store the necessary information to use a Print common dialog box or a Print Setup common dialog box. This structure holds all information necessary to initialize the box and receives the data selected by the user. Set the various members for the box's default selections -- they will be set by the called function to the selections of the user. Note that two other structures, DEVMODE and DEVNAMES, are included by specifying handles to a memory block. These memory blocks contain a copy of each structure's data. See the example for PrintDlg for information on how to create, use, and free these memory blocks.

lStructSize

The size in bytes of this structure.

hwndOwner

A handle to the window opening the dialog box, if any.

hDevMode

A handle to the memory block holding the information contained in a DEVMODE structure. This data specifies information about the printer.

hDevNames

A handle to the memory block holding the information contained in a DEVNAMES structure. This data specifies the driver name, printer name, and port name(s) of the printer.

hdc

Receives either a device context or an information context (depending on the value set as flags) to the printer the user selected.

flags

Zero or more of the following flags specifying various options for creating the Print or Print Setup dialog. Note that when PrintDlg returns, many of these flags will be set by the function to indicate selections by the user:

PD_ALLPAGES = &H0

Select the All Pages radio button.

PD_COLLATE = &H10

Check the Collate check box. If this flag is set when the function returns, the user checked the box and the printer doesn't automatically support collation. If the box is checked and the printer does support it, this flag will not be set.

PD_DISABLEPRINTTOFILE = &H80000

Disable the Print to File check box.

PD_ENABLEPRINTHOOK = &H1000

Use the hook function pointed to by lpfnPrintHook to process the Print dialog box's messages.

PD_ENABLEPRINTTEMPLATE = &H4000

Use the Print dialog box template specified by lpPrintTemplateName.

PD_ENABLEPRINTTEMPLATEHANDLE = &H10000

Use the preloaded Print dialog box template specified by hPrintTemplate.

PD_ENABLESETUPHOOK = &H2000

Use the hook function pointed to by lpfnSetupHook to process the Print Setup dialog box's messages.

PD_ENABLESETUPTEMPLATE = &H8000

Use the Print Setup dialog box template specified by lpSetupTemplateName.

PD_ENABLESETUPTEMPLATEHANDLE = &H20000

Use the preloaded Print Setup dialog box template specified by hSetupTemplate.

PD_HIDEPRINTTOFILE = &H100000

Hide the Print to File check box.

PD_NONETWORKBUTTON = &H200000

Do not display any buttons associated with the network.

PD_NOPAGENUMS = &H8

Disable the Page Range radio button and edit boxes.

PD_NOSELECTION = &H4

Disable the Selection radio button.

PD_NOWARNING = &H80

Do not warn the user if there is no default printer.

PD_PAGENUMS = &H2

Select the Page Range radio button.

PD_PRINTSETUP = &H40

Display the Print Setup dialog box instead of the Print dialog box.

PD_PRINTTOFILE = &H20

Select the Print to File check box.

PD_RETURNDC = &H100

Return a device context to the selected printer as hdc.

PD_RETURNDEFAULT = &H400

Instead of displaying either dialog box, simply load information about the default printer into hDevMode and hDevNames. For this to work, those two values must be set to 0 before calling the function.

PD_RETURNIC = &H200

Return an information context to the selected printer as hdc.

PD_SELECTION = &H1

Select the Selection radio button.

PD_SHOWHELP = &H800

Display the Help button.

PD_USEDEVMODECOPIES = &H40000

Same as PD_USEDEVMODECOPIESANDCOLLATE.

PD_USEDEVMODECOPIESANDCOLLATE = &H40000

If the printer does not automatically support multiple copies or collation, disable the corresponding options in the dialog box. The number of copies to print and the collation setting will be placed into hDevMode. The information returned to this structure will specify the number of pages and the collation which the program must print with -- the printer will print the copies or collate itself.

nFromPage

The value entered in the From Page text box, specifying which page begin printing at.

nToPage

The value entered in the To Page text box, specifying which page to stop printing at.

nMinPage

The minimum allowable value for nFromPage and nToPage.

nMaxPage

The maximum allowable value for nFromPage and nToPage.

nCopies

The number of copies the program needs to print.

hInstance

A handle to the application instance which has the desired dialog box template.

lCustData

A program-defined value to pass to whichever hook function is used.

lpfnPrintHook

A handle to the program-defined hook function to use to process the Print dialog box's messages.

lpfnSetupHook

A handle to the program-defined hook function to use to process the Print Setup dialog box's messages.

lpPrintTemplateName

The name of the Print dialog box template to use from the application instance specified by hInstance.

lpSetupTemplateName

The name of the Print Setup dialog box template to use from the application instance specified by hInstance.

hPrintTemplate

A handle to the preloaded Print dialog box template to use.

hSetupTemplate

A handle to the preloaded Print Setup dialog box template to use.

Used by: PrintDlg

PRINTER_INFO_1 Structure

Type PRINTER_INFO_1

 flags As Long

 pDescription As String

 pName As String

 pComment As String

End Type

PRINTER_INFO_1-type variable store information about a printer. This structure stores a few pieces of information relating to a printer.

flags

One or more of the following flags providing information about the printer:

PRINTER_ENUM_CONTAINER = &H8000

The object the structure describes is a container, such as a print server controlling multiple printers.

PRINTER_ENUM_EXPAND = &H4000

The program should further enumerate the printer if default expansion on it is enabled.

PRINTER_ENUM_ICON1 = &H10000

To represent the printer, the program should use an icon representing a top-level network name.

PRINTER_ENUM_ICON2 = &H20000

To represent the printer, the program should use an icon representing a network domain.

PRINTER_ENUM_ICON3 = &H40000

To represent the printer, the program should use an icon representing a print server.

PRINTER_ENUM_ICON8 = &H800000

To represent the printer, the program should use an icon representing a printer.

pDescription

A description of the printer.

pName

The name of the printer.

pComment

Comments or a brief description of the printer.

Used by: EnumPrinters

PRINTER_INFO_2 Structure

Type PRINTER_INFO_2

 pServerName As String

 pPrinterName As String

 pShareName As String

 pPortName As String

 pDriverName As String

 pComment As String

 pLocation As String

 pDevMode As DEVMODE

 pSepFile As String

 pPrintProcessor As String

 pDatatype As String

 pParameters As String

 pSecurityDescriptor As SECURITY_DESCRIPTOR

 Attributes As Long

 Priority As Long

 DefaultPriority As Long

 StartTime As Long

 UntilTime As Long

 Status As Long

 cJobs As Long

 AveragePPM As Long

End Type

PRINTER_INFO_2-type variables hold a multitude of information about a printer. Its member values, along with substructures inside of it, identify most pieces of information about a printer which Windows can provide.

pServerName

The name of the network server which contols the printer, if any.

pPrinterName

The name of the printer.

pShareName

The name of the sharepoint of the printer on the network, if any.

pPortName

A comma-separated list of the printer port(s) the printer is connected to, such as LPT1:.

pDriverName

The name of the printer driver.

pComment

A comment about or a brief description of the printer.

pLocation

The physical location of the printer (usually applies to network printers).

pDevMode

Various default settings and attributes of the printer.

pSepFile

The file that contains the separator page printed between jobs.

pPrintProcessor

The name of the print processor the printer uses.

pDatatype

The name of the data type used to record the print jobs.

pParameters

Default parameters for the print processor.

pSecurityDescriptor

Security information about the printer.

Attributes

One or more of the following flags specifying various attributes of the printer:

PRINTER_ATTRIBUTE_DEFAULT = &H4

The default printer.

PRINTER_ATTRIBUTE_DIRECT = &H2

There is a direct connection to the printer (?).

PRINTER_ATTRIBUTE_DO_COMPLETE_FIRST = &H200

Complete jobs on a first-come, first-serve basis (?).

PRINTER_ATTRIBUTE_ENABLE_BIDI = &H800

Win 95/98 only: BIDI is enabled (?).

PRINTER_ATTRIBUTE_ENABLE_DEVQ = &H80

DEVQ is enabled (?).

PRINTER_ATTRIBUTE_KEEPPRINTEDJOBS = &H100

The Printer keeps information on printed jobs (?).

PRINTER_ATTRIBUTE_QUEUED = &H1

The printer supports document queueing (?).

PRINTER_ATTRIBUTE_SHARED = &H8

The printer is shared on a network.

PRINTER_ATTRIBUTE_WORK_OFFLINE = &H400

Win 95/98 only: The printer can work offline (?).

Priority

The priority given to the printer by the print spooler.

DefaultPriority

The default priority for a print job.

StartTime

The earliest time the printer will print a job, specified in minutes after midnight UTC (GMT or Zulu time).

UntilTime

The latest time the printer will print a job, specified in minutes after midnight UTC (GMT or Zulu time).

Status

One or more of the following flags specifying the printer's current status (Win NT only supports the PRINTER_STATUS_PAUSED and PRINTER_STATUS_PENDING_DELETION flags):

PRINTER_STATUS_BUSY = &H200

The printer is busy.

PRINTER_STATUS_DOOR_OPEN = &H400000

The door on the printer is open.

PRINTER_STATUS_ERROR = &H2

An error has occured.

PRINTER_STATUS_INITIALIZING = &H8000

The printer is initializing.

PRINTER_STATUS_IO_ACTIVE = &H100

I/O with the printer is active.

PRINTER_STATUS_MANUAL_FEED = &H20

The printer is loading paper using manual feed.

PRINTER_STATUS_NO_TONER = &H40000

The printer is out of toner.

PRINTER_STATUS_NOT_AVAILABLE = &H1000

The printer is not available.

PRINTER_STATUS_OFFLINE = &H80

The printer is offline.

PRINTER_STATUS_OUT_OF_MEMORY = &H200000

The printer is out of memory.

PRINTER_STATUS_OUTPUT_BIN_FULL = &H800

The printer's output bin is full.

PRINTER_STATUS_PAGE_PUNT = &H80000

The printer has aborted printing the current page because it is too complex to handle.

PRINTER_STATUS_PAPER_JAM = &H8

The printer's paper has jammed.

PRINTER_STATUS_PAPER_OUT = &H10

The printer is out of paper.

PRINTER_STATUS_PAPER_PROBLEM = &H40

There is a problem with the paper in the printer.

PRINTER_STATUS_PAUSED = &H1

The printer is paused.

PRINTER_STATUS_PENDING_DELETION = &H4

A document in the print queue is pending deletion.

PRINTER_STATUS_PRINTING = &H400

The printer is printing.

PRINTER_STATUS_PROCESSING = &H4000

The printer is processing information.

PRINTER_STATUS_TONER_LOW = &H20000

The printer is low on toner.

PRINTER_STATUS_USER_INTERVENTION = &H100000

The user has intervened in printer operations.

PRINTER_STATUS_WAITING = &H2000

The printer is waiting.

PRINTER_STATUS_WARMING_UP = &H10000

The printer is warming up.

AveragePPM

The average number of pages the printer can print per minute.

Used by: EnumPrinters

PRINTER_INFO_4 Structure

Type PRINTER_INFO_4

 pPrinterName As String

 pServerName As String

 Attributes As Long

End Type

PRINTER_INFO_4-type variables store a very terse set of information about a printer. The information is limited to the name of the printer and on which network server (if any) it is located on.

pPrinterName

The name of the printer.

pServerName

The name of the network server the printer is on, if it is a network printer.

Attributes

Exactly one of the following flags specifying whether the printer is locally connected or is on the network:

PRINTER_ATTRIBUTE_LOCAL = &H40

The printer is located on the network.

PRINTER_ATTRIBUTE_NETWORK = &H10

The printer is directly connected to the computer.

