Introduction to Oracle9i: PL/SQL

Student Guide . Volume 1

40054GC10
Production 1.0
June 2001
D32945

ORALCLE"

Authors

Nagavalli Pataballa
Priya Nathan

Technical Contributors

and Reviewers

AnnaAtkinson
Bryan Roberts
Caroline Pereda
Cedjas Zarco
Chaya Rao

Coley William
Daniel Gabel

Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff

Judy Brink
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Robert Squires
Roger Abuzalaf
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Sue Onraget

Susan Dee

Publisher
Sandya Krishna

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface
Curriculum Map

Introduction
Course Objectives 1-2
About PL/SQL 1-3
PL/SQL Environment |-4
Benefits of PL/SQL I-5
Benefits of Subprograms 1-10
Invoking Stored Procedures and Functions 1-11
Summary [-12

1 Declaring Variables
Objectives 1-2
PL/SQL Block Structure 1-3
Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5
Program Constructs 1-6
Use of Variables 1-7
Handling Variables in PL/SQL 1-8
Types of Variables 1-9
Using iSQL*Plus Variables Within PL/SQL Blocks 1-10
Types of Variables 1-11
Declaring PL/SQL Variables 1-12
Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14
Variable Initialization and Keywords 1-15
Scalar Data Types 1-17
Base Scalar Data Types 1-18
Scalar Variable Declarations 1-22
The %TYPE Attribute 1-23
Declaring Variables with the % TYPE Attribute 1-24
Declaring Boolean Variables 1-25
Composite Data Types 1-26
LOB Data Type Variables 1-27
Bind Variables 1-28
Using Bind Variables 1-30
Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33
Practice 1 Overview 1-35

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data type Conversion 2-10
Nested Blocks and Variable Scope 2-12
Identifier Scope 2-14
Qualify an Identifier 2-15
Determining Variable Scope 2-16
Operators in PL/SQL 2-17
Programming Guidelines 2-19
Indenting Code 2-20
Summary 2-21
Practice 2 Overview 2-22

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-13
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX by Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of PL/SQL Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-7
Opening the Cursor 6-9
Fetching Data from the Cursor 6-10
Closing the Cursor 6-12
Explicit Cursor Attributes 6-13
The %ISOPEN Attribute 6-14
Controlling Multiple Fetches 6-15
The %NOTFOUND and %ROWCOUNT Attributes 6-16
Example 6-18
Cursors and Records 6-19
Cursor FOR Loops 6-20
Cursor FOR Loops Using Subqueries 6-22
Summary 6-24
Practice 6 Overview 6-25

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

Vi

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8
Predefined Exceptions 8-11
Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13
Functions for Trapping Exceptions 8-14
Trapping User-Defined Exceptions 8-16
User-Defined Exception 8-17
Calling Environments 8-18
Propagating Exceptions 8-19
RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22
Summary 8-23
Practice 8 Overview 8-23

9 Creating Procedures
Objectives 9-2
PL/SQL Program Constructs 9-4
Overview of Subprograms 9-5
Block Structure for Anonymous PL/SQL Blocks 9-6
Block Structure for PL/SQL Subprograms 9-7
PL/SQL Subprograms 9-8
Developing Subprograms by Using iSQL*Plus 9-9
What Is a Procedure? 9-11
Syntax for Creating Procedures 9-12
Developing Procedures 9-13
Formal Versus Actual Parameters 9-14
Procedural Parameter Modes 9-15
Creating Procedures with Parameters 9-16

vii

10

IN Parameters: Example 9-17

OUT Parameters: Example 9-18

Viewing OUT Parameters 9-20

IN OUT Parameters 9-21

Viewing IN OUT Parameters 9-22

Methods for Passing Parameters 9-23

DEFAULT Option for Parameters 9-24

Examples of Passing Parameters 9-25

Declaring Subprograms 9-26

Invoking a Procedure from an Anonymous PL/SQL Block 9-27
Invoking a Procedure from Another Procedure 9-28
Handled Exceptions 9-29

Unhandled Exceptions 9-31

Removing Procedures 9-33

Benefits of Subprograms 9-34

Summary 9-35

Practice 9 Overview 9-37

Creating Functions

Objectives 10-2

Overview of Stored Functions 10-3

Syntax for Creating Functions 10-4

Creating a Function 10-5

Creating a Stored Function by Using iSQL*Plus 10-6

Creating a Stored Function by Using iSQL*Plus: Example 10-7
Executing Functions 10-8

Executing Functions: Example 10-9

Advantages of User-Defined Functions in SQL Expressions 10-10
Invoking Functions in SQL Expressions: Example 10-11
Locations to Call User-Defined Functions 10-12

Restrictions on Calling Functions from SQL Expressions 10-13
Restrictions on Calling from SQL 10-15

Removing Functions 10-16

Procedure or Function? 10-17

Comparing Procedures and Functions 10-18

Benefits of Stored Procedures and Functions 10-19

Summary 10-20

Practice 10 Overview 10-21

viii

11 Managing Subprograms
Objectives 11-2
Required Privileges 11-3
Granting Access to Data 11-4
Using Invoker's-Rights 11-5
Managing Stored PL/SQL Objects 11-6
USER_OBJECTS 11-7
List All Procedures and Functions 11-8
USER_SOURCE Data Dictionary View 11-9
List the Code of Procedures and Functions 11-10
USER_ERRORS 11-11
Detecting Compilation Errors: Example 11-12
List Compilation Errors by Using USER_ERRORS 11-13
List Compilation Errors by Using SHOW ERRORS 11-14
DESCRIBE in iSQL*Plus 11-15
Debugging PL/SQL Program Units 11-16
Summary 11-17
Practice 11 Overview 11-19

12 Creating Packages
Objectives 12-2
Overview of Packages 12-3
Components of a Package 12-4
Referencing Package Objects 12-5
Developing a Package 12-6
Creating the Package Specification 12-8
Declaring Public Constructs 12-9
Creating a Package Specification: Example 12-10
Creating the Package Body 12-11
Public and Private Constructs 12-12
Creating a Package Body: Example 12-13
Invoking Package Constructs 12-15
Declaring a Bodiless Package 12-17
Referencing a Public Variable from a Stand-alone Procedure 12-18
Removing Packages 12-19
Guidelines for Developing Packages 12-20
Advantages of Packages 12-21
Summary 12-23
Practice 12 Overview 12-26

13 More Package Concepts
Objectives 13-2
Overloading 13-3
Overloading: Example 13-4
Using Forward Declarations 13-7
Creating a One-Time-Only Procedure 13-9
Restrictions on Package Functions Used in SQL 13-10
User Defined Package: taxes_pack 13-11
Invoking a User Defined Package Function from a SQL Statement 13-12
Persistent State of Package Variables: Example 13-13
Persistent State of Package Variables 13-14
Controlling the Persistent State of a Package Cursor 13-15
Executing PACK_CUR 13-17
PL/SQL Tables and Records in Packages 13-18
Summary 13-19
Practice 13 Overview 13-20

14 Oracle Supplied Packages
Objectives 14-2
Using Supplied Packages 14-3
Using Native Dynamic SQL 14-4
Execution Flow 14-5
Using the DBMS_SQL Package 14-6
Using DBMS_SQL 14-8
Using the EXECUTE IMMEDIATE Statement 14-9
Dynamic SQL Using EXECUTE IMMEDIATE 14-11
Using the DBMS_DDL Package 14-12
Using DBMS_JOB for Scheduling 14-13
DBMS_JOB Subprograms 14-14
Submitting Jobs 14-15
Changing Job Characteristics 14-17
Running, Removing, and Breaking Jobs 14-18
Viewing Information on Submitted Jobs 14-19
Using the DBMS_OUTPUT Package 14-20
Interacting with Operating System Files 14-21
What Is the UTL_FILE Package? 14-22
File Processing Using UTL_FILE 14-23
UTL_FILE Procedures and Functions 14-24
Exceptions Specific to the UTL_FILE Package 14-25
The FOPEN and IS _OPEN Functions 14-26
Using UTL_FILE 14-27

15

UTL_HTTP Package 14-29

Using the UTL_HTTP Package 14-30
Using the UTL_TCP Package 14-31
Oracle-Supplied Packages 14-32
Summary 14-33

Practice 14 Overview 14-34

Manipulating Large Objects

Objectives 15-2

What Is a LOB? 15-3

Contrasting LONG and LOB Data Types 15-4
Anatomy of a LOB 15-5

Internal LOBs 15-6

Managing Internal LOBs 15-7

What Are BFILES? 15-8

Securing BFILEs 15-9

A New Database Object: DIRECTORY 15-10
Guidelines for Creating DIRECTORY Objects 15-11
Managing BFILEs 15-12

Preparing to Use BFILEs 15-13

The BFILENAME Function 15-14

Loading BFILEs 15-15

Migrating from LONG to LOB 15-17

The DBMS_LOB Package 15-19
DBMS_LOB.READ and DBMS_LOB.WRITE 15-22
Adding LOB Columns to a Table 15-23
Populating LOB Columns 15-24

Updating LOBs by Using SQL 15-26

Updating LOBs by Using DBMS_LOB in PL/SQL 15-27

Selecting CLOB Values by Using SQL 15-28
Selecting CLOB Values, Using DBMS_LOB 15-29
Selecting CLOB Values in PL/SQL 15-30
Removing LOBs 15-31

Temporary LOBs 15-32

Creating a Temporary LOB 15-33

Summary 15-34

Practice 15 Overview 15-36

Xi

16 Creating Database Triggers
Objectives 16-2
Types of Triggers 16-3
Guidelines for Designing Triggers 16-4
Database Trigger: Example 16-5
Creating DML Triggers 16-6
DML Trigger Components 16-7
Firing Sequence 16-11
Syntax for Creating DML Statement Triggers 16-13
Creating DML Statement Triggers 16-14
Testing SECURE_EMP 16-15
Using Conditional Predicates 16-16
Creating a DML Row Trigger 16-17
Creating DML Row Triggers 16-18
Using OLD and NEW Qualifiers 16-19
Using OLD and NEW Quialifiers: Example Using Audit Emp_Table 16-20
Restricting a Row Trigger 16-21
INSTEAD OF Trigger 16-22
Creating an INSTEAD OF Trigger 16-23
Differentiating between Database Triggers and Stored Procedures 16-27
Differentiating between Database Triggers and Form Builder Triggers 16-28
Managing Triggers 16-29
DROP TRIGGER Syntax 16-30
Trigger Test Cases 16-31
Trigger Execution Model and Constraint Checking 16-32
Trigger Execution Model and Constraint Checking: Example 16-33
A Sample Demonstration for Triggers Using Package Constructs 16-34
After Row and After Statement Triggers 16-35
Demonstration: VAR_PACK Package Specification 16-36
Demonstration: Using the AUDIC_EMP Procuedure 16-38
Summary 16-39
Practice 16 Overview 16-40

