Quick Start

Borland®]
Delphi~ 6
for Windows

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Refer to the DEPLOY document located in the root directory of your Delphi 6 product for a complete list of files that
you can distribute in accordance with the Delphi License Statement and Limited Warranty.

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

CoPYRIGHT © 1983, 2001 Borland Software Corporation. All rights reserved. All Borland brands and product names
are trademarks or registered trademarks of Borland Software Corporation. Other product names are trademarks or
registered trademarks of their respective holders.

Printed in the U.S.A.

HDE1360WW21000 1EOR0501
0102030405987 65432 1
PDF

Chapter 1

Introduction
Whatis Delphi?
Finding information.
OnlineHelp.
F1 Help
Printed documentation
Developer support services and Web
site. Lo

Typographic conventions

Chapter 2

A tour of the desktop
Starting Delphi.
ThelDE.
The menus and toolbars.
The Component Palette, Form Designer,
and Object Inspector.
The Object TreeView.
The Object Repository.
The Code Editor
CodelInsight.
Class Completion.
Code Browsing
The Diagram page
Viewing formcode.
The Code Explorer.
The Project Manager.
The Project Browser
To-dolists.

Chapter 3
Programming with Delphi

Creating a project
Adding data modules
Building the user interface
Placing components on a form
Setting component properties.
Writing code
Writing event handlers.
Using the VCL and CLX libraries. . .
Compiling and debugging projects
Deploying applications
Internationalizing applications.
Typesof projects
CLX applications

Contents

1-1

oL 14
oL 14

1-2
1-2
1-3

1-4
1-4

2-1
2-1
2-1
22

2-3

2-4
2-5

3-8

iii

Web server applications

Database applications.

BDE Administrator

Data Dictionary
Custom components
DLLs

COM and ActiveX.
Typelibraries.

Chapter 4
Creating a text editor—a tutorial

Starting a new application.
Setting property values.

Adding components to the form

Adding support for a menu and a toolbar
Adding actions to the action manager

Adding standard actions to the

action manager.
Adding images to the image list.
Addingamenu

Adding a toolbar

Clearing the text area (optional)
Writing eventhandlers.

Creating an event handler for the

New command.

Creating an event handler for the

Opencommand

Creating an event handler for the

Save command.

Creating an event handler for the

Save Ascommand.
Creatinga Helpfile.

Creating an event handler for the

Help Contents command

Creating an event handler for the

Help Index command.
Creating an Aboutbox

Completing your application

Chapter 5
Customizing the desktop

Organizing your work area
Arranging menus and toolbars

Docking tool windows
Saving desktop layouts.

SQL Explorer (Database Explorer). .
Database Desktop

Customizing the Component palette 5-5
Arranging the Component palette 5-5
Creating component templates 5-6
Installing component packages. 5-7

Using frames 5-8
Adding ActiveX controls. 5-9

Setting project options. 5-9

Setting default project options 5-9

iv

Specifying project and form templates

asthedefault. 5-9
Adding templates to the Object
Repository 5-10
Setting tool preferences. 5-11
Customizing the Form Designer. 5-11
Customizing the Code Editor 5-12
Customizing the Code Explorer 5-12
Index -1

Introduction

This Quick Start provides an overview of the Delphi development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Delphi.

Chapter 2, “A tour of the desktop” describes the main tools on the Delphi desktop, or
integrated desktop environment (IDE). Chapter 3, “Programming with Delphi”
explains how you use some of these tools to create an application. Chapter 4,
“Creating a text editor—a tutorial” takes you step by step through a tutorial to write
a program for a text editor. Chapter 5, “Customizing the desktop” describes how you
can customize the Delphi IDE for your development needs.

What is Delphi?

Delphi is an object-oriented, visual programming environment for rapid application
development (RAD). Using Delphi, you can create highly efficient applications for
Microsoft Windows 2000, Windows 98, and Windows NT with a minimum of
manual coding. Delphi also provides a simple cross-platform solution when used in
conjunction with Kylix, Borland’s RAD tool for Linux. Delphi provides all the tools
you need to develop, test, and deploy applications, including a large library of
reusable components, a suite of design tools, application and form templates, and
programming wizards.

Finding information

You can find information on Delphi in the following ways, described in this chapter:

* Online Help
¢ Printed documentation
¢ Borland developer support services and Web site

Introduction 1-1

Finding information

For information about new features in this release, refer to What's New in the online
Help Contents and to the www.borland.com Web site.

Online Help

The online Help system provides detailed information about user interface features,
language implementation, programming tasks, and the components in the Visual
Component Library Reference (VCL) and Borland Component Library for Cross
Reference (CLX). It includes all the material in the Delphi Developer’s Guide, Object
Pascal Language Guide, and a host of Help files for other features bundled with Delphi.

To view the table of contents, choose Help | Delphi Help and Help | Delphi Tools, and
click the Contents tab. To look up VCL or CLX objects or any other topic, click the
Index or Find tab and type your request.

F1Help

You can get context-sensitive Help on the VCL, CLX, and any part of the
development environment, including menu items, dialog boxes, toolbars, and
components by selecting the item and pressing F1.