Used by: EnumPrinters

PRINTER_INFO_5 Structure

Type PRINTER_INFO_5

 pPrinterName As String

 pPortName As String

 Attributes As Long

 DeviceNotSelectedTimeout As Long

 TransmissionRetryTimeout As Long

End Type

PRINTER_INFO_5-type variables hold information about a printer. This structure only identifies a few of the possible pieces of information associated with a printer.

pPrinterName

The name of the printer.

pPortName

A comma-separated list of the ports the printer is connected to, such as LPT1:.

Attributes

Zero or more of the following flags identifying various attributes of the printer:

PRINTER_ATTRIBUTE_DEFAULT = &H4

The printer is the default printer.

PRINTER_ATTRIBUTE_DIRECT = &H2

The printer is physically connected to the computer (i.e., it is not a network printer).

PRINTER_ATTRIBUTE_QUEUED = &H1

The printer supports queueing (?).

PRINTER_ATTRIBUTE_SHARED = &H8

The printer is a network printer.

PRINTER_ATTRIBUTE_WORK_OFFLINE = &H400

The printer can work if the computer is not connected to the network (?).

DeviceNotSelectedTimeout

The maximum time, in milliseconds, between attempts to select the printer.

TransmissionRetryTimeout

The maximum time, in milliseconds, between document transmission retries.

Used by: EnumPrinters

RECT Structure

Type Rect

 Left As Long

 Top As Long

 Right As Long

 Bottom As Long

End Type

RECT-type variables hold a rectangle. This structure defines a rectangle by storing the coordinates of its upper-left and lower-right corners.

Left

The x coordinate of the upper-left corner of the rectangle.

Top

The y coordinate of the upper-left corner of the rectangle.

Right

The x coordinate of the lower-right corner of the rectangle.

Bottom

The y coordinate of the lower-right corner of the rectangle.

Used by: ClipCursor, CopyRect, CreateEllipticRgnIndirect, CreateRectRgnIndirect, EqualRect, FillRect, FrameRect, GetClipCursor, GetRgnBox, GetWindowRect, InflateRect, IntersectRect, InvertRect, IsRectEmpty, OffsetRect, PtInRect, RectInRegion, SetRect, SetRectEmpty, SubtractRect, SystemParametersInfo, UnionRect

SECURITY_ATTRIBUTES Structure

Type SECURITY_ATTRIBUTES

 nLength As Long

 lpSecurityDescriptor As Long

 bInheritHandle As Boolean

End Type

SECURITY_ATTRIBUTES-type variables define the level and type of security protection to give an object. Security information is only used in Windows NT, so the information in this data type will be ignored by Windows 95, Windows 98, or other non-NT versions of Windows.

nLength

The size in bytes of the structure.

lpSecurityDescriptor

Identifies a security descriptor. A value of 0 gives the default.

bInheritHandle

Specifies whether the object's new handle should be inherited by new processes or programs.

Used by: CreateDirectory, CreateFile, RegCreateKeyEx

SECURITY_DESCRIPTOR

Type SECURITY_DESCRIPTOR

 Revision As Byte

 Sbz1 As Byte

 Control As Long

 Owner As Long

 Group As Long

 Sacl As ACL

 Dacl As ACL

End Type

SECURITY_DESCRIPTOR-type variables identify security information about an object. This structure should NEVER be written to directly! Instead, use the set of API functions that read and write information to this structure.

Revision

Revision number of the information (?).

Sbz1

Reserved -- set to 0. This member simply aligns the other members in memory.

Control

Control identifier (?).

Owner

Owner identifier (?).

Group

Group identifier (?).

Sacl

The system access-control list (ACL).

Dacl

The discretionary access-control list (ACL).

Used by: PRINTER_INFO_2

SERIALKEYS Structure

Type SERIALKEYS

 cbSize As Long

 dwFlags As Long

 lpszActivePort As String

 lpszPort As String

 iBaudRate As Long

 iPortState As Long

End Type

SERIALKEYS-type variables store information about the SerialKeys accessibility feature. SerialKeys allows a device connected to a serial port to imitate the mouse and/or keyboard. This structure stores the settings for SerialKeys.

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying various settings and properties of SerialKeys:

SERKF_ACTIVE = &H8

SerialKeys is currently receiving input on the serial port.

SERKF_AVAILABLE = &H2

The SerialKeys feature is available.

SERKF_INDICATOR = &H4

Display an icon in the system tray while SerialKeys is on.

SERKF_SERIALKEYSON = &H1

SerialKeys is currently on.

lpszActivePort

The name of the serial port to read from. An empty string signifies no port. "Auto" means SerialKeys will monitor any otherwise unused serial ports.

lpszPort

Reserved.

iBaudRate

The baud rate of the port identified by lpszActivePort. Valid baud rates are 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000, and 256000.

iPortState

Identifies the state of the port identified by lpszActivePort. 0 means that all input is ignored. 1 means that the port is being monitored for SerialKeys input when not being used by other programs. 2 means that all input is sent to SerialKeys.

Used by: SystemParametersInfo

SOUNDSENTRY Structure

Type SOUNDSENTRY

 cbSize As Long

 dwFlags As Long

 iFSTextEffect As Long

 iFSTextEffectMSec As Long

 iFSTextEffectColorBits As Long

 iFSGrafEffect As Long

 iFSGrafEffectMSec As Long

 iFSGrafEffectColor As Long

 iWindowsEffect As Long

 iWindowsEffectMSec As Long

 lpszWindowsEffectDLL As String

 iWindowsEffectOrdinal As Long

End Type

Description & Usage

The SOUNDSENTRY structure stores information about the SoundSentry accessibility feature. SoundSentry displays a visual cue whenever a sound is made. Windows NT, 2000: SoundSentry works for sounds played through both the internal speaker and multimedia devices. Windows 95, 98: SoundSentry only works for sounds played through the internal speaker.

Visual Basic-Specific Issues

None.

Data Members

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying various settings and properties of SoundSentry:

SSF_AVAILABLE

The SoundSentry accessibility feature is available.

SSF_INDICATOR

Display an icon in the system tray while SoundSentry is on.

SSF_SOUNDSENTRYON

SoundSentry is currently on.

iFSTextEffect

Windows 95,98: Exactly one of the following flags specifying the visual cue to use while the user is in a full-screen text window (such as a full-screen MS-DOS window). Windows NT, 2000: Reserved -- set to 0.

SSTF_BORDER

Flash the screen border (the overscan area).

SSTF_CHARS

Flash the characters in the corners of the screen.

SSTF_DISPLAY

Flash the entire display.

SSTF_NONE

Do not display a visual cue.

iFSTextEffectMSec

Windows 95, 98: The length of time in milliseconds to display the visual cue while in full-screen text mode. Windows NT, 2000: Reserved -- set to 0.

iFSTextEffectColorBits

Windows 95, 98: The RGB value of the color to use for the visual cue while in full-screen text mode. Windows NT, 2000: Reserved -- set to 0.

iFSGrafEffect

Windows 95, 98: Exactly one of the following flags specifying the visual cue to display while the user is in a full-screen graphics window. Windows NT, 2000: Reserved -- set to 0.

SSGF_DISPLAY

Flash the entire display.

SSGF_NONE

Do not display a visual cue.

iFSGrafEffectMSec

Windows 95, 98: The length of time in milliseconds to display the visual cue while in full-screen graphics mode. Windows NT, 2000: Reserved -- set to 0.

iFSGrafEffectColor

Windows 95, 98: The RGB value of the color to use for the visual cue while in full-screen graphics mode. Windows NT: Reserved -- set to 0.

iWindowsEffect

Exactly one of the following flags specifying the visual cue to use while not in full-screen mode:

SSWF_CUSTOM

Windows 95, 98: Call the SoundSentryProc callback function exported by the .dll file specified by lpszWindowsEffectDLL.

SSWF_DISPLAY

Flash the entire display.

SSWF_NONE

Do not display a visual cue.

SSWF_TITLE

Flash the title bar of the active window.

SSWF_WINDOW

Flash the entire active window.

iWindowsEffectMSec

Windows 95, 98: The length of time in milliseconds to display the visual cue while not in full-screen mode. Windows NT, 2000: Reserved -- set to 0.

lpszWindowsEffectDLL

Windows 95, 98: The filename of the .dll file exporting the SoundSentryProc callback function to use, if applicable. Windows NT, 2000: Reserved.

iWindowsEffectOrdinal

Reserved -- set to 0.

Constant Definitions

Const SSF_AVAILABLE = &H2

Const SSF_INDICATOR = &H4

Const SSF_SOUNDSENTRYON = &H1

Const SSTF_BORDER = 2

Const SSTF_CHARS = 1

Const SSTF_DISPLAY = 3

Const SSTF_NONE = 0

Const SSGF_DISPLAY = 3

Const SSGF_NONE = 0

Const SSWF_CUSTOM = 4

Const SSWF_DISPLAY = 3

Const SSWF_NONE = 0

Const SSWF_TITLE = 1

Const SSWF_WINDOW = 2

Used By

SystemParametersInfo

STICKYKEYS Structure

Type STICKYKEYS

 cbSize As Long

 dwFlags As Long

End Type

STICKYKEYS-type variables store information about the StickyKeys accessibility feature. StickyKeys allows the user to simply press modifier keys (Ctrl, Alt, Shift) before pressing another key instead of having to press them simultaneously. For example, to give a Ctrl-S command, the user would simple press and release Ctrl, then press S (instead of pressing S while holding Ctrl). This structure holds the settings of StickyKeys.

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying various settings and properties of StickyKeys:

SKF_AUDIBLEFEEDBACK = &H40

Play a sound whenever the user latches, locks, or releases a modifer key.

SKF_AVAILABLE = &H2

The StickyKeys feature is available.

SKF_CONFIRMHOTKEY = &H8

Win 95/98 only: Open a confirmation dialog box when the user activates StickyKeys via the hot key.

SKF_HOTKEYACTIVE = &H4

Enable the user to toggle StickyKeys via the hot key: pressing Shift five times.

SKF_HOTKEYSOUND = &H10

Play a sound when the user toggles StickyKeys via the hot key.

SKF_INDICATOR = &H20

Win 95/98: Display an icon in the system tray while StickyKeys is on.

SKF_STICKYKEYSON = &:H1

StickyKeys is currently on.

SKF_TRISTATE = &H80

Allow the user to press a modifer key two times in a row to lock it; it will be unlocked after a third press.

SKF_TWOKEYSOFF = &H100

Holding a modifier key and a normal key together deactivates StickyKeys.

Used by: SystemParametersInfo

SYSTEMTIME Structure

Type SYSTEMTIME

 wYear As Integer

 wMonth As Integer

 wDayOfWeek As Integer

 wDay As Integer

 wHour As Integer

 wMinute As Integer

 wSecond As Integer

 wMilliseconds As Integer

End Type

SYSTEMTIME-type variables hold an exact date and time, down to the millisecond. There are two ways this structure stores dates: absolute and relative. Absolute dates (the default, regular format) are "normal" dates, such as January 15, 1998 or December 25, 2001. Relative dates are dates such as "the 1st Sunday in June" or "the 3rd Wednesday in November", and are used when wYear is set to 0. Here, wDay specifies whether it is the first, second, third, fourth, or fifth (last) week.

wYear

In absolute dates, the four-digit year. In relative dates, 0.

wMonth

The number of the month. 1 is January, 2 is February, etc.

wDayOfWeek

The number of the weekday. 0 is Sunday, 1 is Monday, etc.

wDay

In absolute dates, the number of the day (such as 21 [of June]). In relative dates, 1 is the first, 2 is the second, through 5 is the fifth/last WhateverDay of the month.

wHour

The hour, in 24-hour format.

wMinute

The minutes.

wSecond

The seconds.

wMilliseconds

The milliseconds.