Xii

17 More Trigger Concepts
Objectives 17-2
Creating Database Triggers 17-3
Creating Triggers on DDL Statements 17-4
Creating Triggers on System Events 17-5
LOGON and LOGOFF Trigger Example 17-6
CALL Statement 17-7
Reading Data from a Mutating Table 17-8
Mutating Table: Example 17-9
Implementating Triggers 17-11
Controlling Security within the Server 17-12
Controlling Security with a Database Trigger 17-13
Using the Server Facility to Audit Data Operations 17-14
Auditing by Using a Trigger 17-15
Enforcing Data Integrity within the Server 17-16
Protecting Data Integrity with a Trigger 17-17
Enforcing Referential Integrity within the Server 17-18
Protecting Referential Integrity with a Trigger 17-19
Replicating a Table within the Server 17-20
Replicating a Table with a Trigger 17-21
Computing Derived Data within the Server 17-22
Computing Derived Values with a Trigger 17-23
Logging Events with a Trigger 17-24
Benefits of Database Triggers 17-26
Managing Triggers 17-27
Viewing Trigger Information 17-28
Using USER_TRIGGERS 17-29
Listing the Code of Triggers 17-30
Summary 17-31
Practice 17 Overview 17-32

Xiii

18 Managing Dependencies
Objectives 18-2
Understanding Dependencies 18-3
Dependencies 18-4
Local Dependencies 18-5
A Scenario of Local Dependencies 18-6
Displaying Direct Dependencies by Using USER_DEPENDENCIES 18-7
Displaying Direct and Indirect Dependencies 18-8
Displaying Dependencies 18-9
Another Scenario of Local Dependencies 18-10
A Scenario of Local Naming Dependencies 18-11
Understanding Remote Dependencies 18-12
Concepts of Remote Dependencies 18-13
REMOTE_DEPENDENCIES_MODE Parameter 18-14
Remote Dependencies and Time stamp Mode 18-15
Remote Procedure B Compiles at 8:00 a.m. 18-16
Local Procedure A Compiles at 9:00 a.m. 18-17
Execute Procedure A 18-18
Remote Procedure B Recompiled at 11:00 a.m. 18-19
Execute Procudre A 18-20
Signature Mode 18-21
Recompiling a PL/SQL Program Unit 18-22
Unsuccessful Recompilation 18-23
Successful Recompilation 18-24
Recompilation of Procedures 18-25
Packages and Dependencies 18-26
Summary 18-28
Practice 18 Overview 18-29

A Practice Solutions

B Table Descriptions and Data

C Creating Program Units by Using Procedure Builder
D

REF Cursors

Xiv

Preface

Preface - 2

Profile
Before You Begin ThisCourse

Before you begin this course, you should have thorough knowledge of SQL,
1ISQL* Plus, and working experience devel oping applications. Required
prerequisites are Introduction to Oracle9i: SQL, or Introduction to Oracle9i for
Experienced QL Users.

How This Course|s Organized

Introduction to Oracle9i: PL/SQL is an instructor-led course featuring lectures and
hands-on exercises. Online demonstrations and practice sessions reinforce the
concepts and skills that are introduced.

Preface - 3

Related Publications

Oracle Publications
Title Part Number
Oracle9i Application Developer’'s Guide-Fundamentals A86797-01
Oracle9i Application Developer’s Guide-Large Objects A86800-01
Oracle9i Supplied PL/SQL Packages Reference A86815-01
PL/SQL User’s Guide and Reference, Release 8.1.6 A86811-01

Additional Publications
» System release bulletins

Installation and user’s guides
* read.me files

International Oracle User’s Group (IOUG) articles

Oracle Magazine

Preface - 4

Typographic Conventions

Following are two lists of typographical conventionsthat are used specifically within text or
within code.

Typographic Conventions Within Text

Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored inthe LAST_NAME
column names, column of the EMPLOY EES table.
table names,
PL/SQL objects,
schemas

Lowercase, Filenames, where: role isthe name of theroleitaic
syntax variables, to be created.
usernames,
passwords

Initial cap Trigger and Assign aWhen-Validate-Item trigger to
button names the ORD block.

Choose Cancel.
Italic Books, names of For more information on the subject, see

Quotation marks

courses and Oracle8 Server QL Language Reference
manuals, and Manual.
emphasized

words or phrases

Lesson module
titles referenced
within a course

Do not save changes to the database.

This subject is covered in Lesson 3,
“Working with Objects.”

Preface -5

Typographic Conventions (continued)

Typographic Conventions Within Code

Convention Object or Term

Uppercase Commands,
functions

Lowercase, Syntax variables

italic

Initial cap Formstriggers

Lowercase Column names,
table names,
filenames,

(" prod_pie_layer’))
PL/SQL objects

Bold Text that must
be entered by a

user

Example

SQ.> SELECT userid
2 FROM enp;

SQ.> CREATE ROLE rol e

For m nodul e: ORD
Trigger level: S |TEM QUANTITY
item

nane: Wen-Validate-Item

Tri gger

OG_ACTI VATE_LAYER
(OG_GET_LAYER

SQL> SELECT | ast_nane
2 FROM enp;

SQLDBA> DROP USER scott
2> | DENTI FI ED BY tiger;

Preface - 6

Curriculum
Map

Curriculum Map 1

Curriculum Map 2

Languages Curriculum for Oracle9i

Introduction to Introduction to Oracle9i
Oracle9i: SQL or for E?c?b;%rrs
Extended Data Experienced SQL Users inClass
soL1 Retrieval
with SQL)
° inClass
inClass

I_l_l

Introduction to Oracle9i: PL/SQL

PL/SQL Develop PL/SQL
Fundamentals Program Units

inClass
|

Advanced PL/SQL
inClass

Copyright © Oracle Corporation, 2001. All rights reserved.

Integrated Languages Curriculum

Introduction to Oracle9i: SQL consists of two modules, SQL1 and Extended Data Retrieval with SQL.
QL1 covers creating database structures and storing, retrieving, and manipulating datain arelationa
database. Extended Data Retrieval with SQL covers advanced SELECT statements, Oracle SQL and
iSQL* Plus Reporting.

For people who have worked with other relational databases and have knowledge of SQL., another course,
called Introduction to Oracle9i for Experienced SQL Usersis offered. This course coversthe SQL
statements that are not part of ANSI SQL but are specific to Oracle.

Introduction to Oracle9i: PL/SQL consists of two modules, PL/SQL Fundamentals and Develop PL/SQL
Program Units. PL/SQL Fundamentals covers PL/SQL basicsincluding the PL/SQL language structure,
flow of execution and interface with SQL. Develop PL/SQL Program Units covers how to create stored
procedures, functions, packages, and triggers as well as maintain and debug program code.

L for End Usersis directed towards individuals with little programming background and covers basic
SQL statements. This courseisfor end users who need to know some basic SQL programming.

Advanced PL/SQL is appropriate for individuals who have experience in PL/SQL programming and
covers coding efficiency topics, object-oriented programming, working with externa code, and the
advanced features of the Oracle supplied packages.

Curriculum Map 3

Languages Curriculum for Oracle9i

Introduction to Introduction to Oracle9i
Oracle9i: SQL or for Eﬁgbgzrrs
Extended Data Experienced SQL Users inCIass
sQL1 Retrieval
with SQL .
Q inClass
inClass

I_l_l

Introduction to Oracle9i: PL/SQL

PL/SQL Develop PL/SQL
Fundamentals Program Units

inClass
|

Advanced PL/SQL
inClass

‘ Copyright © Oracle Corporation, 2001. All rights reserved.

Integrated Languages Curriculum

The dide lists various modules and courses that are available in the languages curriculum. The following
table lists the modules and courses with their equivalent TBTSs.

Course or Module Equivalent TBT

SQL1 Oracle SQL: Basic SELECT Statements

Oracle SQL: Data Retrieval Techniques

Oracle SQL: DML and DDL

Extended Data Retrieval with SQL | Oracle SQL and SQL*Plus: Advanced SELECT Statements
Oracle SQL and SQL*Plus: SQL*Plus and Reporting

Introduction to Oracle9i for Oracle SQL Specifics: Retrieving and Formatting Data
Experienced SQL Users Oracle SQL Specifics: Creating and Managing Database Objects
PL/SQL Fundamentals PL/SQL: Basics

Develop PL/SQL Program Units PL/SQL: Procedures, Functions, and Packages
PL/SQL: Database Programming

SQL for End Users SQL for End Users: Part 1
SQL for End Users: Part 2
Advanced PL/SQL Advanced PL/SQL: Implementation and Advanced Features

Advanced PL/SQL: Design Considerations and Object Types

Curriculum Map 4

Overview of PL/SQL

Copyright © Oracle Corporation, 2001. All rights reserved.

Course Objectives

After completing this course, you should be able to
do the following:

®* Describe the purpose of PL/SQL

®* Describe the use of PL/SQL for the developer as
well as the DBA

* Explain the benefits of PL/SQL

* Create, execute, and maintain procedures,
functions, packages, and database triggers

®* Manage PL/SQL subprograms and triggers
®* Describe Oracle supplied packages
* Manipulate large objects (LOBS)

-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this course, you are introduced to the features and benefits of PL/SQL. Y ou learn how to access the
database using PL/SQL.

Y ou can devel op modularized applications with database procedures using database objects, such asthe
following:

* Procedures and functions

» Packages

« Database triggers
Modular applications improve:

e Functionality

e Security

e Overall performance

Introduction to Oracle9i: PL/SQL I-2

About PL/SQL

® PL/SQL is the procedural extension to SQL with
design features of programming languages.

e Data manipulation and query statements of SQL
are included within procedural units of code.

-3 Copyright © Oracle Corporation, 2001. All rights reserved.

About PL/SQL

Procedural Language/SQL (PL/SQL) is Oracle Corporation’s procedural language extension to SQL, the
standard data access language for relational databases. PL/SQL offers modern software engineering
features such as data encapsulation, exception handling, information hiding, object orientation, and
brings state-of-the-art programming to the Oracle Server and toolset.

PL/SQL incorporates many of the advanced features of programming languages that were designed
during the 1970s and 1980s. It allows the data manipulation and query statements of SQL to be included
in block-structured and procedural units of code, making PL/SQL a powerful transaction processing
language. With PL/SQL, you can use SQL statements to finesse Oracle data, and PL/SQL control
statements to process the data.

Introduction to Oracle9i: PL/SQL I-3

PL/SQL Environment

Procedural

statement
executor

Y

SQL statement executor

_ Oracle server)

1-4 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Environment

PL/SQL isnot an Oracle product in its own right; it is atechnology used by the Oracle server and by certain
Oracletools. Blocks of PL/SQL are passed to and processed by a PL/SQL engine, which may reside within
thetool or within the Oracle server. The engine that is used depends on where the PL/SQL block is being
invoked from.