& Delphi Help =1 S |
Button ©
Filz Edit Bookmark Options Help
Propeties | Events | Press F1on aproperty of [Heptoes] Bk [Bt |
Actian -ll event name in the Object —3>TControl.Font
H Anchars [akLeft akTap] InSpeCtOr to d|5p|ay VCL TCartrol Sesalsa Example
BiDitode bdLeftT oRight - - "
H | Contrals the attributes of text written on or in the contral
Cancel False e p
(CxptiE Button property Font: TFont:
[Constraints [T SizeCanstraints] Description
Cursar cilefault To change to a new font, specify a new TFont object. To modify a font,
Default Falze change the value of the Charset, Color, Height, Name, Pitch, Size, or
DragCursar ciDrag Style of the TFont object.
Dragkind dkDrag
Draghiode dmianual
Enabled True
IEl Fort [TFonti ” =
Height 25
HelpContext |0 =l
All shown & Unitl_pas 8 [=] B
unin | -
unit Unitl: =
interface
uses
. Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,
In the Code editor, press Dialogs, Sedcrrls:
& Delphi Help [_[O]x]
Fiona |anguagev VCL! or type Fie Edt Bookmak Options Help
CLX element. S — Trorml = class TForm) HepIopics] Back | Frt |
[\ Euvvomi—+FBurton: |
: Tcheckbor; P TCheckBox
private Hierarchy Properties Methods Events Using
{ Private declarations | 1CheckBox Seedlso
public TCheckBox represents a check box that can be on (checked) or off
{ Public declarations ;| (Unchecked)
end;
Unit
StdCtrls

1

12: 6 |Modified Insert Co| Description

A TCheckBiax component presents an option for the user. The user can
check the box to select the option, or uncheck it 1o desslect the
aption

1-2 Quick Start

Printed

I Formt = £ Press F1ona
i component on a form
S i |
File Edt Bookmark Options Help
HepTopics] Back | Fint |
@] TButten
Higrarchy Properties Methods Events Using TButton
See also

Unit
StdCtrls

Description

TButton is a push button contral.

Use TButton to put a standard push button on a form. TButton
introduces several properties to control its behavior in a dialog box
setting. Users choose button controls to initiate actions

H

=

documentation

Pressing the Help button in any dialog box also displays context-sensitive online

documentation.

S Delphi 6 - Projectl

DR @[S~

2 Atach to Process.
==l =

i Parameters..
% Fegister Activex Server

M= E3

Eile Edit Search iew Project | Bun Component Database Tools Window Help H <Mone> =] | g;‘. %‘

F3 [Sustem | Data Access | Data Controks | dbExoress | DataSnao | BDE | artl®

= el = P R

¥ Urregister Activel! Server & Delphi Help M= B
Irstall COM+ Dbjects. Fie Edt Bookmark Options Help
Press F1on any - N | I | ‘
B = Run|Step Over
menu command, § Trace o /7 1 e e
i 'Bi Trace to Mext Souice Line Shilt+F7 L
dllalog bOX, qr e Fa4 Choose Run|Step Over to execute a program one line at a time, i‘
window to d|sp|ay = SN — - stepping over procedures while executing them as a single unit
. G Run Untl Betumn i+
He|p on that item. =) G B S The Step Cver command executes the program statement
highlighted by the execution point and advances the execution
I Program Pause point to the next statement
Frogram Fieset CulF2 = If you issue the Step Over command when the execution point
CW iz located on a function call, the debugger runs that function at
nspect... full speed, then positions the execution point on the statement
Evaluate/Moiy... CHl+F7 that follows the function call
*
o Add'watch... CukFs | = Ifyouissue Step Cwer when the execution point is positioned on
#dd Breakpoint 4 [the end statement of a routine, the routine returns from its call, -
i 1=l

Error messages from the compiler and linker appear in a special window below the
Code editor. To get Help with compilation errors, select a message from the list and

press F1.

Printed documentation

This Quick Start is an introduction to Delphi. To order additional printed
documentation, such as the Developer’s Guide, refer to shop.borland.com.

Introduction 1-3

Developer support services and Web site

Developer support services and Web site

Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support, refer to
http:/ /www.borland.com/devsupport/.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi, additional Delphi technical documents, and Frequently Asked
Questions (FAQs).

Typographic conventions

This manual uses the typefaces described below to indicate special text.

Table 1.1 Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Ttalicized words in text represent Delphi identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

1-4 Quick Start

A tour of the desktop

This chapter explains how to start Delphi and gives you a quick tour of the main
parts and tools of the desktop, or integrated desktop environment (IDE).

Starting Delphi

You can start Delphi in the following ways:

Double-click the Delphi icon (if you've created a shortcut).

Choose Programs | Borland Delphi 6 | Delphi 6 from the Windows Start menu.
Choose Run from the Windows Start menu, then enter Delphi32.
Double-click Delphi32.exe in the Delphi\Bin directory.

The IDE

When you first start Delphi, you'll see some of the major tools in the IDE. In Delphi,
the IDE includes the menus, toolbars, Component palette, Object Inspector, Object
TreeView, Code editor, Code Explorer, Project Manager, and many other tools. The
particular features and components available to you will depend on which edition of
Delphi you've purchased.