Used by: FileTimeToSystemTime, GetLocalTime, GetSystemTime, SystemTimeToFileTime, TIME_ZONE_INFORMATION

TIME_ZONE_INFORMATION Structure

Type TIME_ZONE_INFORMATION

 Bias As Long

 StandardName(0 To 31) As Integer

 StandardDate As SYSTEMTIME

 StandardBias As Long

 DaylightName(0 To 31) As Integer

 DaylightDate As SYSTEMTIME

 DaylightBias As Long

End Type

TIME_ZONE_INFORMATION-type variables hold information about the system's selected time zone. The two arrays in the structure are actually strings, each element holding the ASCII codes for each character (the end of the string is marked by a NULL character, ASCII code 0). For more information about how to convert the arrays into usable data, see the example for GetTimeZoneInformation.

Bias

The difference in minutes between UTC (a.k.a. GMT) time and local time. It satisfies the formula UTC time = local time + Bias.

StandardName(0 To 31)

Holds the name of the time zone for standard time.

StandardDate

The relative date for when daylight savings time ends.

StandardBias

A number to add to Bias to form the true bias during standard time.

DaylightTime(0 To 31)

Holds the name of the time zone for daylight savings time.

DaylightDate

The relative date for when daylight savings time begins.

DaylightBias

A number to add to Bias to form the true bias during daylight savings time.

Used by: GetTimeZoneInformaton

TOGGLEKEYS Structure

Type TOGGLEKEYS

 cbSize As Long

 dwFlags As Long

End Type

TOGGLEKEYS-type variables store information about the ToggleKeys accessibility feature. ToggleKeys plays a sound whenever the user toggles Caps Lock, Num Lock, or Scroll Lock. This structure holds the settings and properties of ToggleKeys.

cbSize

The size in bytes of the structure.

dwFlags

Zero or more of the following flags specifying various settings and properties of ToggleKeys:

TKF_AVAILABLE = &H2

The ToggleKeys accessibility feature is available.

TKF_CONFIRMHOTKEY = &H8

Win 95/98 only: Open a confirmation dialog box when the user enables ToggleKeys via the hot key,

TKF_HOTKEYACTIVE = &H4

Enable the user to toggle ToggleKeys via the hot key: hold Num Lock for eight seconds.

TKF_HOTKEYSOUND = &H10

Play a sound when the user toggles ToggleKeys via the hot key.

TKF_INDICATOR = &H20

Win 95/98 only: Display an icon in the system tray while ToggleKeys is on.

TKF_TOGGLEKEYSON = &H1

ToggleKeys is currently on.

Used by: SystemParametersInfo

ULARGE_INTEGER Structure

Type ULARGE_INTEGER

 LowPart As Long

 HighPart As Long

End Type

Description & Usage

The ULARGE_INTEGER structure stores a 64-bit unsigned integer. Unsigned integers range in value from &H0 to &HFFFFFFFFFFFFFFFF (or in decimal, 264). This structure is defined primarily for languages (such as Visual Basic but including many others) which have no intrinsic support for 64-bit unsigned integers. The structure splits the value into two 32-bit halves: a high-order half and a low-order half. If the programming language you use does support 64-bit unsigned integers, you can replace the two data members of this structure with a single value (or use that data type instead of the structure altogether).

Visual Basic-Specific Issues

None

Data Members

LowPart

The 32-bit low-order half of the full 64-bit unsigned integer.

HighPart

The 32-bit high-order half of the full 64-bit unsigned integer.

Used By

GetDiskFreeSpaceEx

WAVEOUTCAPS Structure

Type WAVEOUTCAPS

 wMid As Integer

 wPid As Integer

 vDriverVersion As Long

 szPname As String * 32

 dwFormats As Long

 wChannels As Integer

 dwSupport As Long

End Type

WAVEOUTCAPS-type variables store information about a waveform output device's capabilities as well as other information about it. The various members of the structure identify the abilities of the device.

wMid

The manufacturer identifier of the maker of the device.

wPid

The product identifier of the device.

vDriverVersion

The major and minor version numbers of the device. The high-order half of the value contains the major version number; the low-order half contains the minor version number.

szPname

A null-terminated string specifying the name of the device.

dwFormats

Zero or more of the following flags specifying the various audio output formats the device supports:

WAVE_FORMAT_1M08 = &H1

Supports 11.025 kHz, 8-bit, mono playback.

WAVE_FORMAT_1M16 = &H4

Supports 11.025 kHz, 16-bit, mono playback.

WAVE_FORMAT_1S08 = &H2

Supports 11.025 kHz, 8-bit, stereo playback.

WAVE_FORMAT_1S16 = &H8

Supports 11.025 kHz, 16-bit, stereo playback.

WAVE_FORMAT_2M08 = &H10

Supports 22.05 kHz, 8-bit, mono playback.

WAVE_FORMAT_2M16 = &H40

Supports 22.05 kHz, 16-bit, mono playback.

WAVE_FORMAT_2S08 = &H20

Supports 22.05 kHz, 8-bit, stereo playback.

WAVE_FORMAT_2S16 = &H80

Supports 22.05 kHz, 16-bit, stereo playback.

WAVE_FORMAT_4M08 = &H100

Supports 44.1 kHz, 8-bit, mono playback.

WAVE_FORMAT_4M16 = &H400

Supports 44.1 kHz, 16-bit, mono playback.

WAVE_FORMAT_4S08 = &H200

Supports 44.1 kHz, 8-bit, stereo playback.

WAVE_FORMAT_4S16 = &H800

Supports 44.1 kHz, 16-bit, stereo playback.

wChannels

The number of audio channels on the device. 1 means a mono device; 2 means a stereo device.

dwSupport

Zero or more of the following flags specifying which features the device supports:

WAVECAPS_LRVOLUME = &H8

Supports separate left and right channel volumes.

WAVECAPS_PITCH = &H1

Supports pitch control.

WAVECAPS_PLAYBACKRATE = &H2

Supports playback rate control.

WAVECAPS_SAMPLEACCURATE = &H20

Supports returning of sample-accurate position information.

WAVECAPS_SYNC = &H10

Supports synchronous playback -- i.e., it will block while playing buffered audio.

WAVECAPS_VOLUME = &H4

Supports volume control.

Used by: waveOutGetDevCaps

WIN32_FIND_DATA

Type WIN32_FIND_DATA

 dwFileAttributes As Long

 ftCreationTime As FILETIME

 ftLastAccessTime As FILETIME

 ftLastWriteTime As FILETIME

 nFileSizeHigh As Long

 nFileSizeLow As Long

 dwReserved0 As Long

 dwReserved1 As Long

 cFileName As String * 260

 cAlternate As String * 14

End Type

WIN32_FIND_DATA-type variables hold information found about a file from a file search operation. This information includes the file's attributes; its creation, last-access, and last-modified times; the size of the file; its long filename; and its short filename. The file size is a 64-bit value split into two halves of 32 bits each: a high-order and a low-order half. The actual file size can be found by concatenating the binary or hexadecimal equivalents of the two halves. It can also be found by using the formula filesize = nFileSizeHigh * 2^32 + nFileSizeLow.

dwFileAttributes

One or more of the following flags identifying the file's attributes:

FILE_ATTRIBUTE_ARCHIVE = &H20

An archive file (which most files are).

FILE_ATTRIBUTE_COMPRESSED = &H800

A file residing in a compressed drive or directory.

FILE_ATTRIBUTE_DIRECTORY = &H10

A directory instead of a file.

FILE_ATTRIBUTE_HIDDEN = &H2

A hidden file, not normally visible to the user.

FILE_ATTRIBUTE_NORMAL = &H80

An attribute-less file (cannot be combined with other attributes).

FILE_ATTRIBUTE_READONLY = &H1

A read-only file.

FILE_ATTRIBUTE_SYSTEM = &H4

A system file, used exclusively by the operating system.

ftCreationTime

The time and date of when the file was created.

ftLastAccessTime

The time and date of when the file was last accessed.

ftLastWriteTime

The time and date of when the file was last modified or written to.

nFileSizeHigh

The high-order half of the file size.

nFileSizeLow

The low-order half of the file size.

dwReserved0

Reserved for future use.

dwReserved1

Reserved for future use.

cFileName

The long filename of the file.

cAlternate

The short filename of the file.

Used by: FindFirstFile, FindNextFile

Alphabetical Listing of the API Callback Functions

CCHookProc NEW

EnumChildProc NEW

EnumThreadWndProc NEW

EnumWindowsProc NEW

SoundSentryProc NEW

CCHookProc Callback Function

Public Function CCHookProc(ByVal hdlg As Long, ByVal uiMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long

 ' application-defined code goes here

End Function

Description & Usage

CCHookProc is used to process a Choose Color common dialog box's messages. This hook function allows a program to write its own code to process messages otherwise handled by the Choose Color box. The function does not have to be named CCHookProc -- that is merely the name given to it in discussions about the API.

Return Value

If the function returns 0, the Choose Color dialog box's default message handler processes the message. If the function returns a non-zero value, the Choose Color dialog box's default message handler does not receive the message.

Visual Basic-Specific Issues

Like all callback functions, CCHookProc must be declared Public and be defined in a module.

Parameters

hdlg

A handle to the Choose Color dialog box which the message is for.

uiMsg

The message to be acted upon.

wParam

Additional information about the message.

lParam

Additional information about the message.

Used By

CHOOSECOLOR_TYPE

EnumChildProc Callback Function

Public Function EnumChildProc (ByVal hwnd As Long, ByVal lParam As Long) As Long

 ' application-defined code goes here

End Function

Description & Usage

EnumChildProc is an application-defined callback function used by EnumChildWindows for each window enumerated. This function should process the window in whatever manner is required. This function does not necessarily have to be named EnumChildProc -- that is merely the name given to it in discussions about the API.

Return Value

If the function returns 0, EnumChildWindows will immediately stop enumerating child windows. If the function returns a non-zero value, EnumChildWindows will continue enumerating child windows until it can no longer find any.

Visual Basic-Specific Issues

Like all callback functions, EnumChildProc must be declared Public and be defined in a module.

Parameters

hwnd

A handle to the window which EnumChildWindows has just found.

lParam

Whatever value was specified in the parameter list of EnumChildWindows.

Used By

EnumChildWindows

EnumThreadWndProc Callback Function

Public Function EnumThreadWndProc (ByVal hwnd As Long, ByVal lParam As Long) As Long

 ' application-defined code goes here

End Function

Description & Usage

EnumThreadWndProc is an application-defined callback function used by EnumThreadWindows for each window enumerated. This function should process the window in whatever manner is required. This function does not necessarily have to be named EnumThreadWndProc -- that is merely the name given to it in discussions about the API.

Return Value

If the function returns 0, EnumThreadWindows will immediately stop enumerating thread windows. If the function returns a non-zero value, EnumThreadWindows will continue enumerating thread windows until it can no longer find any.

Visual Basic-Specific Issues

Like all callback functions, EnumThreadWndProc must be declared Public and be defined in a module.

Parameters

hwnd

A handle to the window which EnumThreadWindows has just found.

lParam

Whatever value was specified in the parameter list of EnumThreadWindows.