When you submit PL/SQL blocks from a Pro* C or a Pro* Cobol program, user-exit, iSQL*Plus, or Server
Manager, the PL/SQL engine in the Oracle Server processes them. It separates the SQL statements and sends
them individually to the SQL statements executor.

A single transfer isrequired to send the block from the application to the Oracle Server, thus improving
performance, especialy in aclient-server network. PL/SQL code can aso be stored in the Oracle Server as
subprograms that can be referenced by any number of applications connected to the database.

Introduction to Oracle9i: PL/SQL I-4

Benefits of PL/SQL

r.._ T : = e i_E'
. =
Integration S5 ﬁ \
,] CEREE 2
|
I
Application
\ v
\/ ; - ”
Shared Oracle server
library
I-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL
I ntegration:

PL/SQL playsa centra rolein both the Oracle server (through stored procedures, stored functions,
database triggers, and packages) and Oracle development tools (through Oracle Devel oper component
triggers).

Oracle Forms Developer, Oracle Reports Developer, and Oracle Graphics Devel oper applications make
use of shared libraries that hold code (procedures and functions) and can be accessed locally or remotely.

SQL datatypes can also be used in PL/SQL. Combined with the direct access that SQL provides, these
shared data types integrate PL/SQL with the Oracle server data dictionary. PL/SQL bridges the gap
between convenient access to database technology and the need for procedural programming capabilities.

PL/SQL in Oracle Tools:

Many Oracletools, including Oracle Devel oper, have their own PL/SQL engine, which isindependent of
the engine present in the Oracle Server.

The engine filters out SQL statements and sends them individually to the SQL statement executor in the
Oracle server. It processes the remaining procedural statementsin the procedural statement executor,
which isinthe PL/SQL engine.

The procedural statement executor processes data that islocal to the application (that is, data already
inside the client environment, rather than in the database). This reduces the work that is sent to the Oracle
server and the number of memory cursorsthat are required.

Introduction to Oracle9i: PL/SQL I-5

Benefits of PL/SQL

Improved performance

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Improved Performance:

PL/SQL can improve the performance of an application. The benefits differ depending on the execution
environment.

PL/SQL can be used to group SQL statements together within a single block and to send the

entire block to the server in a single call, thereby reducing networking traffic. Without PL/SQL, the
SQL statements are sent to the Oracle server one at a time. Each SQL statement results in another
call to the Oracle server and higher performance overhead. In a networked environment, the
overhead can become significant. As the slide illustrates, if the application is SQL intensive, you
can use PL/SQL blocks and subprograms to group SQL statements before sending them to the
Oracle server for execution.

PL/SQL can also operate with Oracle Server application development tools such as Oracle Forms
and Oracle Reports. By adding procedural processing power to these tools, PL/SQL enhances
performance.

Note: Procedures and functions that are declared as part of a Developer application are distinct from those
stored in the database, although their general structure is the same. Stored subprograms are database
objects and are stored in the data dictionary. They can be accessed by any number of applications,
including Developer applications.

Introduction to Oracle9i: PL/SQL I-6

Benefits of PL/SQL

Modularize program development

E

® o o
GIN

EXCEPTION

END;

-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Y ou can take advantage of the procedural capabilities of PL/SQL, which are not availablein SQL.
PL/SQL Block Structure:

Every unit of PL/SQL comprises one or more blocks. These blocks can be entirely separate or nested one
within another. The basic units (procedures, functions, and anonymous blocks) that make up a PL/SQL
program are logical blocks, which can contain any number of nested subblocks. Therefore, one block can
represent asmall part of another block, which in turn can be part of the whole unit of code.

Modularized Program Development:

» Group logically related statements within blocks.
* Nest subblocks inside larger blocks to build powerful programs.

» Break down a complex problem into a set of manageable, well-defined, logical modules and
implement the modules with blocks.

* Place reusable PL/SQL code in libraries to be shared between Oracle Forms and Oracle Reports
applications or store it in an Oracle server to make it accessible to any application that can interact
with an Oracle database.

Introduction to Oracle9i: PL/SQL I-7

Benefits of PL/SQL

® PL/SQL is portable.
® You can declare variables.

1-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Portability:
* Because PL/SQL is native to the Oracle server, you can move programs to any host environment
(operating system or platform) that supports the Oracle server and PL/SQL. In other words,

PL/SQL programs can run anywhere the Oracle server can run; you do not need to tailor them to
each new environment.

* You can also move code between the Oracle server and your application. You can write portable
program packages and create libraries that can be reused in different environments.

Identifiers:
In PL/SQL you can use identifiers to do the following:

» Declare variables, cursors, constants, and exceptions and then use them in SQL and procedural
statements

» Declare variables belonging to scalar, reference, composite, and large loBatigta types
» Declare variables dynamically based on the data structure of tables and columns in the database

Introduction to Oracle9i: PL/SQL I-8

Benefits of PL/SQL

®* You can program with procedural language
control structures.

e PL/SQL can handle errors.

-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Procedural Language Control Structures:
Procedural Language Control Structures allow you to do the following:
« Execute a sequence of statements conditionally

* Execute a sequence of statements iteratively in a loop
* Process individually the rows returned by a multiple-row query with an explicit cursor

Errors:
The Error handling functionality in PL/SQL allows you to do the following:
» Process Oracle server errors with exception-handling routines

« Declare user-defined error conditions and process them with exception-handling routines

Introduction to Oracle9i: PL/SQL I-9

Benefits of Subprograms

* Easy maintenance

®* Improved data security and integrity
®* Improved performance

* Improved code clarity

I-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Subprograms
Stored procedures and functions have many benefits in addition to modularizing application development:

» Easy maintenance that enables you to modify:
— Routines online without interfering with other users
— One routine to affect multiple applications
— One routine to eliminate duplicate testing

* Improved data security and integrity by doing the following:
— Control indirect access to database objects from nonprivileged users with security privileges

— Ensure that related actions are performed together, or not at all, by funneling activity for
related tables through a single path

* Improved performance that allows you to do the following:
— Avoid reparsing for multiple users by exploiting the shared SQL area
— Avoid PL/SQL parsing at run time by parsing at compilation time

— Reduce the number of calls to the database and decrease network traffic by bundling
commands

* Improved code clarity: Using appropriate identifier names to describe the action of the routines
reduces the need for comments and enhances the clarity of the code.

Introduction to Oracle9i: PL/SQL 1-10

Invoking Stored Procedures
and Functions

Scott LOG_EXECUTI ON
Y
rocedure
2, OF
-~ XXXXXXXXXXXXXX
l! 'l'l \‘ | e\/ VVVVVVVVVVVVVV
1'. f— : XXX XXXXXXXXXXX
1 = - ‘ \/ @ VVVVVVVVVVVVVV
i /) XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXX XXXXXXXXXXX
| @ VVVVVVVVVVVVVV
XXXXXXXXXXXXXX XXXXXXXXXXXXXX
VUVVVVUVVVVVIY) VVVVVVVVVVVVVV
Oracle Oracle Oracle e
. XXXXXXXXXXXXXX A
Portal Discoverer Forms VVWWYWWVWYWVVY
XXXXXXXXXXXXXX
Developer X000
VVVVVVVVVVVVVV @
Scott
I-11 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Invoke Stored Procedures and Functions

Y ou can invoke a previously created procedure or function from avariety of environments such as
iSQL*Plus, Oracle Forms Developer, Oracle Discoverer, Oracle Portal, another stored procedure, and
many other Oracle tools and precompiler applications. The table below describes how you can invoke a
previoudy created procedure, | og_execut i on, from avariety of environments.

iISQL*Plus EXECUTE | og_executi on

Oracle devel opment tools | og_executi on;

such as Oracle Forms

Developer

Another procedure CREATE OR REPLACE PROCEDURE | eave_enp
(v_id I N enmpl oyees. enpl oyee_i d%l'YPE)
IS
BEG N

DELETE FROM enpl oyees
VWHERE enpl oyee_id = v_id;
| og_execution;

END

| eave_enp;

Other environments such as
Pro*C

Introduction to Oracle9i: PL/SQL I-11

Summary

e PL/SQL is an extension to SQL.

* Blocks of PL/SQL code are passed to and
processed by a PL/SQL engine.

* Benefits of PL/SQL:
— Integration
— Improved performance
— Portability
— Modularity of program development

® Subprograms are named PL/SQL blocks, declared
as either procedures or functions.

®* You can invoke subprograms from different
environments.

I-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

PL/SQL isalanguage that has programming features that serve as an extension to SQL.. It provides you
with the ability to control the flow of constructs, and declare and use variables. PL/SQL applications can
run on any platform or operating system on which Oracle runs.

Named PL/SQL blocks are also known as subprograms or program units. Procedures, functions,
packages, and triggers are different PL/SQL constructs. Y ou can invoke subprograms from different
environments.

Introduction to Oracle9i: PL/SQL 1-12

Declaring Variables

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Recognize the basic PL/SQL block and its sections
®* Describe the significance of variables in PL/SQL

® Declare PL/SQL variables

* Execute a PL/SQL block

1-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson presents the basic rules and structure for writing and executing PL/SQL blocks of code. It aso
shows you how to declare variables and assign data types to them.

Introduction to Oracle9i: PL/SQL 1-2

PL/SQL Block Structure

DECLARE — Optional
Variables, cursors, user-defined exceptions
BEG N — Mandatory

— SQL statements

— PL/SQL statements
EXCEPTI ON — Optional

Actions to perform when errors occur
END; — Mandatory

CLARE

BEG N
T

EXCEPTI ON

END;

1-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Structure

PL/SQL is ablock-structured language, meaning that programs can be divided into logical blocks. A PL/SQL
block consists of up to three sections. declarative (optional), executable (required), and exception handling
(optional). The following table describes the three sections:

Section Description Inclusion

Declarative Contains all variables, constants, cursors, and user- Optional
defined exceptions that are referenced in the
executable and declarative sections

Executable Contains SQL statements to manipulate data in the Mandatory
database and PL/SQL statements to manipulate data
in the block

Exception handling | Specifies the actions to perform when errors and Optional

abnormal conditions arise in the executable section

Introduction to Oracle9i: PL/SQL 1-3

Executing Statements and PL/SQL Blocks

DECLARE

v_variable VARCHAR2(5);
BEG N

SELECT col um_nane

I NTOv_vari abl e

FROMt abl e _nane;
EXCEPTI ON

VHEN excepti on_nane THEN

END;

CLARE

BEG N
[eee |
EXCEPTI ON

END;

1-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Statements and PL/SQL Blocks
e Place a semicolon (;) at the end of a SQL statement or PL/SQL control statement.
* When the block is executed successfully, without unhandled errors or compile errors, the message
output should be as follows:

PL/ZQL procedure successfully completed.