A tour of the desktop 2-1

The menus and toolbars

The Object TreeView displays a
hierarchical view of your components’ The menus and toolbars access a host of features

parent-child relationships. and tools to help you write an application.

i Delphi 6 - Projert1

File Edi Search |View Pioject Run Componert Database

Standard | Addi

T e | The Component palette
ols | dbEsoress | DataSnan | EDE | ADD | InterBase | S0AP | IntemetExoress | Intem <12 | Contains ready-made

| Win32| Sustem| Data dccess | Data

DE-B 0% 23] &

5D les |t OFFAMDm R e &0 [~ components to add to
EEIEE your projects.
33 Form! . .
~ crase trromm | Code editor displays
u EE— X .
$50 o oy 00de to view and edit
%E?;T,im
5 s
g:/\ndn:m
.) ——+—The Form Designer
] Aélglcm e contains a blank form
Bem (o on which to start
designing the user
interface for your
; IS IS application. An
application can include
St |50 S S several forms.
The Object Inspector is)
used to change objects’ The Code Explorer shows you the classes, variables, and
properties and select event routines in your unit and lets you navigate quickly.

handlers.

Delphi’s development model is based on two-way tools. This means that you can
move back and forth between visual design tools and text-based code editing. For
example, after using the Form Designer to arrange buttons and other elements in a
graphical interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by Delphi
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, and compile, test,
debug, and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 5, “Customizing the
desktop.”

The menus and toolbars

The main window, which occupies the top of the screen, contains the main menu,
toolbars, and Component palette.

Main window
Fie Edt Seach View Project Run Component Datsbase Tools Wwindow Help H <None> -] & d\;| in its default

e | @22 g“ & | || Standard | Aduitonal | Wing2 | Svstem | Data Acoess | Data Coniroks | dbsoress | DataSnan| BOE | D0 | IneBas=] S04P | Inten 1> arrangement.
H57(0) -l a5 |t OF 3 AR eir ¢ e E] g |

2-2 Quick Start

The Component Palette, Form Designer, and Object Inspector

Delphi’s toolbars provide quick access to frequently used operations and commands.
Most toolbar operations are duplicated in the drop-down menus.

Standard toolbar View toolbar Desktops toolbar
Remove
Open file from View Toggle Name of saved Save current
Nlew Save project project unit form/unit desktop layout desktop
| |
- . / | | " -
De-messs |50 b giae
| | | | |
17 » . ! |
Open Saveall Addfileto View New Set debug
project form form deskiop
Debug toolbar Internet toolbar
ug To_find out what a button dpes,
List of projects ~ Trace New WebSnap New WebSnap point to it for a moment until a
you can run into Application Data Module tooltip appears.

| | | You can use the right-click

. ty ey - - — menu to hide any toolbar. To
“ >~ a g ‘ 3 | | T display a toolbar if it's not
| | | \ showing, choose View|Toolbars
Run Pause Step New WebSnap External and check the one you want.
over Page Module Editor

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbars are also customizable. You can add commands you want to them or
move them to different locations. For more information, see “Arranging menus and
toolbars” on page 5-1 and “Saving desktop layouts” on page 5-4.

For more information...
If you need help on any menu option, point to it and press F1.

The Component Palette, Form Designer, and Object Inspector

The Component palette, Form Designer, Object Inspector, and Object TreeView work
together to help you build a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing visual
or nonvisual VCL and CLX components. The pages divide the components into

various functional groups. For example, the Standard, Additional, and Win32 pages
include windows controls such as an edit box and up/down button; the Dialogs page

A tour of the desktop 2-3

The Object TreeView

includes common dialog boxes to use for file operations such as opening and saving
files.

Click to view
more pages.

Standard IAdd\linnaII Win32| Sustaml DataAccessI Diata Enntrn\sl dhExnressI DataSnanI BDE | ADO I InterBaseI SDAPI IntemetExnressI Inlemell LI_’
h OF & AR Ewr o 88w 5L S \

Components

Component palette pages, grouped by function

Each component has specific attributes—properties, events, and methods—that
enable you to control your application.

After you place components on the form, or Form Designer, you can arrange
components the way they should look on your user interface. For the components
you place on the form, use the Object Inspector to set design-time properties, create
event handlers, and filter visible properties and events, making the connection
between your application’s visual appearance and the code that makes your
application run. See “Placing components on a form” on page 3-2.

After you place components on a form, the Object Inspector dynamically
changes the set of properties it displays, based on the component selected.

Button TEutton

Properties | Ewents |

Default False B

DragCursor crDrag

Dragkind dkDrag

Draghode | dmidanual

Enabled Tiue i

Font SRR
Charset DEFAULT_CHE ™ CheckBox2 : = .Buﬂum. E
Calor M clwindowTe =
Height 1 ™ CheckBox3 : i L
Hame MS Sans Serif
Pitch fpDefault
Size a

H5tyle |

Height 25

HelpContest 0 Panell

Hint

Left 128 =

All shown 7

For more information...
See “Component palette” in the online Help index.

The Object TreeView

The Object TreeView displays a component’s sibling and parent-child relationships
in a hierarchical, or tree diagram. The tree diagram is synchronized with the Object
Inspector and the Form Designer so that when you change focus in the Object
TreeView, both the Object Inspector and the form change focus.