Used By

EnumThreadWindows

EnumWindowsProc Callback Function

Public Function EnumWindowsProc (ByVal hwnd As Long, ByVal lParam As Long) As Long

 ' application-defined code goes here

End Function

Description & Usage

EnumWindowsProc is an application-defined callback function used by EnumWindows for each window enumerated. This function should process the window in whatever manner is required. This function does not necessarily have to be named EnumWindowsProc -- that is merely the name given to it in discussions about the API.

Return Value

If the function returns 0, EnumWindows will immediately stop enumerating windows. If the function returns a non-zero value, EnumWindows will continue enumerating windows until it can no longer find any.

Visual Basic-Specific Issues

Like all callback functions, EnumWindowsProc must be declared Public and be defined in a module.

Parameters

hwnd

A handle to the window which EnumWindows has just found.

lParam

Whatever value was specified in the parameter list of EnumWindows.

Used By

EnumWindows

SoundSentryProc Callback Function

Public Function SoundSentryProc (ByVal dwMillisec As Long, ByVal fwdEffect As Long) As Long

 ' application-defined code goes here

End Function

Description & Usage

SoundSentryProc allows the use of a custom cue used by the SoundSentry accessibility feature. This callback function defines a custom method to use to present some sort of visual cue in place of the ones built into SoundSentry. Unlike most callback functions, this function must be called SoundSentryProc and must be exported by a DLL which is loaded on startup.

Return Value

If the function returns 0, the function failed to display the visual cue. If the function returns a non-zero value, the function displayed the cue successfully.

Visual Basic-Specific Issues

None.

Parameters

dwMillisec

The duration in milliseconds over which the visual cue should be displayed.

fdwEffect

The type of visual cue to display. The only valid value for this parameter is SSWF_CUSTOM.

Constant Definitions

Const SSWF_CUSTOM = 4

Used By

SOUNDSENTRY

Alphabetical Listing of Other API Information

Error Codes

Manufacturer IDs

Product IDs

Virtual Key Codes

Error Codes

The error codes are values that identify different types of errors in the Windows API. These can usually be obtained by using the GetLastError function. The following table lists various API error codes.