* Section keyword®ECLARE, BEG N, andEXCEPTI ON are not followed by semicolons.
« ENDand all other PL/SQL statements require a semicolon to terminate the statement.

* You can string statements together on the same line, but this method is not recommended for clarity or
editing.

Note: In PL/SQL, an error is called an exception

With modularity you can break an application down into manageable, well-defined modules. Through
successive refinement, you can reduce a complex problem to a set of simple problems that have easy-to-
implement solutions. PL/SQL meets this need with program units, which include blocks, subprograms, and
packages.

Introduction to Oracle9i: PL/SQL 1-4

Block Types
Anonymous Procedure Function
[DECLARE] PROCEDURE nane FUNCTI ON nane
IS RETURN dat at ype
IS
BEG N BEG N BEG N
--statements --statements --statenments
RETURN val ue;
[EXCEPTI ON] [EXCEPTI ON] [EXCEPTI ON]
END; END; END;
1-5 Copyright © Oracle Corporation, 2001. All rights reserved.
Block Types

A PL/SQL program comprises one or more blocks. These blocks can be entirely separate or nested one within
another. The basic units (procedures and functions, also known as subprograms, and anonymous bl ocks) that
make up a PL/SQL program are logical blocks, which can contain any number of nested subblocks. Therefore,
one block can represent asmall part of another block, which in turn can be part of the whole unit of code.

Anonymous Blocks:

Anonymous blocks are unnamed blocks. They are declared at the point in an application where they are to be
executed and are passed to the PL/SQL engine for execution at run time. Y ou can embed an anonymous block
within a precompiler program and within iSQL* Plus or Server Manager. Triggersin Oracle Devel oper
components consist of such blocks.

Subprograms:
Subprograms are named PL/SQL blocks that can accept parameters and can be invoked. Y ou can declare them

either as procedures or as functions. Generally use a procedure to perform an action and a function to compute
avalue.

Y ou can store subprograms at the server or application level. Using Oracle Developer components (Forms,
Reports, and Graphics), you can declare procedures and functions as part of the application (aform or report)
and call them from other procedures, functions, and triggers (see next page) within the same application
whenever necessary.

Note: A functionissimilar to a procedure, except that a function must return avalue.

Introduction to Oracle9i: PL/SQL 1-5

Program Constructs

Application procedures or
functions

Application packages

Application triggers

Object types

CLARE
BEG N
[eae]
EXCEPTI ON
END;
Tools Constructs Database Server
Anonymous blocks Constructs

Anonymous blocks

Stored procedures or
functions

Stored packages

Databasetriggers

1-6

Object types

Copyright © Oracle Corporation, 2001. All rights reserved.

Program Constructs

The following table outlines a variety of different PL/SQL program constructs that use the basic PL/SQL
block. The program constructs are available based on the environment in which they are executed.

Program

Construct Description Availability

Anonymous Unnamed PL/SQL blocks that are embedded within an | All PL/SQL environments

blocks application or are issued interactively

Application Named PL/SQL blocks stored in an Oracle Forms Oracle Devel oper tools components,
procedures or Developer application or shared library; can accept for example, Oracle Forms
functions parameters and can be invoked repeatedly by name Developer, Oracle Reports

Stored Named PL/SQL blocks stored in the Oracle server; can | Oracle server

procedures or accept parameters and can be invoked repeatedly by

functions name

Packages Named PL/SQL modules that group related Oracle server and Oracle Developer

(Application or
Stored)

procedures, functions, and identifiers

tools components, for example,
Oracle Forms Developer

Database triggers

PL/SQL blocks that are associated with a database
table and fired automatically when triggered by DML
statements

Oracle server

Application
triggers

PL/SQL blocks that are associated with an application
event and fired automatically

Oracle Devel oper tools components,
for example, Oracle Forms Developer

Object types

User-defined composite data types that encapsulates a
data structure along with the functions and procedures
needed to manipulate the data

Oracle server and Oracle Developer
tools

Introduction to Oracle9i: PL/SQL 1-6

Use of Variables

Variables can be used for:

* Temporary storage of data

®* Manipulation of stored values
* Reusability

* Ease of maintenance

1-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Use of Variables

With PL/SQL you can declare variables and then use them in SQL and procedural statements anywhere that
an expression can be used. Variables can be used for the following:

Temporary storage of data: Data can be temporarily stored in one or more variables for use when
validating data input and for processing later in the data flow process.

Manipulation of stored values: Variables can be used for calculations and other data manipulations
without accessing the date.

Reusability: After they are declared, variables can be used repeatedly in an application simply by
referencing them in other statements, including other declarative statements.

Ease of maintenance: When ustYPE and%ROM YPE (more information oROM YPE is

covered in a subsequent lesson), you declare variables, basing the declarations on the definitions of
database columns. If an underlying definition changes, the variable declaration changes accordingly at
run time. This provides data independence, reduces maintenance costs, and allows programs to adapt
as the database changes to meet new business needs. More inform#igPBis covered later in

this lesson.

Introduction to Oracle9i: PL/SQL 1-7

Handling Variables in PL/SQL

® Declare and initialize variables in the declaration

section.

®* Assign new values to variables in the executable
section.

®* Pass values into PL/SQL blocks through
parameters.

* View results through output variables.

1-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Variables in PL/SQL
Declare and I nitialize Variablesin the Declaration Section

Y ou can declare variables in the declarative part of any PL/SQL block, subprogram, or package. Declarations
alocate storage space for avalue, specify its data type, and name the storage location so that you can reference
it. Declarations can also assign an initial value and impose the NOT NULL constraint on the variable. Forward
references are not allowed. Y ou must declare a variable before referencing it in other statements, including
other declarative statements.

Assign New Valuesto Variablesin the Executable Section

In the executabl e section, the existing value of the variable is replaced with the new value that is assigned to
the variable.

Pass Values Into PL/SQL Subprograms Through Parameters

There are three parameter modes, | N (the default), OUT, and | N OUT. Use the IN parameter to pass valuesto
the subprogram being called. Use the QUT parameter to return valuesto the caller of a subprogram. And use
thel N QUT parameter to passinitial values to the subprogram being called and to return updated valuesto the
caller. We pass values into anonymous block viaiSQL*PLUS subgtitution variables.

Note: Viewing the results from a PL/SQL block through output variablesis discussed later in the lesson.

Introduction to Oracle9i: PL/SQL 1-8

Types of Variables

* PL/SQL variables:
— Scalar
— Composite
— Reference
— LOB (large objects)
®* Non-PL/SQL variables: Bind and host variables

1-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Variables

All PL/SQL variables have a data type, which specifies a storage format, constraints, and valid range of
values. PL/SQL supports four data type categories—scalar, composite, reference, ar@B (large object)—
that you can use for declaring variables, constants, and pointers.

e Scalar data types hold a single value. The main data types are those that correspond to column types in
Oracle server tables; PL/SQL also supports Boolean variables.

« Composite data types, such as records, allow groups of fields to be defined and manipulated in
PL/SQL blocks.

» Reference data types hold values, called poirtteais designate other program items. Reference data
types are not covered in this course.

« LOBdata types hold values, called locajtinat specify the location of large objects (for example
graphic images) that are stored out of line. LOB data types are discussed in detail later in this course.

Non-PL/SQL variables include host language variables declared in precompiler programs, screen fields in
Forms applications, an®&QL*Plus host variables.

For more information on LOBs, s&t/SQL User's Guide and Referengeyundamentals.”

Introduction to Oracle9i: PL/SQL 1-9

Using iISQL*Plus Variables Within PL/SQL
Blocks

®* PL/SQL does not have input or output capability of
its own.

®* You can reference substitution variables within a
PL/SQL block with a preceding ampersand.

®* iSQL*Plus host (or “bind”) variables can be used
to pass run time values out of the PL/SQL block
back to the 1SQL*Plus environment.

1-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using iSQL*Plus Variables Within PL/SQL Blocks

PL/SQL does not have input or output capability of its own. Y ou must rely on the environment in which
PL/SQL is executing to pass values into and out of a PL/SQL block.

In the i SQL* Plus environment, i SQL* Plus substitution variables can be used to pass run time valuesinto a
PL/SQL block. Y ou can reference substitution variables within a PL/SQL block with a preceding ampersand
in the same manner as you reference i SQL* Plus subgtitution variablesin a SQL statement. The text values
are substituted into the PL/SQL block before the PL/SQL block is executed. Therefore you cannot substitute
different values for the substitution variables by using aloop. Only one value will replace the substitution
variable.

iSQL*Plus host variables can be used to pass run time values out of the PL/SQL block back to the
iSQL* Plus environment. Y ou can reference host variablesin a PL/SQL block with a preceding colon. Bind
variables are discussed in further detail later in thislesson.

Introduction to Oracle9i: PL/SQL 1-10

Types of Variables

25-JAN-01

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,
conceived in LIBERTY, and dedicated
to the proposition that all men
are created equal.”

1-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Variables
The dideillustrates the following variable data types:

 TRUE represents a Boolean value.
e 25-JAN-01 representsRATE.
e The photograph represent8laOB.
e The text of a speech representsCGhNG
e 256120.08 representNIVBER data type with precision and scale.
* The movie representsBil LE.
e The city name, Atlanta, representdARCHAR2.

Introduction to Oracle9i: PL/SQL 1-11

Declaring PL/SQL Variables

Syntax:

identifier

[:=]

[CONSTANT] dat at ype [NOT NULL]
DEFAULT expr];

Examples:

DECLARE
v_hiredate DATE;
v_dept no NUMBER(2) NOT NULL := 10;
v_| ocation VARCHAR2(13) :="Atlanta’;
c_comm CONSTANT NUMBER : = 1400;

1-12

Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring PL/SQL Variables

Y ou must declare all PL/SQL identifiersin the declaration section before referencing themin the PL/SQL
block. Y ou have the option to assign an initial valueto avariable. Y ou do not need to assign avalueto a
variablein order to declareit. If you refer to other variables in a declaration, you must be sure to declare them
separately in a previous statement.

In the syntax:
identifier
CONSTANT
data type

NOT NULL

expr

is the name of the variable.

constrains the variable so that its value cannot change; constants must be
initialized.

isascalar, composite, reference, or LOB datatype. (This course covers only
scalar, composite, and LOB data types.)

constrains the variable so that it must contain a value. (NOT NULL variables
must be initialized.)

is any PL/SQL expression that can be a literal expression, ancther variable,
or an expression involving operators and functions.

Introduction to Oracle9i: PL/SQL 1-12

Guidelines for Declaring PL/SQL Variables

* Follow naming conventions.

* Initialize variables designated as NOT NULL and
CONSTANT.

* Declare one identifier per line.

* Initialize identifiers by using the assignment
operator (: =) or the DEFAULT reserved word.

identifier := expr;

1-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Declaring PL/SQL Variables

Here are some guidelines to follow while declaring PL/SQL variables:

Name the identifier according to the same rules used for SQL objects.