You can use the Object TreeView to change related components’ relationships to each
other. For example, if you add a panel and check box component to your form, the

2-4 Quick Start

The Object Repository

two components are siblings. But in the Object TreeView, if you drag the check box
on top of the panel icon, the check box becomes the child of the panel.

If an object’s properties have not been completed, the Object TreeView displays a red
question mark next to it. You can also double-click any object in the tree diagram to
open the Code editor to a place where you can write an event handler.

If the Object TreeView isn’t displayed, choose View | Object TreeView.

The Object TreeView,
Object Inspector, and the

Form Designer work
together. When you click an
object on your form, it
automatically changes the
focus in both the Object
TreeView and the Object
Inspector and vice versa.

Press Alt-Shift-F11 to focus
on the Object TreeView.

The Object TreeView is especially useful for displaying the relationships between

database objects.

For more information...
See “Object TreeView” in the online Help index.

The Object Repository

| Action -
Alignment | iaRiightlustiy
AlowGiaped | False
[&nchars [akLeft.akTop] _|
BiDiMode | belLefiTaRight
Caplion CheckBaxl
Checked |Fake
Color clBinFace
Constraints |(TSizeCanstaint
olEl] Tiue
Cursor ciDefault |
Al shown 7

Obiject TreeView E1| M 5% Form1
s ¥
[T] Fom1
.E@Paneﬁ
{Z] CheckBoxl

Dbiect Inspector
CheckBaxl TCheckBox =

Properties |Evems|

}

i Crecfbon &
& H

Panelt

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose File |

New | Other to display the New Items dialog box when you begin a project. The New

A tour of the desktop

2-5

The Code Editor

Items dialog box is the same as the Object Repository. Check the Repository to see if
it contains an object that resembles one you want to create.

The Repository’s tabbed pages include 3% Hew ltems
Ol:)leCtS like forms' frame§' unl.ts’ and Data Modules] Business I ‘wehSnap 1 SOAP I Corha 1
leards to Cl’eate speCIallzed |temS. Mew 1 Activex I e ultitier] Project! 1 Forms 1 Dialogs 1 Projects 1
N & =

When you're creating an item based on ™ Baich Fie [Componerl Console
one from the Object Repository, you #ppiiation Applicalion
can copy, inherit, or use the item: 7= = L

Py E % O
Copy (the default) creates a copy of Contiol Pansl Conbiol Panel DslaMorkds DLLwizad Form
the item in your project. Inherit means Application Mode
changes to the object in the Repository — - =
are inherited by the one in your project. % i\% @
Use means Changes to the Ob]eCt in Frame Package Project Group Hes\?}‘::;dDLL Service j
your project are inherited by the object = = =

in the Repository.

(1] | Cancel ‘ Help |

To edit or remove objects from the Object Repository, either choose Tools | Repository
or right-click in the New Items dialog box and choose Properties.

Object Repositary [x]
DObjects:
You can add, remove, or S abort bor
rename tabbed pages from T %gabtl:?di pas
the Object Repository. S | ELTT
= E] QuickRAeport Master/Detail
[% 102 st Rename Page. 5 uickReport Labels
EditDbject...
Click the arrows to change Dtz Otice!
the order in which a tabbed
page appears inthe New —> 1| I Heifm) I i o

Items dialog box.

OK. I Cancel | Help |

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 5-10.

For more information...

See “Object Repository” in the online Help index. The objects available to you will
depend on which edition of Delphi you purchased.

The Code Editor

As you design the user interface for your application, Delphi generates the
underlying Object Pascal code. When you select and modify the properties of forms
and objects, your changes are automatically reflected in the source files. You can add

2-6 Quick Start

The Code Editor

code to your source files directly using the built-in Code editor, which is a full-

featured ASCII editor.
Components added
Uritl | -5 .| totheformare
= mit Unitis ;I reflected in the code.
interface

uses

Dialogs:

Generated

code. type

TForml = class (TForm)
Buttonl: TButton;

private
public

end;

R

Windows, Messages, SysUcils, Va

FopupMenul: TPopuplenu:

{ Private declarations }

{ Public declarations }

¥ Form1

[_[O1x]

= Buttoril E

ot

T 1 Modfied et

|\Eode‘i

Delphi provides various aids to help you write code, including the Code Insight
tools, class completion, and code browsing.

Code Insight

The Code Insight tools display context-sensitive pop-up windows.

Table 2.1
Tool

Code Insight tools

Code completion

Code parameters
Tooltip expression evaluation
Tooltip symbol insight

Code templates

How it works

Type a class name followed by a dot (.) to display a list of
properties, methods, and events appropriate to the class, select
it, and press Enter. In the interface section of your code you can
select more than one item. Type the beginning of an assignment
statement and press Ctri+space to display a list of valid values for
the variable. Type a procedure, function, or method name to
bring up a list of arguments.

Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

While your program has paused during debugging, point to any
variable to display its current value.

While editing code, point to any identifier to display its
declaration.
Press Ctrl+J to see a list of common programming statements that

you can insert into your code. You can create your own
templates in addition to the ones supplied with Delphi.