API Error Codes

 Error Code 	Definition 	

0 	No error / Success 	

1 	Invalid Function 	

2 	File Not Found 	

3 	Path Not Found 	

4 	Cannot Open File -- Too Many Files Open 	

5 	Access Denied 	

6 	Invalid Handle 	

7 	Storage Control Blocks Destroyed 	

8 	Insufficient Memory 	

9 	Invalid Storage Control Block Address 	

10 	Invalid or Incorrect Environment 	

11 	Invalid Program Format Attempted to Load 	

12 	Invalid Access Code 	

13 	Invalid Data 	

14 	Insufficient Memory 	

15 	Invalid Drive Specified 	

16 	Directory Cannot Be Removed 	

17 	Cannot Move File to Different Drive 	

18 	No More Files 	

19 	Disk Write Protected 	

20 	Cannot Find Device 	

21 	Device Not Ready 	

22 	Device Command Unrecognized 	

23 	Cyclic Redundance Check (CRC) Data Error 	

24 	Incorrect Command Length 	

25 	Cannot Locate Area or Track on Disk 	

26 	Disk Cannot Be Accessed 	

27 	Cannot Find Requested Sector 	

28 	Printer Out of Paper 	

29 	Cannot Write to Specified Drive 	

30 	Cannot Read from Specified Drive 	

31 	Device Not Functioning 	

32 	Cannot Access File -- Already in Use 	

33 	Cannot Access File -- Locked 	

34 	Wrong Disk in Drive 	

36 	Too Many Files Being Shared 	

38 	End of File (EOF) 	

39 	Disk Full 	

50 	Unsupported Network Request 	

51 	Remote Computer Unavailable 	

52 	Duplicate Name on Network 	

53 	Network Path Not Found 	

54 	Network Busy 	

55 	Network Resource or Device Not Available 	

56 	Too Many Network BIOS Commands 	

57 	Network Adapter Error 	

58 	Specified Server Cannot Perform Requested Operation 	

59 	Unexpected Network Error 	

60 	Incompatible Remote Adapter 	

61 	Print Queue Full 	

62 	No Space on Server to Store Spooled File for Printing 	

63 	File to be Printed Deleted 	

64 	Specified Network Name Unavailable 	

65 	Network Access Denied 	

66 	Incorrect Network Resouce Type 	

67 	Network Name Not Found 	

68 	Too Many Names on Network 	

69 	Network BIOS Session Limit Exceeded 	

70 	Remote Server Paused or Being Started 	

71 	Unaccepted Network Request 	

72 	Specified Printer or Disk Paused 	

80 	File Exists 	

82 	Cannot Create Directory or File 	

83 	Failure on Interrupt 24 (INT 24) 	

84 	Insufficient Storage to Process Request 	

85 	Local Device Name Already in Use 	

86 	Invalid Network Password 	

87 	Invalid Parameter 	

88 	Network Write Fault Error 	

89 	Cannot Start Another Process Currently 	

100 	Cannot Create Another Semaphore -- Too Many Already 	

101 	Exclusive Semaphore Already Owned 	

102 	Semaphore Already Set and Cannot Be Closed 	

103 	Semaphore Cannot Be Set Again 	

104 	Cannot Request Exclusive Semaphore At Interrupt Time 	

105 	Semaphore Ownership Ended 	

106 	Insert Disk 	

107 	Alternate Disk Not Inserted 	

108 	Disk Locked or In Use 	

109 	Pipe Ended 	

110 	Cannot Open Specified Device or File 	

111 	File Name Too Long 	

112 	Insufficient Space on Disk 	

113 	No More Internal File Identifiers Available 	

114 	Invalid Target Internal File Identifier 	

117 	Invalid IOCTL Call 	

118 	Incorrect Verify-on-Write Switch Parameter 	

119 	Unsupported System Command 	

120 	Function Only Available Under Windows NT 	

121 	Semaphore Timeout Expired 	

122 	Insufficient Data Buffer 	

123 	Invalid File Name, Directory Name, Or Volume Label 	

124 	Invalid System Call Level 	

125 	No Volume Label on Disk 	

126 	Specified Module Not Found 	

127 	Specified Procedure Not Found 	

128 	No Child Processes to Wait For 	

129 	Application Cannot Run Under Windows NT 	

130 	File Handle to Open Disk Partition Not Used for I/O 	

131 	File Pointer Moved Before Beginning of File 	

132 	Cannot Set File Pointer on Specified Device or File 	

133 	Cannot Use JOIN or SUBST on Drive That Contains Previously Joined Drives 	

134 	Cannot Use JOIN or SUBST on Drive That Is Already Joined 	

135 	Cannot Use JOIN or SUBST on Drive That Is Already Substituted 	

136 	Cannot Delete JOIN of a Non-joined Drive 	

137 	Cannot Delete SUBST of a Non-substituted Drive 	

138 	Cannot Join Drive to Directory on a Joined Drive 	

139 	Cannot Substitute Drive to Directory on a Substituted Drive 	

140 	Cannot Join Drive to Directory on a Substituted Drive 	

141 	Cannot Substitute Drive to Directory on a Joined Drive 	

142 	Cannot JOIN or SUBST Currently -- Drive Busy 	

143 	Cannot JOIN or SUBST Drive to Directory on Same Drive 	

144 	Directory Not Subdirectory of Root Directory 	

145 	Directory Not Empty 	

146 	Specified Path is a Substitute 	

147 	Insufficient Resources to Join or Substitute 	

148 	Cannot Use Specified Path Currently -- Busy 	

149 	Cannot JOIN or SUBST Drive Whose Directory is Target of Another SUBST 	

150 	System Trace Not Specified or Not Allowed in CONFIG.SYS 	

151 	Incorrect Number of Specified Semaphore Events 	

152 	Too Many Semaphores Set 	

153 	List Incorrect 	

154 	Volume Label Too Long -- Truncated to 11 Characters 	

155 	Cannot Create Another Thread 	

156 	Recipient Process Refused Signal 	

157 	Segment Already Discarded and Cannot Be Locked 	

158 	Segment Already Unlocked 	

159 	Incorrect Thread ID Address 	

160 	Incorrect Argument String 	

161 	Specified Path Invalid 	

162 	Signal Is Already Pending 	

164 	No More Threads Can Be Created 	

167 	Unable to Lock File Region 	

170 	Requested Resource Busy 	

173 	Lock Request Not Outstanding for Supplied Cancel Region 	

174 	Atomic Changes to Lock Type Not Supported 	

180 	Invalid Segment Number 	

182 	Cannot Run Program -- Invalid Ordinal 	

183 	File Already Exists 	

186 	Incorrect Flag Passed 	

187 	Specified Semaphore Not Found 	

188 	Cannot Run Program -- Invalid Code Segment 	

189 	Cannot Run Program -- Invalid Stack Segment 	

190 	Cannot Run Program -- Invalid Module Type 	

191 	Cannot Run Program Under Windows NT 	

192 	Cannot Run Program -- Invalid EXE 	

193 	Invalid Windows NT Application 	

194 	Cannot Run Program -- Iterated Data Exceeds 64K 	

195 	Cannot Run Program -- Invalid Minimum Allocation Size 	

196 	Cannot Run Program -- Dynamic Link From Invalid Ring 	

197 	Operating System Not Configured To Run Application 	

198 	Cannot Run Program -- Invalid Segment DPL 	

199 	Cannot Run Program -- Automatic Data Segment Exceeds 64K 	

200 	Code Segment Must Be Less Than 64K 	

201 	Cannot Run Program -- Reallocation Chain Exceeds Segment Limit 	

202 	Cannot Run Program -- Infinite Loop In Reallocation Chain 	

203 	Environment Variable Not Found 	

205 	No Command Subtree Has Signal Handler 	

206 	Filename or Extension Too Long 	

207 	Ring 2 Stack Busy 	

208 	Too Many or Incorrectly Entered Wildcards in Filename 	

209 	Invalid Signal Posted 	

210 	Signal Handler Cannot Be Set 	

212 	Segment Locked and Cannot Be Reallocated 	

214 	Too Many Dynamic Link Modules Attached 	

215 	Cannot Nest Calls 	

230 	Invalid Pipe State 	

231 	All Pipes Busy 	

232 	Pipe Being Closed 	

233 	No Process on End of Pipe 	

234 	More Data Available 	

240 	Session Cancelled 	

254 	Specified Extended Attribute Name Invalid 	

255 	Inconsistent Extended Attributes 	

259 	No More Data Available 	

266 	Copy Cannot Be Used 	

267 	Invalid Directory Name 	

275 	Extended Attributes Did Not Fit into Buffer 	

276 	Corrupt Extended Attribute File 	

277 	Extended Attribute Table Full 	

278 	Invalid Specified Extended Attribute Handle 	

282 	Extended Attributes Not Supported By File System 	

288 	Attempt to Release Mutex Not Owned By Caller 	

298 	Too Many Posts to Semaphore 	

317 	Cannot Find Message in Message File 	

487 	Invalid Address 	

534 	Arithmetic Overflow (> 32 Bits) 	

535 	Process on End of Pipe 	

536 	Waiting for Process to Open on End of Pipe 	

994 	Access to Extended Attribute Denied 	

995 	Operation Aborted 	

996 	Overlapped I/O Not in Signalled State 	

997 	Overlapped I/O In Progress 	

998 	Invalid Access to Memory 	

999 	Inpage Error 	

1001 	Stack Overflow -- Recursion Too Deep 	

1002 	Invalid Message to Window 	

1003 	Cannot Complete Function 	

1004 	Invalid Flags 	

1005 	Unrecognized File System on Disk 	

1006 	Invalid File 	

1007 	Cannot Perform Operation in Full-Screen Mode 	

1008 	Token Does Not Exist 	

1009 	Corrupt Registry Database 	

1010 	Invalid Registry Key 	

1011 	Cannot Open Registry Key 	

1012 	Cannot Read Registry Key 	

1013 	Cannot Write to Registry Key 	

1014 	Successful Recovery of Registry 	

1015 	Registry Corrupt 	

1016 	Registry I/O Failed 	

1017 	Cannot Load File Not in Registry Format 	

1018 	Illegal Operation on Registry Key Pending Deletion 	

1019 	Cannot Allocate Required Space in Registry Log 	

1020 	Cannot Create Symbolic Link in Registry Key Having Subkeys or Values 	

1021 	Cannot Create Nonvolatile Subkey Under Volatile Parent Key 	

1022 	Need to Enumerate Files 	

1051 	Cannot Stop Service Other Services Are Dependent On 	

1052 	Invalid Control for Service 	

1053 	No Response to Start or Control Request 	

1054 	Cannot Create Thread for Service 	

1055 	Service Database Locked 	

1056 	Service Already Running 	

1057 	Invalid Account Name 	

1058 	Service Disabled and Cannot Be Started 	

1059 	Circular Service Dependency Specified 	

1060 	Service Does Not Exist 	

1061 	Service Cannot Accept Control Messages 	

1062 	Service Not Active 	

1063 	Service Cannot Connect to Controller 	

1064 	Exception While Handling Control Request 	

1065 	Database Does Not Exist 	

1066 	Service Error 	

1067 	Unexpected Process Termination 	

1068 	Dependency Failed to Start 	

1069 	Service Did Not Start -- Logon Failure 	

1070 	Service Hanging in Start-Pending State 	

1071 	Invalid Service Database Lock 	

1072 	Service Marked for Deletion 	

1073 	Service Already Exists 	

1074 	Service Running Under Last-Known-Good Configuration 	

1075 	Dependency Service Does Not Exist or Marked for Deletion 	

1076 	Boot Already Accepted as Last-Known-Good Control Set 	

1077 	No Attempts to Start Service 	

1078 	Duplicate Service Name or Service Display Name 	

1100 	Physical End of Tape Reached 	

1101 	Tape Access Reached Filemark 	

1102 	Beginning of Tape or Partition Encountered 	

1103 	Tape Access Reached End of File Set 	

1104 	No More Data on Tape 	

1105 	Cannot Partition Tape 	

1106 	Invalid Blocksize on Tape 	

1107 	Cannot Find Tape Partition Information 	

1108 	Cannot Lock Media Eject Mechanism 	

1109 	Cannot Unload Media 	

1110 	Media in Drive Changed 	

1111 	I/O Bus Reset 	

1112 	No Media in Drive 	

1113 	No Mapping for Unicode Character in Target Code 	

1114 	Dynamic Link Library (DLL) Initialization Failed 	

1115 	System Shutdown in Progress 	

1116 	No System Shutdown in Progress 	

1117 	I/O Device Error 	

1118 	No Serial Device Successfully Initialized 	

1119 	Requested Interrupt Request (IRQ) Busy 	

1120 	Serial I/O Operation Completed By Another Write to Port 	

1121 	Serial I/O Operation Completed By Timeout 	

1122 	No ID Address Mark Found on Floppy Disk 	

1123 	Mismatch Between Floppy Disk Sector ID and Controller Track Address 	

1124 	Unknown Floppy Disk Controller Error 	

1125 	Inconsistent Floppy Disk Controller Registers 	

1126 	Hard Disk Recalibration Failed 	

1127 	Hard Disk Operation Failed 	

1128 	Hard Disk Controller Reset Failed 	

1129 	Physical End of Tape Encountered 	

1130 	Insufficient Server Memory to Process Command 	

1131 	Possible Deadlock Detected 	

1132 	Improperly Aligned Base Address or File Offset 	

Used by: GetLastError

Manufacturer IDs

Manufacturer IDs identify the manufacturer of a certain device. The following list of flags defines all the manufacturer IDs defined under the Windows API.

MM_ANTEX = 31

Antex Electronics Coporation

MM_APPS = 42

APPS Software International

MM_APT = 56

Audio Processing Technology

MM_ARTISOFT = 20

Artisoft, Inc.

MM_AST = 64

AST Research, Inc.

MM_ATI = 27

ATI

MM_AUDIOFILE = 47

Audio, Inc.

MM_AUDIOPT = 74

Audio Processing Technology

MM_AURAVISION = 80

AuraVision Corporation

MM_AZTECH = 52

Aztech Labs, Inc.

MM_CANOPUS = 49

Canopus, Co., Ltd.

MM_CAT = 41

Computer Aided Technologies

MM_COMPUSIC = 89

Compusic

MM_COMPUTER_FRIENDS = 45

Computer Friends, Inc.

MM_CONTROLRES = 84

Control Resources Limited

MM_CREATIVE = 2

Creative Labs, Inc.

MM_DIALOGIC = 93

Dialogic Corporation

MM_DOLBY = 78

Dolby Laboratories

MM_DSP_GROUP = 43

DSP Group, Inc.

MM_DSP_SOLUTIONS = 25

DSP Solutions, Inc.

MM_ECHO = 39

Echo Speech Corporation

MM_EPSON = 50

Seiko Epson Corporation

MM_ESS = 46

ESS Technology

MM_EVEREX = 38

Everex Systems, Inc.

MM_EXAN = 63

EXAN

MM_FUJITSU = 4

Fujitsu Corp.

MM_GRAVIS = 34

Advanced Gravis

MM_IBM = 22

IBM Corporation

MM_ICL_PS = 32

ICL Personal Systems

MM_ICS = 57

Integrated Circuit Systems, Inc.

MM_INTEL = 33

Intel Corporation

MM_INTERACTIVE = 36

InterActive Inc.

MM_IOMAGIC = 82

I/O Magic Corporation

MM_ITERATEDSYS = 58

Iterated Systems, Inc.

MM_KORG = 55

Toshihiko Okuhura, Korg Inc.

MM_LOGITECH = 60

Logitech, Inc.

MM_LYRRUS = 88

Lyrrus Inc.

MM_MATSUSHITA = 83

Matsushita Electronic Industrial Co., Ltd.

MM_MEDIAVISION = 3

Media Vision, Inc.

MM_MELABS = 44

microEngineering Labs

MM_METHEUS = 59

Metheus

MM_MICROSOFT = 1

Microsoft Corporation.

MM_MOSCOM = 68

MOSCOM Corporation

MM_MOTOROLA = 48

Motorola, Inc.

MM_NCR = 62

NCR Corporation

MM_NEC = 26

NEC

MM_NEWMEDIA = 86

New Media Corporation

MM_NMS = 87

Natural MicroSystems

MM_OKI = 79

OKI

MM_OLIVETTI = 81

Olivetti

MM_OPTI = 90

OPTi Computers Inc.

MM_ROLAND = 24

Roland

MM_SCALACS = 54

SCALACS

MM_SIERRA = 40

Sierra Semiconductor Corp.

MM_SILICONSOFT = 69

Silicon Soft, Inc.

MM_SONICFOUNDRY = 66

Sonic Foundry

MM_SPEECHCOMP = 76

Speech Compression

MM_SUPERMAC = 73

Supermac

MM_TANDY = 29

Tandy Corporation

MM_TRUEVISION = 51

Truevision

MM_TURTLE_BEACH = 21

Turtle Beach, Inc.

MM_VAL = 35

Video Associates Labs, Inc.

MM_VIDEOLOGIC = 53

Videologic

MM_VITEC = 67

Vitec Multimedia

MM_VOCALTEC = 23

Vocaltec Ltd.

MM_VOYETRA = 30

Voyetra

MM_WANGLABS = 28

Wang Laboratories, Inc.

MM_WILLOWPOND = 65

Willow Pond Corporation

MM_WINNOV = 61

Winnov, Inc.

MM_YAMAHA = 37

Yamaha Corporation of America

Used by: JOYCAPS, WAVEOUTCAPS

Product Identifiers

Product identifiers identify the product name or type associated with a device. The following flags list the product IDs defined by the Windows API. Note that the manufacturer ID of the device must be known to select the proper device ID. The device IDs below are grouped accorording to manufacturer. (The manufacturer ID associated with each manufacturer is also shown.)

Audio Processing Technology (MM_APT) Product IDs:

MM_APT_ACE100CD = 1

ACE 100 CD.

Artisoft, Inc. (MM_ARTISOFT) Product IDs:

MM_ARTISOFT_SBWAVEIN = 1

Artisoft Sounding Board waveform input.

MM_ARTISOFT_SBWAVEOUT = 2

Artisoft Sounding Board waveform output.

Aztech Labs, Inc. (MM_AZTECH) Product IDs:

MM_AZTECH_AUX = 404

Aztech auxiliary.

MM_AZTECH_AUX_CD = 401

Aztech auxiliary CD.

MM_AZTECH_AUX_LINE = 402

Aztech auxiliary line input.

MM_AZTECH_AUX_MIC = 403

Aztech auxiliary microphone.

MM_AZTECH_DSP16_FMSYNTH = 68

Aztech DSP 16 FM synthesizer.

MM_AZTECH_DSP16_WAVEIN = 65

Aztech DSP 16 waveform input.

MM_AZTECH_DSP16_WAVESYNTH = 70

Aztech DSP 16 waveform synthesizer.

MM_AZTECH_DSP16_WAVEOUT = 66

Aztech DSP 16 waveform output.

MM_AZTECH_FMSYNTH = 20

Aztech FM synthesizer.

MM_AZTECH_MIDIIN = 4

Aztech MIDI input.

MM_AZTECH_MIDIOUT = 3

Aztech MIDI output.

MM_AZTECH_MIXER = 21

Aztech mixer.

MM_AZTECH_NOVA16_MIXER = 73

Aztech Nova 16 mixer.

MM_AZTECH_NOVA16_WAVEIN = 71

Aztech Nova 16 waveform input.

MM_AZTECH_NOVA16_WAVEOUT = 72

Aztech Nova 16 waveform output.

MM_AZTECH_PRO16_FMSYNTH = 38

Aztech Pro 16 FM synthesizer.

MM_AZTECH_PRO16_WAVEIN = 33

Aztech Pro 16 waveform input.

MM_AZTECH_PRO16_WAVEOUT = 34

Aztech Pro 16 waveform output.

MM_AZTECH_WASH16_MIXER = 76

Aztech Wash 16 mixer.

MM_AZTECH_WASH16_WAVEIN = 74

Aztech Wash 16 waveform input.

MM_AZTECH_WASH16_WAVEOUT = 75

Aztech Wash 16 waveform output.

MM_AZTECH_WAVEIN = 17

Aztech waveform input.

MM_AZTECH_WAVEOUT = 18

Aztech waveform output.

Computer Aided Technologies (MM_CAT) Product IDs:

MM_CAT_WAVEOUT = 1

Waveform output.

Creative Labs, Inc. (MM_CREATIVE) Product IDs:

MM_CREATIVE_AUX_CD = 401

Sound Blaster Pro auxiliary CD.

MM_CREATIVE_AUX_LINE = 402

Sound Blaster Pro auxiliary line input.

MM_CREATIVE_AUX_MASTER = 404

Sound Blaster Pro auxiliary master.

MM_CREATIVE_AUX_MIC = 403

Sound Blaster Pro auxiliary microphone.

MM_CREATIVE_AUX_MIDI = 407

Sound Blaster Pro auxiliary MIDI.

MM_CREATIVE_AUX_PCSPK = 405

Sound Blaster Pro auxiliary PC speaker.