You can use naming conventions—for exampl@ame to represent a variable andname to
represent a constant variable.

If you use theNOT NULL constraint, you must assign a value.

Declaring only one identifier per line makes code easier to read and maintain.

In constant declarations, the keyword CONSTANT must precede the type specifier. The following
declaration names a constantNbfVBER subtypeREAL and assigns the value of 50000 to the constant.
A constant must be initialized in its declaration; otherwise, you get a compilation error when the
declaration is elaborated (compiled).

v_sal CONSTANT REAL : = 50000. 00;

Initialize the variable to an expression with the assignment operator (: =) or, equivaently, with the

DEFAULT reserved word. If you do not assign an initia value, the new variable contains NULL by

default until you assign avalue later. To assign or reassign a value to a variable, you write a PL/SQL
assignment statement. You must explicitly name the variable to receive the new value to the left of the
assignment operator €). It is good programming practice to initialize all variables.

Introduction to Oracle9i: PL/SQL 1-13

Naming Rules

* Two variables can have the same name, provided
they are in different blocks.

®* The variable name (identifier) should not be the
same as the name of table columns used in the

block.
DECLARE \,em'\o“
enpl oyee_id NUVBER(6); . con
BEG N aarmifts
SELECT enpl oyee_id dop\ a (6} .“e(s‘. 4
| NTO enpl oyee i d P \deﬂ“ \jee/\
FROM enpl oyees 1S sQv emp\o
VWHERE | ast _nanme =’ Koch?a\Fmp\e, N
END,; o)
/ fov &
1-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Rules

Two objects can have the same name, provided that they are defined in different blocks. Where they coexist,
only the object declared in the current block can be used.

Y ou should not choose the same name (identifier) for a variable as the name of table columns used in the
block. If PL/SQL variables occur in SQL statements and have the same name as a column, the Oracle server
assumes that it is the column that is being referenced. Although the example code in the dide works, code that
is written using the same name for a database table and variable name is not easy to read or maintain.

Consider adopting a naming convention for various objects that are declared in the DECL ARE section of the
PL/SQL block. Usingv__ as a prefix representing variable avoids naming conflicts with database objects.

DECLARE
v_hire date dat e;
BEG N

Note: The names of the variables must not be longer than 30 characters. The first character must be aletter;
the remaining characters can be letters, numbers, or special symbols.

Introduction to Oracle9i: PL/SQL 1-14

Variable Initialization and Keywords

* Assignment operator (: =)
e DEFAULT keyword
®* NOT NULL constraint

Syntax
identifier := expr;
Examples:
v_hiredate := '01-JAN 2001 ;
v_enane := 'Maduro’;
1-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Variable Initialization and Keywords

In the syntax:
identifier isthe name of the scalar variable.
expr can be avariable, literal, or function cal, but not a database column.

The variable value assignment examples are defined as follows:
» Set the identifie_Hl REDATE to a value of 01-JAN-2001.
e Store the name “Maduro” in thé_ENANME identifier.

Variables are initialized every time a block or subprogram is entered. By default, variables are initialized to
NULL. Unless you explicitly initialize a variable, its value is undefined.

Use the assignment operator (:=) for variables that have no typical value.
v_hire_date : = ’15- SEP-1999’

Note: This four-digit value for year, YYYY, assignment is possible only in Oracle8 later. Previous
versions may require the use of @ _DATE function.

DEFAULT: You can use thBEFAULT keyword instead of the assignment operator to initialize variables. Use
DEFAULT for variables that have a typical value.

v_ngr NUMBER(6) DEFAULT 100;
NOT NULL: Impose theNOT NULL constraint when the variable must contain a value.

You cannot assign nulls to a variable defineti@s NULL. TheNOT NULL constraint must be followed by
an initialization clause.

V_City VARCHAR2(30) NOT NULL := ' Oxford’
Introduction to Oracle9i: PL/SQL 1-15

Variable Initialization and Keywords (continued)

Note: String literals must be enclosed in single quotation marks. For example,” Hel | o, wor | d’ . If
thereis asingle quotation mark in the string, use a single quotation mark twice—for example, to insert a
value FISHERMAN'S DRIVE, the string would bd- SHERVAN ' S DRI VE' .
Another way to assign values to variables is to select or fetch database values into it. The following
example computes a 10% bonus for the employee withNReEOYEE | D 176 and assigns the
computed value to the_bonus variable. This is done using thé&NTOclause.
DECLARE

v_bonus NUMBER(8, 2);
BEG N

SELECT salary * 0.10

| NTO v_bonus

FROM enpl oyees

VWHERE enpl oyee_id = 176;
END;
/

Then you can use the variaMebonus in another computation or insert its value into a database table.

Note: To assign a value into a variable from the database, B8EECT or FETCH statement. The
FETCH statement is covered later in this course.

Introduction to Oracle9i: PL/SQL 1-16

Scalar Data Types

* Hold asingle value
®* Have no internal components

25-0OCT-9
“Four score and seven yea
ago our fathers brought TR

forth upon this continent, a

new nation, conceived in

25612008 LIBERTY, and dedicated to
the proposition that all men
are created equ

1-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Data Types

Every constant, variable, and parameter has a data type (or type), which specifies a storage format, constraints,
and valid range of values. PL/SQL provides a variety of predefined datatypes. For instance, you can choose
from integer, floating point, character, Boolean, date, collection, reference, and LOB types. In addition, This
chapter coversthe basic typesthat are used frequently in PL/SQL programs. Later chapters cover the more
speciaized types.

A scalar data type holds a single value and has no internal components. Scalar data types can be classified into
four categories. number, character, date, and Boolean. Character and number data types have subtypes that
associate a base type to a constraint. For example, | NTEGER and PCSI Tl VE are subtypes of the NUVBER
base type.

For more information and the complete list of scalar datatypes, refer to PL/SQL User’'s Guide and Reference,
“Fundamentals.”

Introduction to Oracle9i: PL/SQL 1-17

* LONG

1-18

Base Scalar Data Types

* CHAR [(maxi num_| engt h)]
* VARCHARZ2 (nraxi num | engt h)

* LONG RAW

* NUMBER [(precision, scale)]
* BI NARY_I NTEGER

* PLS | NTEGER

* BOOLEAN

Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types

Data Type Description

CHAR Base type for fixed-length character data up to 32,767 bytes. If you do not

[(maxi num. I engt h)] | specify amaximum length, the default length is set to 1.

VARCHAR2 Base type for variable-length character data up to 32,767 bytes. Thereisno

(maximum_length)

default size for VARCHAR? variables and constants.

LONG

Base type for variable-length character data up to 32,760 bytes. Use the
LONG data type to store variable-length character strings. Y ou can insert any
LONG value into a L ONG database column because the maximum width of a
LONG column is 2** 31 bytes. However, you cannot retrieve avalue

longer than 32760 bytes from a LONG column into a LONG variable.

LONG RAW

Base type for binary data and byte strings up to 32,760 bytes. LONG RAW
datais not interpreted by PL/SQL.

NUMBER
[(precision, scale)]

Number having precision p and scale s. The precision p can range from 1 to
38. The scale s can range from -84 to 127.

Introduction to Oracle9i: PL/SQL 1-18

Base Scalar Data types (continued)

Data Type Description

BI NARY_I NTEGER | Basetype for integers between -2,147,483,647 and 2,147,483,647.

PLS_I NTEGER Base type for signed integers between -2,147,483,647 and 2,147,483,647.
PLS | NTEGER values require less storage and are faster than NUMBER and
Bl NARY | NTEGER values.

BOOLEAN Base type that stores one of three possible values used for logical calculations:
TRUE, FALSE, or NULL.

Introduction to Oracle9i: PL/SQL 1-19

1-20

e DATE

e Tl MESTAWP

e TIMESTAVP WTH TI ME ZONE

e TIMESTAMP W TH LOCAL TI ME ZONE
| NTERVAL YEAR TO MONTH

| NTERVAL DAY TO SECOND

Base Scalar Data Types

Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types (continued)

Data Type Description

DATE Base type for dates and times. DATE values include the time of day in
seconds since midnight. The range for datesis between 4712 B.C. and 9999
A.D.

TI MESTAMP The TI MESTAMP data type, which extends the DATE data type, storesthe

year, month, day, hour, minute, and second. The syntax is:

Tl MESTAMP[(precision)]

where the optional parameter precision specifies the number of digitsin the
fractional part of the secondsfield. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range
0..9. Thedefault is 6.

TI MESTAMP W TH
TI VE ZONE

TheTI MESTAMP W TH Tl ME ZONE datatype, which extends the

TI MESTAMP data type, includes a time-zone displacement. The time-zone
displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly known as Greenwich Mean
Time. The syntax is:

TI MESTAMP[(precision)] WTH Tl ME ZONE

where the optional parameter precision specifies the number of digitsin the
fractional part of the seconds field. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer litera in the range O
.. 9. Thedefault is 6.

Introduction to Oracle9i: PL/SQL 1-20

Base Scalar Data Types (continued)

Data Type

Description

TI MESTAMP W TH
LOCAL TI ME ZONE

TheTI MESTAMP W TH LOCAL TI ME ZONE datatype, which extends
the TI MESTAMP data type, includes a time-zone displacement. The time-

zone displacement is the difference (in hours and minutes) between local

time and Coordinated Universal Time (UTC)—formerly Greenwich Mean
Time. The syntax is:

TI MESTAMP[(precision)] WTH LOCAL Tl ME ZONE

where the optional parameter precision specifies the number of digits in
fractional part of the seconds field. You cannot use a symbolic constant
variable to specify the precision; you must use an integer literal in the rg
.. 9. The default is 6.

This data type differs fromil MESTAMP W TH Tl ME ZONE in that when
you insert a value into a database column, the value is normalized to th
database time zone, and the time-zone displacement is not stored in the
column. When you retrieve the value, Oracle returns the value in your Ig
session time zone.

the
or
iInge O

oD

cal

| NTERVAL YEAR
TO MONTH

You use thd NTERVAL YEAR TO MONTH data type to store and

manipulate intervals of years and months. The syntax is:
| NTERVAL YEAR] (precision)] TO MONTH

whereyear s_pr eci si on specifies the number of digits in the years fig
You cannot use a symbolic constant or variable to specify the precision
must use an integer literal in the range 0 .. 4. The default is 2.

Id.
you

| NTERVAL DAY TO
SECOND

You use thd NTERVAL DAY TO SECOND data type to store and
manipulate intervals of days, hours, minutes, and seconds. The syntax
| NTERVAL DAY[(precisionl)] TO SECONDQ (precision2)]
wherepr eci si onl andpr eci si on2 specify the number of digits in the
days field and seconds field, respectively. In both cases, you cannot us
symbolic constant or variable to specify the precision; you must use an
integer literal in the range 0 .. 9.The defaults are 2 and 6, respectively.