A tour of the desktop 2-7

The Code Editor

With code completion, when you type the dot
| e in Buttonl . Delphi displays a list of
= (1 verisbles/Const| procedure TForml.ButtonlClick (Sender: Tofsl properties, methods, and events for the class.
o 35:""1 b;g;'t‘on . As you type, the list automatically filters to the
5 Classes end; [ComiOE CrRE SCairar e O selection that pertains to that class. Select an
& Contrals e T ligment: und item on the list and press Enterto add it to
g E:::fs end. pmpenn; Q“iﬁ" -TETa:H : your code.
prope: nchors " Sort by Name N
g ﬁi‘ﬁ;s bioperty _ BibiMode T SHHHEE N, 5 Procedures and properties are colored as teal
3 sacs and functions as blue.

3 5 I]| L . .
L | : # = -|> You can sort this list alphabetically by right-
type =l clicking and clicking Sort by Name.

. oot Pt
POPUBNENT e GHCiis TButton: lasslT ButonControl - StdCts. pas (671)]
e _J[= The tooltip symbol insight displays declaration
ol Fubre dectazations } information for any identifier when you pass
the mouse over it.
va}r'urml: TForml;
. of
1212 [Modiied [Insert [\Code/ 2

To turn these tools on or off, choose Tools | Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

Class Completion

Class completion generates skeleton code for classes. Place the cursor anywhere
within a class declaration of the interface section of a unit and press Ctri+Shift+C or
right-click and choose Complete Class at Cursor. Delphi automatically adds private
read and write specifiers to the declarations for any properties that require them,
then creates skeleton code for all the class’s methods. You can also use class
completion to fill in class declarations for methods you’'ve already implemented.

To turn on class completion, choose Tools | Environment Options, click the Explorer
tab, and make sure Finish incomplete properties is checked.

For more information...
See “Code Insight” and “class completion” in the online Help index.

Code Browsing

While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called Tooltip Symbol Insight displays where the
identifier is declared. Press Ctrland the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

The Code editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code editor keeps track of where you've been in

2-8 Quick Start

The Code Editor

the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

B mdiframe pas [_ O[]
WoIFrane | @ -

4l Press Ctrland click or right-click and click Find

Declaration to jump to the definition of the identifier.

J The Code editor maintains a list of the definitions you
jumped to.

{ Private declarations }
public

{ Public declarations)
end;

<— Click the back arrow to
return to the last place
you were working in
your code. Then click
the forward arrow to
move forward again.

“«

21024 Modfied Insert \Code {Diagiam

EER [Inser

You can also move between the declaration of a procedure and its implementation by
pressing Ctri+Shift+T or Ctrl+Shift+l..

To customize your code editing environment, see “Customizing the Code Editor” on
page 5-12.

For more information...
See “Code editor” in the online Help index.

The Diagram page

The bottom of the Code editor may contain one or more tabs, depending on which
edition of Delphi you have. The Code page, where you write all your code, appears
in the foreground by default. The Diagram page displays icons and connecting lines
representing the relationships between the components you place on a form or data
module. These relationships include siblings, parent to children, or components to
properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag
one or multiple icons to the Diagram page to arrange them vertically. To arrange
them horizontally, press Shift while dragging. When you drag icons with parent-
children or component-property dependencies onto the page, the lines, or connectors,
that display the dependent relationships are automatically added. For example, if
you add a dataset component to a data module and drag the dataset icon plus its
property icons to the Diagram page, the property connector automatically connects
the property icons to the dataset icon.

For components that don’t have dependent relationships but where you want to
show one, use the toolbar buttons at the top of the Diagram page to add one of four

A tour of the desktop 2-9

The Code Editor

connector types, including allude, property, master/detail, and lookup. You can also
add comment blocks that connect to each other or to a relevant icon.

From the Object TreeView, drag
the icons of the components to
the Diagram page.

To view other diagrams you've named in the
current project, click the drop-down list box.

Type a name and description for your
diagram.

Use the Diagram page
toolbar buttons—Property,
Master/Detail and Lookup—
to designate the relationship
between components and
components and their
properties. The appearance
of the connecting line varies
e for each type of relationship.

/P Click the Comment block
7 button to add a comment,

e and the Allude connector
oo (& s | button to draw a connection

to another comment or icon.
< o

11 [Modfied [Insert [\Code)Dizgram/ /

Vou can sef the DataSource

You can type a name and description for your diagram, save the diagram, and print it
when you are finished.

For more information...
See “diagram page” in the online Help index.

Viewing form code

Forms are a very visible part of most Delphi projects—they are where you design the
user interface of an application. Normally, you design forms using Delphi’s visual
tools, and Delphi stores the forms in form files. Form files (.dfm, or .xfm for a CLX
application) describe each component in your form, including the values of all
persistent properties. To view and edit a form file in the Code editor, right-click the
form and select View as Text. To return to the graphic view of your form, right-click
and choose View as Form.