MM_CREATIVE_AUX_WAVE = 406

Sound Blaster Pro auxiliary waveform.

MM_CREATIVE_FMSYNTH_MONO = 301

Sound Blaster mono FM synthesizer.

MM_CREATIVE_FMSYNTH_STEREO = 302

Sound Blaster stereo FM synthesizer.

MM_CREATIVE_MIDI_AWE32 = 303

Sound Blaster MIDI AWE 32.

MM_CREATIVE_MIDIIN = 202

Sound Blaster MIDI input.

MM_CREATIVE_MIDIOUT = 201

Sound Blaster MIDI output.

MM_CREATIVE_SB15_WAVEIN = 1

Sound Blaster 1.5 waveform input.

MM_CREATIVE_SB15_WAVEOUT = 101

Sound Blaster 1.5 waveform output.

MM_CREATIVE_SB16_MIXER = 409

Sound Blaster Pro 16 mixer.

MM_CREATIVE_SB20_WAVEIN = 2

Sound Blaster 2.0 waveform input.

MM_CREATIVE_SB20_WAVEOUT = 102

Sound Blaster 2.0 waveform output.

MM_CREATIVE_SBP16_WAVEIN = 4

Sound Blaster Pro 16 waveform input.

MM_CREATIVE_SBP16_WAVEOUT = 104

Sound Blaster Pro 16 waveform output.

MM_CREATIVE_SBPRO_MIXER = 408

Sound Blaster Pro mixer.

MM_CREATIVE_SBPRO_WAVEIN = 3

Sound Blaster Pro waveform input.

MM_CREATIVE_SBPRO_WAVEOUT = 103

Sound Blaster Pro waveform output.

DSP Group, Inc. (MM_DSP_GROUP) Product IDs:

MM_DSP_GROUP_TRUESPEECH = &H1

True Speech.

DSP Solutions, Inc. (MM_DSP_SOLUTIONS) Product IDs:

MM_DSP_SOLUTIONS_AUX = 4

DSP Solutions auxiliary.

MM_DSP_SOLUTIONS_SYNTH = 3

DSP Solutions synthesizer.

MM_DSP_SOLUTIONS_WAVEIN = 2

DSP Solutions waveform input.

MM_DSP_SOLUTIONS_WAVEOUT = 1

DSP Solutions waveform output.

Echo Speech Corporation (MM_ECHO) Product IDs:

MM_ECHO_AUX = &H6

Echo auxiliary.

MM_ECHO_MIDIIN = &H5

Echo MIDI input.

MM_ECHO_MIDIOUT = &H4

Echo MIDI output.

MM_ECHO_SYNTH = &H1

Echo synthesizer.

MM_ECHO_WAVEIN = &H3

Echo waveform input.

MM_ECHO_WAVEOUT = &H2

Echo waveform output.

ESS Technology (MM_ESS) Product IDs:

MM_ESS_AMAUX = &H3

AM auxiliary.

MM_USS_AMMIDIIN = &H6

AM MIDI input.

MM_ESS_AMMIDIOUT = &H5

AM MIDI output.

MM_ESS_AMSYNTH = &H4

AM synthesizer.

MM_ESS_AMWAVEIN = &H2

AM waveform input.

MM_ESS_AMWAVEOUT = &H1

AM waveform output.

MM_ESS_AUX_CD = &H8

Auxiliary CD.

MM_ESS_ES1488_MIXER = &H18

ES1488 mixer.

MM_ESS_ES1488_WAVEIN = &H17

ES1488 waveform input.

MM_ESS_ES1488_WAVEOUT = &H16

ES1488 waveform output.

MM_ESS_ES1688_MIXER = &H1B

ES1688 mixer.

MM_ESS_ES1688_WAVEIN = &H1A

ES1688 waveform input.

MM_ESS_ES1688_WAVEOUT = &H19

ES1688 waveform output.

MM_ESS_ES488_MIXER = &H12

ES488 mixer.

MM_ESS_ES488_WAVEIN = &H11

ES488 waveform input.

MM_ESS_ES488_WAVEOUT = &H10

ES488 waveform output.

MM_ESS_ES688_MIXER = &H15

ES488 mixer.

MM_ESS_ES688_WAVEIN = &H14

ES488 waveform input.

MM_ESS_ES688_WAVEOUT = &H13

ES688 waveform output.

MM_ESS_MIXER = &H7

Mixer.

MM_ESS_MPU401_MIDIIN = &HA

MPU401 MIDI input.

MM_ESS_MPU401_MIDIOUT = &H9

MPU401 MIDI output.

Everex Systems, Inc. (MM_EVEREX) Product IDs:

MM_EVEREX_CARRIER = &H1

Everex Carrier.

IBM Corporation (MM_IBM) Product IDs:

MM_IBM_PCMCIA_AUX = 16

IBM auxiliary.

MM_IBM_PCMCIA_MIDIIN = 14

IBM MIDI input.

MM_IBM_PCMCIA_MIDIOUT = 15

IBM MIDI output.

MM_IBM_PCMCIA_SYNTH = 13

IBM synthesizer.

MM_IBM_PCMCIA_WAVEIN = 11

IBM waveform input.

MM_IBM_PCMCIA_WAVEOUT = 12

IBM waveform output.

MM_MMOTION_WAVEAUX = 1

IBM M-Motion auxiliary.

MM_MMOTION_WAVEIN = 3

IBM M-Motion waveform input.

MM_MMOTION_WAVEOUT = 2

IBM M-Motion waveform output.

Integrated Circuit Systems, Inc. (MM_ICS) Product IDs:

MM_ICS_WAVEDECK_AUX = 4

Wavedeck auxiliary.

MM_ICS_WAVEDECK_MIXER = 3

Wavedeck mixer.

MM_ICS_WAVEDECK_SYNTH = 5

Wavedeck synthesizer.

MM_ICS_WAVEDECK_WAVEIN = 2

Wavedeck waveform input.

MM_ICS_WAVEDECK_WAVEOUT = 1

Wavedeck waveform output.

InterActive, Inc. (MM_INTERACTIVE) Product IDs:

MM_INTERACTIVE_WAVEIN = &H45

InterActive waveform input.

MM_INTERACTIVE_WAVEOUT = &H45

InterActive waveform output.

I/O Magic Corporation (MM_IOMAGIC) Product IDs:

MM_IOMAGIC_TEMPO_AUXOUT = 6

Tempo auxiliary output.

MM_IOMAGIC_TEMPO_MIDIOUT = 4

Tempo MIDI output.

MM_IOMAGIC_TEMPO_MXDOUT = 5

Tempo mixed output.

MM_IOMAGIC_TEMPO_SYNTH = 3

Tempo synthesizer.

MM_IOMAGIC_TEMPO_WAVEIN = 2

Tempo waveform input.

MM_IOMAGIC_TEMPO_WAVEOUT = 1

Tempo waveform output.

Iterated Systems, Inc. (MM_ITERATEDSYS) Product IDs:

MM_ITERATED_SYS_FUFCODEC = 1

FUF Codec.

Toshihiko Okuhura, Korg Inc. (MM_KORG) Product IDs:

MM_KORG_PCIF_MIDIIN = 2

PCIF MIDI input.

MM_KORG_PCIF_MIDIOUT = 1

PCIF MIDI output.

Lyrrus, Inc. (MM_LYRRUS) Product IDs:

MM_LYRRUS_BIRDGE_GUITAR = 1

Bridge Guitar MIDI.

Matsushita Electronic Industrial Co., Ltd. (MM_MATSUSHITA) Product IDs:

MM_MATSUSHITA_AUX = 5

Matsushita auxiliary.

MM_MATSUSHITA_FMSYNTH_STEREO = 3

Matsushita FM stereo synthesizer.

MM_MATSUSHITA_MIXER = 4

Matsushita mixer.

MM_MATSUSHITA_WAVEIN = 1

Matsushita waveform input.

MM_MATSUSHITA_WAVEOUT = 2

Matsushita waveform output.

Media Vision, Inc. (MM_MEDIAVISION) Product IDs:

MM_CDPC_AUX = &H77

CDPC auxiliary.

MM_CDPC_MIDIIN = &H72

CDPC MIDI input.

MM_CDPC_MIDIOUT = &H71

CDPC MIDI output.

MM_CDPC_MIXER = &H76

CDPC mixer.

MM_CDPC_SYNTH = &H73

CDPC synthesizer.

MM_CDPC_WAVEIN = &H75

CDPC waveform input.

MM_CDPC_WAVEOUT = &H74

CDPC waveform output.

MM_OPUS1208_AUX = &H87

Opus MV 1208 Chipset auxiliary.

MM_OPUS1208_MIDIIN = &H82

Opus MV 1208 Chipset MIDI input.

MM_OPUS1208_MIDIOUT = &H81

Opus MV 1208 Chipset MIDI output.

MM_OPUS1208_MIXER = &H86

Opus MV 1208 Chipset mixer.

MM_OPUS1208_SYNTH = &H83

Opus MV 1208 Chipset synthesizer.

MM_OPUS1208_WAVEIN = &H85

Opus MV 1208 Chipset waveform input.

MM_OPUS1208_WAVEOUT = &H84

Opus MV 1208 Chipset waveform output.

MM_OPUS1216_AUX = &H97

Opus MV 1216 Chipset auxiliary.

MM_OPUS1216_MIDIIN = &H92

Opus MV 1216 Chipset MIDI input.

MM_OPUS1216_MIDIOUT = &H91

Opus MV 1216 Chipset MIDI output.

MM_OPUS1216_MIXER = &H96

Opus MV 1216 Chipset mixer.

MM_OPUS1216_SYNTH = &H93

Opus MV 1216 Chipset synthesizer.

MM_OPUS1216_WAVEIN = &H95

Opus MV 1216 Chipset waveform input.

MM_OPUS1216_WAVEOUT = &H94

Opus MV 1216 Chipset waveform output.

MM_PROAUD_16_AUX = &H67

Pro Audio Spectrum 16 auxiliary.

MM_PROAUD_16_MIDIIN = &H62

Pro Audio Spectrum 16 MIDI input.

MM_PROAUD_16_MIDIOUT = &H61

Pro Audio Spectrum 16 MIDI output.

MM_PROAUD_16_MIXER = &H66

Pro Audio Spectrum 16 mixer.

MM_PROAUD_16_SYNTH = &H63

Pro Audio Spectrum 16 synthesizer.

MM_PROAUD_16_WAVEIN = &H65

Pro Audio Spectrum 16 waveform input.

MM_PROAUD_16_WAVEOUT = &H64

Pro Audio Spectrum 16 waveform output.

MM_PROAUD_AUX = &H17

Pro Audio Spectrum auxiliary.

MM_PROAUD_MIDIIN = &H12

Pro Audio Spectrum MIDI input.

MM_PROAUD_MIDIOUT = &H11

Pro Audio Spectrum MIDI output.

MM_PROAUD_MIXER = &H16

Pro Audio Spectrum mixer.

MM_PROAUD_PLUS_AUX = &H57

Pro Audio Spectrum Plus auxiliary.

MM_PROAUD_PLUS_MIDIIN = &H52

Pro Audio Spectrum Plus MIDI input.

MM_PROAUD_PLUS_MIDIOUT = &H51

Pro Audio Spectrum Plus MIDI output.

MM_PROAUD_PLUS_MIXER = &H56

Pro Audio Spectrum Plus mixer.

MM_PROAUD_PLUS_SYNTH = &H53

Pro Audio Spectrum Plus synthesizer.

MM_PROAUD_PLUS_WAVEIN = &H55

Pro Audio Spectrum Plus waveform input.