Introduction to Oracle9i: PL/SQL 1-21

Scalar Variable Declarations
Examples:
DECLARE
vV_job VARCHAR2(9) ;
v_count Bl NARY | NTEGER : = O;
v_total sal NUMBER(9, 2) := O;
v_orderdate DATE : = SYSDATE + 7,
c_tax_ rate CONSTANT NUMBER(3, 2) := 8.25;
v_valid BOOLEAN NOT NULL := TRUE;
1-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Scalar Variables
The examples of variable declaration shown on the dide are defined as follows:

e v_j ob: variable to store an employee job title
e v_count: variable to count the iterations of a loop and initialized to O

v_total _sal : variable to accumulate the total salary for a department and initialized to O
v_or der dat e: variable to store the ship date of an order and initialize to one week from today

c_t ax_r at e: a constant variable for the tax rate, which never changes throughout the PL/SQL block

v_val i d: flag to indicate whether a piece of data is valid or invalid and initializ&&Rtt

Introduction to Oracle9i: PL/SQL 1-22

The %' YPE Attribute

®* Declare avariable according to:
— A database column definition
— Another previously declared variable
* Prefix % YPE with:
— The database table and column
— The previously declared variable name

1-23 Copyright © Oracle Corporation, 2001. All rights reserved.

The %' YPE Attribute

When you declare PL/SQL variablesto hold column values, you must ensure that the variableis of the
correct datatype and precision. If itisnot, aPL/SQL error will occur during execution.

Rather than hard coding the data type and precision of avariable, you can use the %9 YPE attribute to
declare avariable according to another previoudy declared variable or database column. The % YPE
attribute is most often used when the value stored in the variable will be derived from atable in the
database. To usethe attribute in place of the datatype that isrequired in the variable declaration, prefix it
with the database table and column name. If referring to a previoudy declared variable, prefix the variable
name to the attribute.

PL/SQL determines the data type and size of the variable when the block is compiled so that such variables
are always compatible with the column that is used to populate it. Thisis a definite advantage for writing
and maintaining code, because there is no need to be concerned with column data type changes made at the
database level. You can aso declare a variable according to another previously declared variable by
prefixing the variable name to the attribute.

Introduction to Oracle9i: PL/SQL 1-23

Declaring Variables
with the %' YPE Attribute

Syntax:
i dentifier Tabl e. col utm_nanme%l YPE;
Examples:
V_hane enpl oyees. | ast _nanme%l YPE;
v_bal ance NUMBER(7, 2) ;
v_m n_bal ance v_bal ance% YPE : = 10;
1-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Variables with the %0 YPE Attribute

Declare variables to store the last name of an employee. The variable v_nane is defined to be of the same
data type asthe LAST_NAME column in the EMPLOYEES table. %9 YPE provides the data type of a

database column:

V_name enpl oyees. | ast _nane%l YPE;

Declare variables to store the balance of a bank account, as well as the minimum balance, which starts out
as 10. Thevariablev_m n_bal ance isdefined to be of the same data type asthe variablev_bal ance.

% YPE provides the data type of avariable:

v_bal ance NUMVBER(7, 2) ;
v_m n_bal ance v_bal ance%YPE : = 10;

A NOT NULL database column constraint does not apply to variables that are declared using % YPE.
Therefore, if you declare a variable using the %I YPE attribute that uses a database column defined as NOT
NULL, you can assign the NULL value to the variable.

Introduction to Oracle9i: PL/SQL 1-24

Declaring Boolean Variables

®* Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

* The variables are compared by the logical
operators AND, OR, and NOT.

* The variables always yield TRUE, FALSE, or NULL.

* Arithmetic, character, and date expressions can be
used to return a Boolean value.

1-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Boolean Variables

With PL/SQL you can compare variablesin both SQL and procedural statements. These comparisons, caled
Boolean expressions, consist of simple or complex expressions separated by relational operators. In a SQL
statement, you can use Boolean expressions to specify the rowsin atable that are affected by the statement. In
aprocedural statement, Boolean expressions are the basis for conditional control. NULL stands for amissing,
inapplicable, or unknown value.

Examples
v_sal 1 : = 50000;
v_sal 2 : = 60000;

The following expression yields TRUE:
v_sall < v_sal?2

Declare and initialize a Boolean variable:
DECLARE

v_flag BOOLEAN : = FALSE;
BEA N

v_flag : = TRUE;
END;

Introduction to Oracle9i: PL/SQL 1-25

Composite Data Types

TRUE | 23-DEC-98 | ATLANTA

PL/SQL table structure PL/SQL table structure
1 SM TH 1 5000
2 JONES 2 2345
3 NANCY 3 12
4 TIM 4 3456

L [L L e

Bl NARY_| NTEGER Bl NARY_| NTECER

1-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Composite Data Types

A scalar type has no internal components. A composite type hasinternal components that can be
manipulated individually. Composite data types (also known as collections) are of TABLE, RECORD,
NESTED TABLE, and VARRAY types. Use the RECORD data type to treat related but dissimilar dataas a
logical unit. Use the TABLE datatype to reference and manipulate collections of data as awhole object.
Both RECORD and TABLE data types are covered in detail in a subsequent lesson. NESTED TABLE and
VARRAY data types are covered in the Advanced PL/SQL course.

For more information, see PL/SQL User's Guide and Referent@opllections and Records.”

Introduction to Oracle9i: PL/SQL 1-26

LOB Data Type Variables

1-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Book
(CLOB)

Photo
(BLOB)

Movie
(BFI LE)

NCLOB

LOB Data Type Variables

With the LOB (large object) data types you can store blocks of unstructured data (such astext, graphic images,

video clips, and sound wave forms) up to 4 gigabytesin size. LOB data types alow efficient, random,

pi ecewise access to the data and can be attributes of an object type. LOBs a so support random access to data.

The CLOB (character large object) data type is used to store large blocks of single-byte character data in
the database in line (inside the row) or out of line (outside the row).

TheBLOB (binary large object) data type is used to store large binary objects in the database in line

(inside the row) or out of line (outside the row).

TheBFI LE (binary file) data type is used to store large binary objects in operating system files outside

the database.

TheNCLOB (national language character large object) data type is used to store large blocks of single-

byte or fixed-width multibyttNCHAR unicode data in the database, in line or out of line.

Introduction to Oracle9i: PL/SQL 1-27

Bind Variables

BN

I
|
| |
O/S :

Bind variable

_ o

..

1-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Bind Variables

A bind variableis avariable that you declare in a host environment. Bind variables can be used to pass
run-time values, either number or character, into or out of one or more PL/SQL programs. The PL/SQL
programs use bind variables as they would use any other variable. Y ou can reference variables declared in the
host or calling environment in PL/SQL statements, unless the statement isin a procedure, function, or
package. Thisincludes host language variables declared in precompiler programs, screen fieldsin Oracle
Developer Forms applications, and i SQL* Plus bind variables.

Creating Bind Variables

To declare abind variable in the iISQL* Plus environment, use the command VARI ABLE. For example, you
declare avariable of type NUVMBER and VARCHAR2 as follows:

VARI ABLE return_code NUMBER
VARI ABLE return_msg VARCHAR2(30)

Both SQL and iSQL* Plus can reference the bind variable, and i SQL* Plus can display its value through the
iSQL*Plus PRI NT command.

Introduction to Oracle9i: PL/SQL 1-28

Displaying Bind Variables
To display the current value of bind variablesin the iSQL* Plus environment, use the PRI NT command.

However, PRI NT cannot be used inside a PL/SQL block becauseit is aniSQL*Plus command. The
following exampleillustrates a PRI NT command:

VARI ABLE g_n NUMBER

PRINT g n
Y ou can reference host variablesin PL/SQL programs. These variables should be preceded by a colon.
VARI ABLE RESULT NUMBER

An example of using a host variable in a PL/SQL block:

BEG N
SELECT (SALARY*12) +NVL(COW SSI ON_PCT, 0) | NTO : RESULT
FROM enpl oyees WHERE enpl oyee_id = 144;

END,
/
PRI NT RESULT

Introduction to Oracle9i: PL/SQL 1-29

Using Bind Variables

To reference a bind variable in PL/SQL, you must
prefix its name with a colon (;).

Example:
VARI ABLE g_sal ary NUMBER
BEG N
SELECT sal ary
I NTO :g_sal ary
FROM enpl oyees
VHERE enpl oyee_id = 178;
END;
/
PRI NT g_sal ary

1-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Printing Bind Variables
IniSQL* Plus you can display the value of the bind variable using the PRI NT command.

| G_SALARY

| 7000

Introduction to Oracle9i: PL/SQL 1-30

Referencing Non-PL/SQL Variables

Store the annual salary into a iSQL*Plus host
variable.

g_monthly sal :=v_sal / 12;

* Reference non-PL/SQL variables as host
variables.

* Prefix the references with a colon (:).

1-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing Non-PL/SQL Variables

To reference host variables, you must prefix the references with acolon (;) to distinguish them from declared
PL/SQL variables.

Example

This example computes the monthly salary, based upon the annual salary supplied by the user. This script
contains both i SQL* Plus commands as well as a complete PL/SQL block.

SET VERI FY OFF

VARI ABLE g_rnmonthly sal NUMBER

DEFI NE p_annual _sal = 50000
DECLARE
v_sal NUMBER(9, 2) := &p_annual _sal;
BEG N
:g_monthly sal := v_sal/12;
END;
/
PRI NT g_nont hly_sal

The DEFI NE command specifies a user variable and assigns it a CHAR value. Even though you enter the number
50000, iSQL*Plus assignsa CHARvalueto p_annual _sal consisting of the characters, 5,0,0,0 and O.

Introduction to Oracle9i: PL/SQL 1-31

DBVMS_OUTPUT. PUT_LI NE

®* An Oracle-supplied packaged procedure

* An alternative for displaying data from a PL/SQL
block

® Must be enabled in iISQL*Plus with
SET SERVEROUTPUT ON

SET SERVEROUTPUT ON
DEFI NE p_annual _sal = 60000

DECLARE

v_sal NUMBER(9, 2) := &p_annual _sal;
BEA N

v_sal := v_sal/12;

DBMS QUTPUT. PUT_LINE (' The nonthly salary is ’ ||
TO CHAR(v_sal));
END;
/

1-32 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_QUTPUT. PUT_LI NE

Y ou have seen that you can declare a host variable, referenceit in a PL/SQL block, and then display its
contents in iSQL* Plus using the PRI NT command. Another option for displaying information from a
PL/SQL block is DBMS_QUTPUT. PUT_LI NE. DBMS_QOUTPUT is an Oracle-supplied package, and
PUT_LI NE isaprocedure within that package.

Within a PL/SQL block, reference DBMS_OUTPUT. PUT_LI NE and, in parentheses, specify the string that

you want to print to the screen. The package must first be enabled in your iSQL* Plus session. To do this,
executetheiSQL*Plus SET SERVERCUTPUT ON command.