2-10 Quick Start

The Code Explorer

5 Forml -]
D clphiB\Bin\Unit1dfm = 3

-
N RS S object Formi: TFormi =
Left = 211
= Buiten] E Top = 132
Width = 783 H
BERCH Hesons = 540 Use View As
Caption = 'Formi! Text to view a
E' Color = clBrnFace .
Font.Charset = DEFAULT GHARSET text deSC”p“On
- f
Edit v Font.Color 7ClW1ndDWTEXE Of the form S
Font.Height = -11 " A
Cortic] D Font.Name = 'HS Sans Serif’ attributes in the
; Font.Suyle = [] \
Podion 1| oracreaceorasr = raiss Code editor.
Flip Children s PixelsPerInch = 96
i) Tab Oider TextHeight = 13
21 1B Creafion Order object Buttonl: TButton
Aevertia|rerited Lefe = 236
Top = 144
Add b Repository.. i _,;I
View s Text >
[v TesDFM 1o 1 [Modfied [Insert [\Code/ v

You can save form files in either text (the default) or binary format. Choose Tools |
Environment Options, click the Designer page, and check or uncheck the New forms
as text check box to designate which format to use for newly created forms.

For more information...
See “form files” in the online Help index.

The Code Explorer

When you open Delphi, the Code Explorer is docked to the left of the Code editor
window, depending on whether the Code Explorer is available in the edition of
Delphi you have. The Code Explorer displays the table of contents as a tree diagram
for the source code open in the Code editor, listing the types, classes, properties,
methods, global variables, and routines defined in your unit. It also shows the other
units listed in the uses clause.

You can use the Code Explorer to navigate in the Code editor. For example, if you
double-click a method in the Code Explorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code editor.

A tour of the desktop 2-11

The Project Manager

—————— DiFiane | -

[Classes

w4 TFrameForm procedure TFrameForm.TilelClick(Sender: TObject); =

=0 Published egin)])
© Buengeizons S0 Double-click an item in the Code
& morgecrelf S e Explorer and the cursor moves to
?5 CascadelCe procedure TFrameForm.cCascadelClick(Sender: Tobjeet): that item’s implementation in the
Exitl i . .
o oo T Code editor. Press Ctrl+Shift+E to
o e[| move the cursor back and forth
g gT 1 procedure TFrameForm.ArrangeiconsiClick (3ender: TObject); bEIween the |aSt place you Were in
o Nowiciek || ewin the Code Explorer and Code editor.
Operi hrrangelcons; . X
e | e Each item in the Code Explorer has
& oA racedure TrrameForm. GpenicLick(Senders Tohieet) an icon that designates its type.
o Tile1 Clich begi

% ;[/Jmifnlw: eg;nOpEnFllEDlang.ExE:utE then

[] Variables/Constants with TEditForm.Create (Self] do

@9 FrameForm Openi(OpenFilebialog. FileNawe) _,j
[Uses ‘ r
<] I |Insert \CodeDiagram / 4

To configure how the Code Explorer displays its contents, choose Tools |
Environment Options and click the Explorer tab. See “Customizing the Code
Explorer” on page 5-12.

For more information...
See “Code Explorer” in the online Help index.

The Project Manager

When you first start Delphi, it automatically opens a new project, as shown on

page 2-2. A project includes several files that make up the application or DLL you are
going to develop. You can view and organize these files—such as form, unit,
resource, object, and library files—in a project management tool called the Project
Manager. To display the Project Manager, choose View | Project Manager.

Project Manager =]
docker. ~ 2] x
ocKeR e ‘ New Femove Achvate

Files | Path

ojoct £:\Frogiam Files\Barland\DielphiGhin
C:\Frogiam Files'Barland\DelphiG\Demes\Docking
ConjoinHast C:\Frogiam Files'Barland\Delphi\Demes\Docking

DockFom C:4Program Files\Borand\Delphig\Demos\Docking
Main C:4Program Files\Borand\Delphig\Demos\Docking
TabHost C:4Program Files\Borand\Delphig\Demos\Docking

[Z] TabHostpas C:\Program Files\Borland\Dielphig\Demos\Docking
= TabDockHost C:\Program Files\Borland' DelphiS\Demost\Docking

You can use the Project Manager to combine and display information on related
projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 5-9.

For more information...
See “Project Manager” in the online Help index.

2-12 Quick Start

The Project Browser

The Project Browser

The Project Browser examines a project in detail. The Browser displays classes, units,
and global symbols (types, properties, methods, variables, and routines) your project
declares or uses in a tree diagram. Choose View | Browser to display the Project
Browser.

Globels | [Classes | Units | The Project Browser has two
EE¥ 06 =] 3 TObjsct resizeable panes: the

£} TPersistent Scape | nheritance | References | Inspector pane (on the left)
=% TCompanent and the Details pane. The

-3 TContol = = Inspector pane has three tabs
= ¥4 TwinContro o SllerGanstuction for globals, classes, and units
=% TSerallingWWinContral s BeforeDestruction) ’ ’ '
=¥} TCustamFarm & Classinfo Globals displays classes,
=3 TFarm "':J gﬁssmﬁ’”el types, properties, methods,
¥4 TFom o lnashlamels variables, and routines.
- ClagsParent
& Class Type Classes displays classes in a
& Cleanuplnstance B hierarchical diagram.
-4 Creste . . o »
g DefauliHandler Units displays units, identifiers
Destroy declared in each unit, and the
-4 Dispatch other units that use and are

- FieldAddress

used by each unit.
du Free =l

By default, the Project Browser displays the symbols from units in the current project
only. You can change the scope to display all symbols available in Delphi. Choose
Tools | Environment Options, and on the Explorer page, check All symbols (VCL
included).