MM_PROAUD_PLUS_WAVEOUT = &H54

Pro Audio Spectrum Plus waveform output.

MM_PROAUD_SYNTH = &H13

Pro Audio Spectrum synthesizer.

MM_PROAUD_WAVEIN = &H15

Pro Audio Spectrum waveform input.

MM_PROAUD_WAVEOUT = &H14

Pro Audio Spectrum wavefrom output.

MM_STUDIO_16_AUX = &H67

Pro Audio Studio 16 auxiliary.

MM_STUDIO_16_MIDIIN = &H62

Pro Audio Studio 16 MIDI input.

MM_STUDIO_16_MIDIOUT = &H61

Pro Audio Studio 16 MIDI output.

MM_STUDIO_16_MIXER = &H66

Pro Audio Studio 16 mixer.

MM_STUDIO_16_SYNTH = &H63

Pro Audio Studio 16 synthesizer.

MM_STUDIO_16_WAVEIN = &H65

Pro Audio Studio 16 waveform input.

MM_STUDIO_16_WAVEOUT = &H64

Pro Audio Studio 16 waveform output.

MM_THUNDER_AUX = &H27

Thunder Board auxiliary.

MM_THUNDER_SYNTH = &H23

Thunder Board synthesizer.

MM_THUNDER_WAVEIN = &H25

Thunder Board waveform input.

MM_THUNDER_WAVEOUT = &H24

Thunder Board waveform output.

MM_TPORT_SYNTH = &H43

Audio Port synthesizer.

MM_TPORT_WAVEIN = &H42

Audio Port waveform input.

MM_TPORT_WAVEOUT = &H41

Audio Port waveform output.

microEngineering Labs (MM_MELABS) Product IDs:

MM_MELABS_MIDI2GO = &H1

MIDI 2 Go.

Metheus (MM_METHEUS) Product IDs:

MM_METHEUS_ZIPPER = 1

Zipper.

MOSCOM Corporation (MM_MOSCOM) Product IDs:

MM_MOSCOM_VPC2400 = 1

MOSCOM Four Point Voice Processing / Voice Recognition Board.

NCR Corporation (MM_NCR) Product IDs:

MM_NCR_BA_AUX = 4

BA auxiliary.

MM_NCR_BA_MIXER = 5

BA mixer.

MM_NCR_BA_SYNTH = 3

BA synthesizer.

MM_NCR_BA_WAVEIN = 1

BA waveform input.

MM_NCR_BA_WAVEOUT = 2

BA waveform output.

New Media Corporation (MM_NEWMEDIA) Product IDs:

MM_NEWMEDIA_WAVJAMMER = 1

New Media Jammer waveform.

Olivetti (MM_OLIVETTI) Product IDs:

MM_OLIVETTI_ACM_ADPCM = 10

Olivetto ACM ADPCM.

MM_OLIVETTI_ACM_GSM = 9

Olivetti ACM GSM.

MM_OLIVETTI_ACM_OPR = 13

Olivetti ACM OPR.

MM_OLIVETTI_ACM_SBC = 12

Olivetti ACM SBC.

MM_OLIVETTI_AUX = 4

Olivetti auxiliary.

MM_OLIVETTI_JOYSTICK = 8

Olivetti joystick.

MM_OLIVETTI_MIDIIN = 5

Olivetti MIDI input.

MM_OLIVETTI_MIDIOUT = 6

Olivetti MIDI output.

MM_OLIVETTI_MIXER = 3

Olivetti mixer.

MM_OLIVETTI_SYNTH = 7

Olivetti synthesizer.

MM_OLIVETTI_WAVEIN = 1

Olivetti waveform input.

MM_OLIVETTI_WAVEOUT = 2

Olivetti waveform output.

OPTi Computers, Inc. (MM_OPTI) Product IDs:

MM_OPTI_M16_AUX = &H7

M16 auxiliary.

MM_OPTI_M16_FMSYNTH_STEREO = &H1

M16 FM stereo synthesizer.

MM_OPTI_M16_MIDIIN = &H2

M16 MIDI input.

MM_OPTI_M16_MIDIOUT = &H3

M16 MIDI output.

MM_OPTI_M16_MIXER = &H6

M16 mixer.

MM_OPTI_M16_WAVEIN = &H4

M16 waveform input.

MM_OPTI_M16_WAVEOUT = &H5

M16 waveform output.

MM_OPTI_M32_AUX = &H26

M32 auxiliary.

MM_OPTI_M32_MIDIIN = &H22

M32 MIDI input.

MM_OPTI_M32_MIDIOUT = &H23

M32 MIDI output.

MM_OPTI_M32_MIXER = &H25

M32 mixer.

MM_OPTI_M32_SYNTH_STEREO = &H24

M32 stereo synthesizer.

MM_OPTI_M32_WAVEIN = &H20

M32 waveform input.

MM_OPTI_M32_WAVEOUT = &H21

M32 waveform output.

MM_OPTI_P16_AUX = &H16

MM_OPTI_P16_FMSYNTH_STEREO = &H10

P16 FM stereo synthesizer.

MM_OPTI_P16_MIDIIN = &H11

P16 MIDI input.

MM_OPTI_P16_MIDIOUT = &H12

P16 MIDI output.

MM_OPTI_P16_MIXER = &H15

P16 mixer.

MM_OPTI_P16_WAVEIN = &H13

P16 waveform input.

MM_OPTI_P16_WAVEOUT = &H14

P16 waveform output.

Roland (MM_ROLAND) Product IDs:

MM_ROLAND_MPU401_MIDIIN = 16

MPU401 MIDI input.

MM_ROLAND_MPU401_MIDIOUT = 15

MPU401 MIDI output.

MM_ROLAND_SC7_MIDIIN = 22

SC7 MIDI input.

MM_ROLAND_SC7_MIDIOUT = 21

SC7 MIDI output.

MM_ROLAND_SERIAL_MIDIIN = 24

Serial MIDI input.

MM_ROLAND_SERIAL_MIDIOUT = 23

Serial MIDI output.

MM_ROLAND_SMPU_MIDIINA = 19

SMPU MIDI input A.

MM_ROLAND_SMPU_MIDIINB = 20

SMPU MIDI input B.

MM_ROLAND_SMPU_MIDIOUTA = 17

SMPU MIDI output A.

MM_ROLAND_SMPU_MIDIOUTB = 18

SMPU MIDI output B.

Sierra Semiconductor Corp. (MM_SIERRA) Product IDs:

MM_SIERRA_ARIA_AUX = &H19

Aria auxiliary.

MM_SIERRA_ARIA_AUX2 = &H20

Aria auxiliary 2.

MM_SIERRA_ARIA_MIDIIN = &H15

Aria MIDI input.

MM_SIERRA_ARIA_MIDIOUT = &H14

Aria MIDI output.

MM_SIERRA_ARIA_SYNTH = &H16

Aria synthesizer.

MM_SIERRA_ARIA_WAVEIN = &H18

Aria waveform input.

MM_SIERRA_ARIA_WAVEOUT = &H17

Aria waveform output.

Silicon Soft, Inc. (MM_SILICONSOFT) Product IDs:

MM_SILICONSOFT_SC1_WAVEIN = 1

High-sample-rate waveform input.

MM_SILICONSOFT_SC1_WAVEOUT = 2

High-sample-rate waveform output.

MM_SILICONSOFT_SC2_WAVEIN = 3

High-sample-rate, two-channel waveform input.

MM_SILICONSOFT_SC2_WAVEOUT = 4

High-sample-rate, two-channel waveform output.

MM_SILICONSOFT_SOUNDJR2_WAVEOUT = 5

Self-powered waveform output.

MM_SILICONSOFT_SOUNDJR2PR_WANEIN = 6

Self-powered waveform input.

MM_SILICONSOFT_SOUNDJR2PR_WAVEOUT = 7

Self-powered, two-channel waveform output.

MM_SILICONSOFT_SOUNDJR3_WAVEIN = 8

Self-powered, two-channel waveform input.

Tandy Corporation (MM_TANDY) Product IDs:

MM_TANDY_PSSJWAVEIN = 9

PSSJ waveform input.

MM_TANDY_PSSJWAVEOUT = 10

PSSJ waveform output.

MM_TANDY_SENS_MMAMIDIIN = 6

SENS MMA MIDI input.

MM_TANDY_SENS_MMAMIDIOUT = 7

SENS MMA MIDI output.

MM_TANDY_SENS_MMAWAVEIN = 4

SENS MMA waveform input.

MM_TANDY_SENS_MMAWAVEOUT = 5

SENS MMA waveform output.

MM_TANDY_SENS_VISWAVEOUT = 8

SENS VIS waveform output.

MM_TANDY_VISBIOSSYNTH = 3

VIS BIOS synthesizer.

MM_TANDY_VISWAVEIN = 1

VIS waveform input.

MM_TANDY_VISWAVEOUT = 2

VIS waveform output.

Truevision (MM_TRUEVISION) Product IDs:

MM_TRUEVISION_WAVEIN1 = 1

Truevision waveform input.

MM_TRUEVISION_WAVEOUT1 = 2

Truevision waveform output.

Videologic (MM_VIDEOLOGIC) Product IDs:

MM_VIDEOLOGIC_MSWAVEIN = 1

Videologic waveform input.

MM_VIDEOLOGIC_MSWAVEOUT = 2

Videologic waveform output.

Vitec Multimedia (MM_VITEC) Product IDs:

MM_VITEC_VMAKER = 1

Vitec VMaker.

MM_VITEC_VMPRO = 2

Vitec VMaker Pro.

Vocaltec Ltd. (MM_VOCALTEC) Product IDs:

MM_VOCALTEC_WAVEIN = 2

Vocaltec waveform input.

MM_VOCALTEC_WAVEOUT = 1

Vocaltec waveform output.

Wang Laboratories, Inc. (MM_WANGLABS) Product IDs:

MM_WANGLABS_WAVEIN1 = 1

Wang Laboratories waveform input.

MM_WANGLABS_WAVEOUT1 = 2

Wang Laboratories waveform output.

Winnov, Inc. (MM_WINNOV) Product IDs:

MM_WINNOV_CAVIAR_CHAMPAGNE = 4

Caviar Fourcc Champagne.

MM_WINNOV_CAVIAR_VIDC = 3

Caviar VIDC.

MM_WINNOV_CAVIAR_WAVEIN = 1

Caviar waveform input.

MM_WINNOV_CAVIAR_WAVEOUT = 2

Caviar waveform output.

MM_WINNOV_CAVIAR_YUV8 = 5

Caviar Fourcc YUV8.

Yamaha Corporation of America (MM_YAMAHA) Product IDs:

MM_YAMAHA_GSS_AUX = &H6

GSS auxiliary.

MM_YAMAHA_GSS_MIDIIN = &H5

GSS MIDI input.

MM_YAMAHA_GSS_MIDIOUT = &H4

GSS MIDI output.

MM_YAMAHA_GSS_SYNTH = &H1

GSS synthesizer.

MM_YAMAHA_GSS_WAVEIN = &H3

GSS waveform input.

MM_YAMAHA_GSS_WAVEOUT = &H2

GSS waveform output.

Used by: JOYCAPS, WAVEOUTCAPS

Virtual-Key Codes

Description & Usage

The virtual-key codes identify various virtual keys. Virtual keys mainly consist of actual keyboard keys, but also include "virtual" elements such as the three mouse buttons. The virtual keys also include many "keys" which usually do not exist at all! A key's virtual-key code does not change when modifier keys (Ctrl, Alt, Shift, etc.) are held -- e.g., the 1 key has the same virtual-key code whether 1 or ! is pressed. However, the numbers in the numeric keypad on the keyboard do have two different virtual-key codes: one for when Num Lock is on, and another for when Num Lock is off. Note that the virtual-key codes of 0-9 and A-Z equal their ASCII codes.