The example on the dlide computes the monthly salary and printsit to the screen, using
DBVS_QUTPUT. PUT_LI NE. The output is shown below:

The tmonthly salaty 13 2000
PLIZQL procedure successfully completed.

Introduction to Oracle9i: PL/SQL 1-32

Summary

In this lesson you should have learned the following:

® PL/SQL blocks are composed of the following
sections:

— Declarative (optional)
— Executable (required)
— Exception handling (optional)

CLARE
* A PL/SQL block can be an anonymous
block, procedure, or function. BEG N
[oee]
EXCEPTI ON
END;

1-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A PL/SQL block is abasic, unnamed unit of a PL/SQL program. It consists of a set of SQL or PL/SQL
statements and it performs asingle logical function. The declarative part isthefirst part of a PL/SQL block and
is used for declaring objects such as variables, constants, cursors, and definitions of error situations called
exceptions. The executable part is the mandatory part of a PL/SQL block, and contains SQL and PL/SQL
statements for querying and manipulating data. The exception-handling part is embedded inside the executable
part of ablock and is placed at the end of the executable part.

An anonymous PL/SQL block isthe basic, unnamed unit of a PL/SQL program. Procedures and functions can
be compiled separately and stored permanently in an Oracle database, ready to be executed.

Introduction to Oracle9i: PL/SQL 1-33

Summary

In this lesson you should have learned the following:
e PL/SQL identifiers:

— Are defined in the declarative section
— Can be of scalar, composite, reference, or LOB data
type

— Can be based on the structure of another variable
or database object

— Can be initialized

* Variables declared in an external environment
such as iISQL*Plus are called host variables.

e Use DBMS_QUTPUT. PUT_LI NE to display data from
a PL/SQL block.

1-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

All PL/SQL datatypes are scalar, composite, reference, or LOB type. Scalar data types do not have any
components within them, whereas composite data types have other data types within them. PL/SQL
variables are declared and initialized in the declarative section.

When a PL/SQL program is written and executed using iSQL* Plus, iSQL* Plus becomes the host
environment for the PL/SQL program. The variables declared in iSQL* Plus are called host variables. Then
the PL/SQL program is written and executed using, for example, Oracle Forms. Forms becomes a host
environment, and variables declared in Oracle Forms are called host variables. Host variables are also called
bind variables.

To display information from a PL/SQL block use DBM5S_OUTPUT. PUT_LI NE.DBMS_QUTPUT isan
Oracle-supplied package, and PUT_LI NE is a procedure within that package. Within a PL/SQL block,
reference DBMS_OUTPUT. PUT_LI NE and, in parentheses, specify the string that you want to print to the
screen.

Introduction to Oracle9i: PL/SQL 1-34

Practice 1 Overview

This practice covers the following topics:
* Determining validity of declarations

®* Declaring asimple PL/SQL block

®* Executing a simple PL/SQL block

1-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 1 Overview

This practice reinforces the basics of PL/SQL covered in thislesson, including data types, definitions of
identifiers, and validation of expressions. Y ou put al these elements together to create a ssmple PL/SQL
block.

Paper-Based Questions
Questions 1 and 2 are paper-based questions.

Introduction to Oracle9i: PL/SQL 1-35

Practice 1
1. Evaluate each of the following declarations. Determine which of them are not legal and explain

why.
a DECLARE
v id NUVBER(4) ;
b. DECLARE
V_X, V_.y, V_Z VARCHAR2(10) ;
C. DECLARE
v_birthdate DATE NOT NULL;
d. DECLARE
v_in_stock BOOLEAN : = 1;

Introduction to Oracle9i: PL/SQL 1-36

Practice 1 (continued)

2. Ineach of the following assignments, indicate whether the statement is valid and what the valid
datatype of the result will be.

a v_days to go := v_due_date - SYSDATE;

b. v_sender := USER || ': ' || TO_CHAR(v_dept_no);

C. v_sum : = $100, 000 + $250, 000;

d. v_flag := TRUE;

e vinl :=v.n2 > (2 * v_n3),;

f. v_val ue : = NULL;

3. Create an anonymous block to output the phrase “My PL/SQL Block Works” to the screen.

| G_MESSAGE

My PL/SQL Block Warks

Introduction to Oracle9i: PL/SQL 1-37

Practice 1 (continued)
If you have time, complete the following exercise:

4. Createablock that declares two variables. Assign the value of these PL/SQL variablesto
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in afilenamed p1qg4. sql , by clicking the Save
Scri pt button. Remember to save the script witha. sql extension.

V_CHAR Character (variable |ength)
V_NUM Nunber

Assign valuesto these variables as follows:

Vari abl e Val ue

V. CHAR The literal '"42 is the answer’
V_NUM The first two characters from V_CHAR

| G_CHAR

|f12 iz the answer

| G_NUM

Introduction to Oracle9i: PL/SQL 1-38

Writing Executable Statements

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Describe the significance of the executable
section

* Use identifiers correctly

* Write statements in the executable section
®* Describe the rules of nested blocks

* Execute and test a PL/SQL block

®* Use coding conventions

2-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to write executable code in the PL/SQL block. You also learn the rules for
nesting PL/SQL blocks of code, as well as how to execute and test PL/SQL code.

Introduction to Oracle9i: PL/SQL 2-2

2-3

PL/SQL Block Syntax and Guidelines

Statements can continue over several lines.

Lexical units can be classified as:
Delimiters

Identifiers

Literals

Comments

Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Syntax and Guidelines
Because PL/SQL isan extension of SQL, the general syntax rules that apply to SQL also apply to the PL/SQL

language.

* Aline of PL/SQL text contains groups of characters known as lexical units, which can be classified as
follows:

Delimiters (simple and compound symbols)
Identifiers, which include reserved words
Literals

Comments

« To improve readability, you can separate lexical units by spaces. In fact, you must separate adjacent
identifiers by a space or punctuation.

e You cannot embed spaces in lexical units except for string literals and comments.
e Statements can be split across lines, but keywords must not be split.

Introduction to Oracle9i: PL/SQL 2-3

PL/SQL Block Syntax and Guidelines (continued)

Delimiters
Delimiters are simple or compound symbols that have special meaning to PL/SQL.

Simple Symbols

Symbol Meaning

+ Addition operator

- Subtraction/negation operator

Multiplication operator

/ Division operator
= Relational operator
@ Remote access indicator

; Statement terminator

Compound Symbols

Symbol | Meaning

<> Relational operator

= Relational operator

|l Concatenation operator

- - Single line comment indicator

* Beginning comment delimiter

*/ Ending comment delimiter

.= Assignment operator

Introduction to Oracle9i: PL/SQL 2-4

Identifiers

® Can contain up to 30 characters
®* Must begin with an alphabetic character

®* Can contain numerals, dollar signs, underscores,
and number signs

¢ Can not contain characters such as hyphens,
slashes, and spaces

* Should not have the same name as a database
table column name

* Should not be reserved words

Copyright © Oracle Corporation, 2001. All rights reserved.

Identifiers

Identifiers are used to name PL/SQL program items and units, which include constants, variables, exceptions,
cursors, cursor variables, subprograms, and packages.

Identifiers can contain up to 30 characters, but they must start with an alphabetic character.

Do not choose the same name for the identifier as the name of columns in a table used in the block. If
PL/SQL identifiers are in the same SQL statements and have the same name as a column, then Oracle
assumes that it is the column that is being referenced.

Reserved words should be written in uppercase to promote readability.

An identifier consists of a letter, optionally followed by more letters, numerals, dollar signs,
underscores, and number signs. Other characters such as hyphens, slashes, and spaces are illegal, as t
following examples show:

dot s&dashes -- illegal anpersand
debit-anmount -- illegal hyphen
on/ of f -- illegal slash
user id -- illegal space

The next examples show that adjoining and trailing dollar signs, underscores, and number signs are
allowed:

noney$$$t r ee
SN##
try again_

Note: Reserved words cannot be used as identifiers unless they are enclosed in double quotation marks (for
example, SELECT").

Introduction to Oracle9i: PL/SQL 2-5

PL/SQL Block Syntax and Guidelines

* Literals

— Character and date literals must be enclosed in
single quotation marks.

| v_name := 'Henderson’; |

— Numbers can be simple values or scientific
notation.

® Aslash (/)runs the PL/SQL block in a script file
or in some tools such as iISQL*PLUS.

2-6 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Syntax and Guidelines
A litera is an explicit numeric, character, string, or Boolean value that is not represented by an identifier.

« Character literals include all the printable characters in the PL/SQL character set: letters, numerals,
spaces, and special symbols.

« Numeric literals can be represented either by a simple value (for example, —32.5) or by a scientific
notation (for example2E5, meaning2* (10 to the power of 5) = 200000).

A PL/SQL program is terminated and executed by a slgsbr(a line by itself.

Introduction to Oracle9i: PL/SQL 2-6

Commenting Code

* Prefix single-line comments with two dashes (- -).

* Place multiple-line comments between the symbols
[* and */ .

Example:

DECLARE

v_sal NUMBER (9, 2);
BEA N
/* Conmpute the annual sal ary based on the
nmont hly salary input fromthe user */

v_sal := :g nonthly sal * 12;
END; -- This is the end of the block
2-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Commenting Code
Comment code to document each phase and to assist debugging. Comment the PL/SQL code with two
dashes (- -) if the comment ison asingle line, or enclose the comment between the symbols/ * and */ if
the comment spans severa lines. Comments are strictly informationa and do not enforce any conditions or
behavior on behavioral logic or data. Well-placed comments are extremely valuable for code readability and
future code maintenance.

Example

In the example on the dide, the line enclosed within /* and */ isthe comment that explains the code that
followsit.

Introduction to Oracle9i: PL/SQL 2-7

SQL Functions in PL/SQL

* Available in procedural statements:
— Single-row number
— Single-row character Same as in SQL
— Datatype conversion
- Date
— Timestamp
— GREATEST and LEAST
— Miscellaneous functions
®* Not available in procedural statements:
- DECODE
— Group functions

2-8 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions in PL/SQL

Most of the functions availablein SQL are also vaid in PL/SQL expressions:
» Single-row number functions
» Single-row character functions
» Data type conversion functions
» Date functions
e Timestamp functions
» GREATEST, LEAST
* Miscellaneous functions

The following functions are not available in procedural statements:
+ DECODE.

e Group functionsAVG M N, MAX, COUNT, SUM STDDEV, andVARI ANCE. Group functions apply to
groups of rows in a table and therefore are available only in SQL statements in a PL/SQL block.

Introduction to Oracle9i: PL/SQL 2-8

SQL Functions in PL/SQL: Examples

® Build the mailing list for a company.

v_mailing _address := v_nane|| CHR(10) | |
v_address|| CHR(10) || v_state||
CHR(10) | | v_zi p;

® Convert the employee name to lowercase.