For more information...
See “Project Browser” in the online Help index.

To-do lists

To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items

A tour of the desktop 2-13

To-do lists

directly in the source code. Choose View | To-Do List to add or view information
associated with a project.

Action ltem | ¥ | Modus = | Owner | Categoy
O @ Add Action Manager dialog box 1 Joeng u
] Add buttans ta library 2 Joerg u
FEE 2
= o Right-click on a to-do list to
T+, .
Edt F2 <1 display commands that let you
Delate Del

sort and filter the list.

I -

Filter » Staws
A v Show Completed ltems Type
[afitems [0 hidden) |2 ¥ Show ToolTips when Clipped Priarity

. -
CI|Ck the CheCk Table Properties..

Categery

box when you're
done with an item.

v Dockable

For more information...
See “to-do lists” in the online Help index.

2-14 Quick Start

Programming with Delphi

The following sections provide an overview of software development with Delphi,
including creating a project, working with forms, writing code, and compiling,
debugging, deploying, and internationalizing applications, and including the types
of projects you can develop.

Creating a project

A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start Delphi, a new project
opens. It automatically generates a project file (Projectl.dpr), unit file (Unitl.pas),
and resource file (Unitl.dfm; Unitl.xfm for CLX applications), among others.

If a project is already open but you want to open a new one, choose either File | New |
Application or File | New | Other and double-click the Application icon. File | New |
Other opens the Object Repository, which provides additional forms, modules, and
frames as well as predesigned templates such as dialog boxes to add to your project.
To learn more about the Object Repository, see “The Object Repository” on page 2-5.

When you start a project, you have to know what you want to develop, such as an
application or DLL. To read about what types of projects you can develop with
Delphi, see “Types of projects” on page 3-8.

For more information...
See “projects” in the online Help index.

Programming with Delphi 3-1

Building the user interface

Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File | New | Data Module. Delphi opens an empty
data module, which displays an additional unit file for the module in the Code
Editor, and adds the module to the current project as a new unit. Add nonvisual
components to a data module in the same way as you would to a form.

¥ DataModule2 [_ O] x|

e Double-click a nonvisual
| :‘#‘;I component on the Component
) —1 palette to place the component in
ClientD ataSet1 DataSourcel the data module.

When you reopen an existing data module, Delphi displays its components.

For more information...
See “data modules” in the online Help index.

Building the user interface

With Delphi, you first create a user interface (UI) by selecting components from the
Component palette and placing them on the main form.

Placing components on a form

To place components on a form, either:

1 Double-click the component; or
2 Click the component once and then click the form where you want the component

to appear.
i Delphi 6 - Project] 9 (=]
Fle Edi Seach View Projct Run Component Database Tools Window Help H <None> o | ﬂ,|

OE-| | & = | = g“ & || Standard | Addtional | wina2 | Sustem | Datdceess | Data Controls | dbEsoress | DataSnan | BDE | AD0 | InterBase | S0P | intem >
wile w1 L= | Alﬁﬁ @ Elees T2 &

T

Click a component on the Component palette.

3-2 Quick Start

Building the user interface

Select the component and drag it to wherever you want on the form.

Then click where you want to place it on the form. —

55 Project Manager ChilsAlb+F11

Transtation Manager Or choose a
S Object lspsctor P11 component from
?:\;:Dt EI:E\flew Shift+Alt+F11 an alphabetical
= list.

EE] Alignment Palette
F Browser Shift+Ctil+B

2 Window List.
Debug Windows
Desktops

Search by name:

T3 Toaale Form/Unit
[0 Units..
S Forme

. Tise Libran:
Mew Edit windaw

Toolbars

iE &8 B

m TécoessRelerences [LI
A b Farm

For more information...
See “Component palette” in the online Help index.

Setting component properties

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears
and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

Button TEutton 2
Properties | Eventsl
Default False
DragCursor | cDrag
DragKind dkDrag
Dragtode dmbtd anual
Enabled Tiie {
Font
Charset DEFAULT_OME
Calor M clvindowTe
Height -1
Hame S Sans Ser
Pitch fpDefault
Size a "
Style]
Height 25
HelpContext |0
Hint
Left 128 =
Il shawn A

You can also click a plus sign to open a detail list.

Or use this drop-down list to
select an object. Here,
Button1 is selected, and its
properties are displayed.

You can select a
component, or object, on
the form by clicking on it.

Select a property and
change its value in the
right column. e
Click an ellipsis to open B -—“‘l‘—f
a dialog box where you

can change the Sesmssicniinioi By
properties of a helper R HTE P
object.

Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex

Programming with Delphi 3-3

Building the user interface

values. When you click on such a property value, you'll see an ellipsis. For some
properties, such as size, enter a value.