Note: The actual meanings of some of the key codes may vary on keyboards designed for different languages. Most notably, the VK_OEM_* that denote punctuation keys may vary between languages, relating to a different punctuation key. The meanings listed below are for a U.S. English-language keyboard.

Virtual Key Codes

VK_LBUTTON

The left mouse button

VK_RBUTTON

The right mouse button

VK_CANCEL

The Cancel virtual key, used for control-break processing

VK_MBUTTON

The middle mouse button

VK_BACK

Backspace

VK_TAB

Tab

VK_CLEAR

5 (keypad without Num Lock)

VK_RETURN

Enter

VK_SHIFT

Shift (either one)

VK_CONTROL

Ctrl (either one)

VK_MENU

Alt (either one)

VK_PAUSE

Pause

VK_CAPITAL

Caps Lock

VK_ESCAPE

Esc

VK_SPACE

Spacebar

VK_PRIOR

Page Up

VK_NEXT

Page Down

VK_END

End

VK_HOME

Home

VK_LEFT

Left Arrow

VK_UP

Up Arrow

VK_RIGHT

Right Arrow

VK_DOWN

Down Arrow

VK_SELECT

Select

VK_PRINT

Print (only used by Nokia keyboards)

VK_EXECUTE

Execute (not used)

VK_SNAPSHOT

Print Screen

VK_INSERT

Insert

VK_DELETE

Delete

VK_HELP

Help

VK_0

0

VK_1

1

VK_2

2

VK_3

3

VK_4

4

VK_5

5

VK_6

6

VK_7

7

VK_8

8

VK_9

9

VK_A

A

VK_B

B

VK_C

C

VK_D

D

VK_E

E

VK_F

F

VK_G

G

VK_H

H

VK_I

I

VK_J

J

VK_K

K

VK_L

L

VK_M

M

VK_N

N

VK_O

O

VK_P

P

VK_Q

Q

VK_R

R

VK_S

S

VK_T

T

VK_U

U

VK_V

V

VK_W

W

VK_X

X

VK_Y

Y

VK_Z

Z

VK_STARTKEY

Start Menu key

VK_CONTEXTKEY

Context Menu key

VK_NUMPAD0

0 (keypad with Num Lock)

VK_NUMPAD1

1 (keypad with Num Lock)

VK_NUMPAD2

2 (keypad with Num Lock)

VK_NUMPAD3

3 (keypad with Num Lock)

VK_NUMPAD4

4 (keypad with Num Lock)

VK_NUMPAD5

5 (keypad with Num Lock)

VK_NUMPAD6

6 (keypad with Num Lock)

VK_NUMPAD7

7 (keypad with Num Lock)

VK_NUMPAD8

8 (keypad with Num Lock)

VK_NUMPAD9

9 (keypad with Num Lock)

VK_MULTIPLY

* (keypad)

VK_ADD

+ (keypad)

VK_SEPARATER

Separator (never generated by the keyboard)

VK_DECIMAL

. (keypad with Num Lock)

VK_DIVIDE

/ (keypad)

VK_F1

F1

VK_F2

F2

VK_F3

F3

VK_F4

F4

VK_F5

F5

VK_F6

F6

VK_F7

F7

VK_F8

F8

VK_F9

F9

VK_F10

F10

VK_F11

F11

VK_F12

F12

VK_F13

F13

VK_F14

F14

VK_F15

F15

VK_F16

F16

VK_F17

F17

VK_F18

F18

VK_F19

F19

VK_F20

F20

VK_F21

F21

VK_F22

F22

VK_F23

F23

VK_F24

F24

VK_NUMLOCK

Num Lock

VK_OEM_SCROLL

Scroll Lock

VK_OEM_1

;

VK_OEM_PLUS

=

VK_OEM_COMMA

,

VK_OEM_MINUS

-

VK_OEM_PERIOD

.

VK_OEM_2

/

VK_OEM_3

`

VK_OEM_4

[

VK_OEM_5

\

VK_OEM_6

]

VK_OEM_7

'

VK_OEM_8

(unknown)

VK_ICO_F17

F17 on Olivetti extended keyboard (internal use only)

VK_ICO_F18

F18 on Olivetti extended keyboard (internal use only)

VK_OEM_102

< or | on IBM-compatible 102 enhanced non-U.S. keyboard

VK_ICO_HELP

Help on Olivetti extended keyboard (internal use only)

VK_ICO_00

00 on Olivetti extended keyboard (internal use only)

VK_ICO_CLEAR

Clear on Olivette extended keyboard (internal use only)

VK_OEM_RESET

Reset (Nokia keyboards only)

VK_OEM_JUMP

Jump (Nokia keyboards only)

VK_OEM_PA1

PA1 (Nokia keyboards only)

VK_OEM_PA2

PA2 (Nokia keyboards only)

VK_OEM_PA3

PA3 (Nokia keyboards only)

VK_OEM_WSCTRL

WSCTRL (Nokia keyboards only)

VK_OEM_CUSEL

CUSEL (Nokia keyboards only)

VK_OEM_ATTN

ATTN (Nokia keyboards only)

VK_OEM_FINNISH

FINNISH (Nokia keyboards only)

VK_OEM_COPY

COPY (Nokia keyboards only)

VK_OEM_AUTO

AUTO (Nokia keyboards only)

VK_OEM_ENLW

ENLW (Nokia keyboards only)

VK_OEM_BACKTAB

BACKTAB (Nokia keyboards only)

VK_ATTN

ATTN

VK_CRSEL

CRSEL

VK_EXSEL

EXSEL

VK_EREOF

EREOF

VK_PLAY

PLAY

VK_ZOOM

ZOOM

VK_NONAME

NONAME

VK_PA1

PA1

VK_OEM_CLEAR

CLEAR

Constant Definitions

Const VK_LBUTTON = &H1

Const VK_RBUTTON = &H2

Const VK_CANCEL = &H3

Const VK_MBUTTON = &H4

Const VK_BACK = &H8

Const VK_TAB = &H9

Const VK_CLEAR = &HC

Const VK_RETURN = &HD

Const VK_SHIFT = &H10

Const VK_CONTROL = &H11

Const VK_MENU = &H12

Const VK_PAUSE = &H13

Const VK_CAPITAL = &H14

Const VK_ESCAPE = &H1B

Const VK_SPACE = &H20

Const VK_PRIOR = &H21

Const VK_NEXT = &H22

Const VK_END = &H23

Const VK_HOME = &H24

Const VK_LEFT = &H25

Const VK_UP = &H26

Const VK_RIGHT = &H27

Const VK_DOWN = &H28

Const VK_SELECT = &H29

Const VK_PRINT = &H2A

Const VK_EXECUTE = &H2B

Const VK_SNAPSHOT = &H2C

Const VK_INSERT = &H2D

Const VK_DELETE = &H2E

Const VK_HELP = &H2F

Const VK_0 = &H30

Const VK_1 = &H31

Const VK_2 = &H32

Const VK_3 = &H33

Const VK_4 = &H34

Const VK_5 = &H35

Const VK_6 = &H36

Const VK_7 = &H37

Const VK_8 = &H38

Const VK_9 = &H39

Const VK_A = &H41

Const VK_B = &H42

Const VK_C = &H43

Const VK_D = &H44

Const VK_E = &H45

Const VK_F = &H46

Const VK_G = &H47

Const VK_H = &H48

Const VK_I = &H49

Const VK_J = &H4A

Const VK_K = &H4B

Const VK_L = &H4C

Const VK_M = &H4D

Const VK_N = &H4E

Const VK_O = &H4F

Const VK_P = &H50

Const VK_Q = &H51

Const VK_R = &H52

Const VK_S = &H53

Const VK_T = &H54

Const VK_U = &H55

Const VK_V = &H56

Const VK_W = &H57

Const VK_X = &H58

Const VK_Y = &H59

Const VK_Z = &H5A

Const VK_STARTKEY = &H5B

Const VK_CONTEXTKEY = &H5D

Const VK_NUMPAD0 = &H60

Const VK_NUMPAD1 = &H61

Const VK_NUMPAD2 = &H62

Const VK_NUMPAD3 = &H63

Const VK_NUMPAD4 = &H64

Const VK_NUMPAD5 = &H65

Const VK_NUMPAD6 = &H66

Const VK_NUMPAD7 = &H67

Const VK_NUMPAD8 = &H68

Const VK_NUMPAD9 = &H69

Const VK_MULTIPLY = &H6A

Const VK_ADD = &H6B

Const VK_SEPARATOR = &H6C

Const VK_SUBTRACT = &H6D

Const VK_DECIMAL = &H6E

Const VK_DIVIDE = &H6F

Const VK_F1 = &H70

Const VK_F2 = &H71

Const VK_F3 = &H72

Const VK_F4 = &H73

Const VK_F5 = &H74

Const VK_F6 = &H75

Const VK_F7 = &H76

Const VK_F8 = &H77

Const VK_F9 = &H78

Const VK_F10 = &H79

Const VK_F11 = &H7A

Const VK_F12 = &H7B

Const VK_F13 = &H7C

Const VK_F14 = &H7D

Const VK_F15 = &H7E

Const VK_F16 = &H7F

Const VK_F17 = &H80

Const VK_F18 = &H81

Const VK_F19 = &H82

Const VK_F20 = &H83

Const VK_F21 = &H84

Const VK_F22 = &H85

Const VK_F23 = &H86

Const VK_F24 = &H87

Const VK_NUMLOCK = &H90

Const VK_OEM_SCROLL = &H91

Const VK_OEM_1 = &HBA

Const VK_OEM_PLUS = &HBB

Const VK_OEM_COMMA = &HBC

Const VK_OEM_MINUS = &HBD

Const VK_OEM_PERIOD = &HBE

Const VK_OEM_2 = &HBF

Const VK_OEM_3 = &HC0

Const VK_OEM_4 = &HDB

Const VK_OEM_5 = &HDC

Const VK_OEM_6 = &HDD

Const VK_OEM_7 = &HDE

Const VK_OEM_8 = &HDF

Const VK_ICO_F17 = &HE0

Const VK_ICO_F18 = &HE1

Const VK_OEM102 = &HE2

Const VK_ICO_HELP = &HE3

Const VK_ICO_00 = &HE4

Const VK_ICO_CLEAR = &HE6

Const VK_OEM_RESET = &HE9

Const VK_OEM_JUMP = &HEA

Const VK_OEM_PA1 = &HEB

Const VK_OEM_PA2 = &HEC

Const VK_OEM_PA3 = &HED

Const VK_OEM_WSCTRL = &HEE

Const VK_OEM_CUSEL = &HEF

Const VK_OEM_ATTN = &HF0

Const VK_OEM_FINNISH = &HF1

Const VK_OEM_COPY = &HF2

Const VK_OEM_AUTO = &HF3

Const VK_OEM_ENLW = &HF4

Const VK_OEM_BACKTAB = &HF5

Const VK_ATTN = &HF6

Const VK_CRSEL = &HF7

Const VK_EXSEL = &HF8

Const VK_EREOF = &HF9

Const VK_PLAY = &HFA

Const VK_ZOOM = &HFB

Const VK_NONAME = &HFC

Const VK_PA1 = &HFD

Const VK_OEM_CLEAR = &HFE

Used By

GetKeyboardState, GetKeyState, keybd_event, KEYBDINPUT