Puosition

Double-click here to

poDesigned
FrintScale poPropaortional Change the value from Font EHE
Scaled Trueto False. Eont: Font styls Siee:
ShowHint Falze [Reguiar 2 lLI
Tan n
Cancel
. . 10
Laption Panell Click any ellipsis to NewCertuySchibk: 12 o |
Calo olTea glds.woi fr:gtr)errtoy o B Ooepet, e LS "
L Palat 24 H
property. .y Bt ° a4
J/ Effects Sample
Enabled I U I Strkeout
[+Fant (TFaht] =] I Underline Adbbize
FullRenaint True =l Laolor:
[E =k =] | Serpt
. . Westemn -
Click on the down arrow to select from a list
of valid values.

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

The Object Inspector also supports expanded inline component references. This
provides access to the properties and events of a referenced component without
having to select the referenced component itself. For example, if you add a button
and pop-up menu component to your form, when you select the button component,
in the Object Inspector you can set the PopupMenu property to PopupMenul, which
displays all of the pop-up menu’s properties.

B Fomi
Set the Button Eu1 = TEuItun 7|
component's Propeties | Events | Jiapicaanianias
PopupMenu property Fpauemsmwm :w -
to PopuplMenul, and Popghens Papipheml =] € il |
lignment | paRight 8 : A .
all of the popup AuluHutkeyz]maAutumah: \L
) 1 AutoLinef ad
menu’s properties Pl oo n

appear when you
click the plus sign (+).

Inline component
references are
colored red, and their
subproperties are
colored green.

BiliMode
HelpContext
Images

bdLeftT oRight
o

Items.

Menudnimati
Mame
OwnerDraw
FarentBiDit
Tag

[Menu)
]
Popuptenul
False
True
o

TrackButton
ShowHint

tbRightEution

&l shown

False hd

SN

=] B3

For more information...
See “Object Inspector” in the online Help index.

3-4 Quick Start

Writing code

Writing code

An integral part of any application is the code behind each component. While
Delphi’s RAD environment provides most of the building blocks for you, such as
preinstalled visual and nonvisual components, you will usually need to write event
handlers, methods, and perhaps some of your own classes. To help you with this
task, you can choose from thousands of objects in Delphi’s VCL and CLX class
libraries. To work with your source code, see “The Code Editor” on page 2-6.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

Here, Button1 is selected and its type is displayed: TButton.
[Bunant uen <—=t— Click the Events tab in the Object Inspector to see the
Propetties Events | events that the Button component can handle.
Action
TR ..o Cick__ R
OnContextPopt Uil | FEIBEE
g:g::ggi‘g |—SG|eCt an eX|St|ng eVem procedure TForml.ButtonlClick(Sender: TChject); ;l
OnEreD ok handler from the drop- pean
OnEndDrag down list. end:
OnEnter . .
st r double-click in the
Or double-click in th end.
Do value column, and Delphi
Bt generates skeleton code
OnMouseDion for the new event
OntouseMaove
R handler.
OnStartDock.
OnStartDrag . _»ILI
P il KIS
|A|| S:::i‘ AL 7 a1 ‘Mudilied Insert |\Code,(D|aglam,/ 4
For more information...

See “events” in the online Help index.

Using the VCL and CLX libraries

Delphi comes with two class libraries made up of objects, some of which are also
components or controls, that you use when writing code. You can use the Visual
Component Library (VCL) for Windows applications and Borland Component
Library for Cross Platform (CLX) for Linux applications. These libraries include
objects that are visible at runtime—such as edit controls, buttons, and other user
interface elements—as well as nonvisual controls like datasets and timers. The

Programming with Delphi 3-5

Compiling and debugging projects

following diagram below shows some of the principal classes that make up the VCL

The CLX hierarchy is similar.

TObject
| | I | |
Exception ~ TStream TPersistent TComObject Tinterface
| | I | |
TGraphicsObject TGraphic TComponent TCollection TStrings
| | | | | |
TApplication TDataSet TMenu TControl TCommonDialog TField
| | | Most visual controls inherit
TGraphicControl TWinControl from TWinControl or in

TScrollingWinControl

CLX, TWidgetControl.
! |

TCustomControl

TCustomForm

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to Delphi forms and data modules.
Because VCL and CLX components are hooked into the IDE, you can use tools like
the Form Designer to develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a VCL or CLX button
control, you don’t have to write code to handle generated events when the button is
clicked; you are responsible only for the application logic that executes in response to

the click itself.

Most editions of Delphi come with VCL and CLX source code and examples of Object

Pascal programming techniques.

For more information...

See “Visual Component Library Reference” and “CLX Reference” in the Help
contents and “VCL” in the online Help index. See http://www.borland.com/delphi
for open source and licensing options on CLX.

Compiling and debugging projects

After you have written your code, you will need to compile and debug your project.
With Delphi, you can either compile your project first and then separately debug it,
or you can compile and debug in one step using the integrated debugger. To compile
your program with debug information, choose Project | Options, click the Compiler
page, and make sure Debug information is checked.

Delphi uses an integrated debugger so that you can control program execution,
watch variables, and modify data values. You can step through your code line by
line, examining the state of the program at each breakpoint. To use the integrated

3-6 Quick Start

Compiling and debugging projects

debugger, choose Tools | Debugger Options, click the General page, and make sure