V_enane := LOVNER(Vv_enane) ;

2-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions in PL/SQL: Examples

Most of the SQL functions can be used in PL/SQL. These built-in functions help you to manipulate data;
they fal into the following categories:

* Number
* Character
» Conversion
 Date
* Miscellaneous
The function examples in the slide are defined as follows:

* Build the mailing address for a company.
+ Convert the name to lowercase.

CHRis the SQL function that converts an ASCII code to its corresponding character; 10 is the code for a
line feed.

PL/SQL has its own error handling functions which are:
SQLCODE
* SQLERRM
These functions are discussed later in this course.
For more information, sdelL/SQL User's Guide and Referen¢&undamentals.”
Introduction to Oracle9i: PL/SQL 2-9

Data type Conversion

e Convert datato comparable data types.

* Mixed data types can result in an error and affect
performance.

® Conversion functions:
— TO CHAR
— TO DATE
— TO _NUMBER

DECLARE
v_date DATE := TO DATE(’ 12- JAN-2001’, ' DD- MON YYYY');
BEG N

2-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Data type Conversion

PL/SQL attempts to convert datatypes dynamicaly if they are mixed in a statement. For example, if you
assign a NUMBER value to a CHAR variable, then PL/SQL dynamically trandates the number into a
character representation, so that it can be stored in the CHAR variable. The reverse situation also applies,
provided that the character expression represents a numeric value.

If they are compatible, you can also assign characters to DATE variables and vice versa.

Within an expression, you should make sure that data types are the same. If mixed data types occur in an
expression, you should use the appropriate conversion function to convert the data.

Syntax
TO CHAR (val ue, fnt)
TO DATE (val ue, fnt)
TO NUMBER (val ue, fnt)
where: value isacharacter string, number, or date.
fmt isthe format model used to convert avalue.

Introduction to Oracle9i: PL/SQL 2-10

Data type Conversion

1. This statement produces a compilation error if the
variable v_dat e is declared as a DATE data type.

v_date := 'January 13, 2001’ ;

2. To correct the error, use the TO DATE conversion
function.

v_date := TO DATE ('’ January 13, 2001’
"Month DD, YYYY');

2-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Data type Conversion
The conversion examplesin the dide are defined as follows:
1. Storeacharacter string representing adate in avariable that is declared as a DATE datatype. This
code causes a syntax error.
2. Tocorrect the error, convert the string to a date with the TO_DATE conversion function.

PL/SQL attempts conversion if possible, but its success depends on the operations that are being performed.
It is good programming practice to explicitly perform data type conversions, because they can favorably
affect performance and remain valid even with a change in software versions.

Introduction to Oracle9i: PL/SQL 2-11

Nested Blocks
and Variable Scope

® PL/SQL blocks can be nested wherever an
executable statement is allowed.

* A nested block becomes a statement.
®* An exception section can contain nested blocks.

® The scope of an identifier is that region of a
program unit (block, subprogram, or package)
from which you can reference the identifier.

2-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Blocks

One of the advantages that PL/SQL has over SQL isthe ability to nest statements. Y ou can nest blocks
wherever an executabl e statement is allowed, thus making the nested block a statement. Therefore, you can
break down the executable part of a block into smaller blocks. The exception section can also contain
nested blocks.

Variable Scope

References to an identifier are resolved according to its scope and visibility. The scope of an identifier is
that region of a program unit (block, subprogram, or package) from which you can reference the identifier.
Anidentifier isvisible only in the regions from which you can reference the identifier using an unqualified
name.

Identifiers declared in a PL/SQL block are considered local to that block and global to all its subblocks. If a
global identifier isredeclared in a subblock, both identifiers remain in scope. Within the subblock,

however, only the local identifier is visible because you must use a qualified name to reference the global
identifier.

Although you cannot declare an identifier twice in the same block, you can declare the same identifier in
two different blocks. The two items represented by the identifier are distinct, and any change in one does
not affect the other. However, a block cannot reference identifiers declared in other blocks at the same level
because those identifiers are neither local nor global to the block.

Introduction to Oracle9i: PL/SQL 2-12

Nested Blocks and Variable Scope

Example:

X Bl NARY_| NTEGER;
BEG N

Scope of x
DECLARE
y NUMBER,
BEG N
y:= X;

Scope of y

END;

END;

2-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Blocks and Variable Scope

In the nested block shown on the dide, the variable named y can reference the variable named x. Variable x,
however, cannot reference variabley. If variable y in the nested block is given the same name as variable x in
the outer block, its value isvalid only for the duration of the nested block.

Scope

The scope of anidentifier isthat region of a program unit (block, subprogram, or package) from which you
can reference the identifier.

Visibility
Anidentifier isvisible only in the regions from which you can reference the identifier using an unqualified
name.

Introduction to Oracle9i: PL/SQL 2-13

Identifier Scope

An identifier is visible in the regions where you can
reference the identifier without having to qualify it:

* A block can look up to the enclosing block.
e A block cannot look down to enclosed blocks.

2-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Identifier Scope

Anidentifier isvisiblein the block in which it is declared and in al nested subblocks, procedures, and
functions. If the block does not find the identifier declared locally, it looks up to the declarative section of

the enclosing (or parent) blocks. The block never looks down to enclosed (or child) blocks or sidewaysto
sibling blocks.

Scope applies to all declared objects, including variables, cursors, user-defined exceptions, and constants.

Introduction to Oracle9i: PL/SQL 2-14

Qualify an Identifier
®* The qualifier can be the label of an enclosing
block.
* Qualify an identifier by using the block label prefix.
<<out er >>
DECLARE
bi rt hdat e DATE;
BEG N
DECLARE
bi rt hdat e DATE;
BEG N
outer.birthdate : =
TO_DATE(’ 03- AUG 1976",
' DD- MON- YYYY') ;
END;
END;

2-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Qualify an Identifier

Qualify anidentifier by using the block label prefix. In the example on the dide, the outer block is labeled

out er. Intheinner block, avariable with the same name, bi r t hdat e, asthevariablein the outer block is
declared. To reference the variable, bi r t hdat e, from the outer block in the inner block, prefix the variable
by the block name, out er . bi rt hdat e.

For more information on block labels, see PL/SQL User's Guide and Referen¢&undamentals.”

Introduction to Oracle9i: PL/SQL 2-15

Determining Variable Scope
Class Exercise

<<out er >>
DECLARE
V_SAL NUMBER(7, 2) : = 60000;
V_COwW NUMBER(7,2) := V_SAL * .20;
V_MESSAGE VARCHAR2(255) := "' eligible for comr ssion’;
BEG N
DECLARE
V_SAL NUMBER(7, 2) : = 50000;
V_COW NUMBER(7,2) := 0;
V_TOTAL_COwP NUMBER(7,2) := V_SAL + V_COW
BEG N
V_MESSAGE : = ' CLERK not' || V_MESSAGE;
outer.V.COW := V_SAL *. 30
© -
END;
V_MESSAGE : = ' SALESMAN | | V_MESSAGCE;
@
END;
2-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Class Exercise
Evaluate the PL/SQL block on the dide. Determine each of the following values according to the rules of
scoping:
1. Thevaueof V_MESSACE at position 1.
Thevdueof V_TOTAL_CQOVP at position 2.
Thevadue of V_COvMat position 1.
Thevaue of out er .V_COvMat position 1.
Thevaue of V_COvMat position 2.
The value of V_MESSAGE at position 2.

S e

Introduction to Oracle9i: PL/SQL 2-16

Operators in PL/SQL

* Logical
* Arithmetic
e Concatenation Same as in

* Parentheses to control order of SQL

operations

* Exponential operator (**)

2-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Order of Operations

The operations within an expression are performed in a particular order depending on their precedence
(priority). The following table shows the default order of operations from high priority to low priority:

Operator Operation

*x Exponentiation

+ - Identity, negation

* Multiplication, division
+ -,] Addition, subtraction, concatenation
= < > <5 >= <> Comparison

~=, "=, IS NULL, LIKE,

BETWEEN, I N

NOT Logical negation

AND Conjunction

oR Inclusion

Note: It is not necessary to use parentheses with Boolean expressions, but it does make the text easier to
read. For more information on operators, see PL/SQL User’s Guide and Referentieundamentals.”

Introduction to Oracle9i: PL/SQL 2-17

Operators in PL/SQL

Examples:
®* Increment the counter for aloop.
v_count = v_count + 1;

® Setthe value of a Boolean flag.
v_equal = (v_nl = v_n2);

* Validate if an employee number contains a value.
v_valid := (v_enmpno |I'S NOT NULL);

2-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Operators in PL/SQL
When working with nulls, you can avoid some common mistakes by keeping in mind the following rules:
e Comparisons involving nulls always yieNULL.
» Applying the logical operatd¥OT to a null yieldsNULL.

* In conditional control statements, if the condition yie\tlii L, its associated sequence of statements is
not executed.

Introduction to Oracle9i: PL/SQL 2-18

Programming Guidelines

Make code maintenance easier by:
* Documenting code with comments
®* Developing a case convention for the code

®* Developing naming conventions for identifiers and
other objects

* Enhancing readability by indenting

2-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Programming Guidelines

Follow programming guidelines shown on the slide to produce clear code and reduce maintenance when
developing a PL/SQL block.

Code Conventions

The following table provides guidelines for writing code in uppercase or lowercase to help you distinguish
keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, | NSERT

PL/SQL keywords Uppercase DECLARE, BEA N, | F

Datatypes Uppercase VARCHAR2, BOOLEAN

Identifiers and parameters Lowercase v_sal ,enp_cursor,g_sal,
p_enpno

Database tables and columns Lowercase enpl oyees, enpl oyee_i d,
departnent _id

Introduction to Oracle9i: PL/SQL 2-19

Indenting Code

For clarity, indent each level of code.

Example:
DECLARE
v_dept no NUMBER(4) ;
BEG N v_location_id NUVBER(4):
| F x=0 THEN BEG N
y: =1 SELECT departnent id,
END I'F; | ocation id
END; | NTO v_dept no,
v_location_id
FROM departnents
WHERE departnent _nane
= ' Sal es’;
END;
/
2-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Indenting Code

For clarity, and to enhance readability, indent each level of code. To show structure, you can divide lines
using carriage returns and indent lines using spaces or tabs. Compare the following | F statements for
readability:

| F x>y THEN v_max: =x; ELSE v_max: =y; END | F;

IF x >y THEN

V_max = X;
ELSE

v_max = y;
END | F;

Introduction to Oracle9i: PL/SQL 2-20

Summary

In this lesson you should have learned the following:
* PL/SQL block syntax and guidelines
* How to use identifiers correctly

® PL/SQL block structure: nesting blocks and
scoping rules

* PL/SQL programming: CLARE
— Functions
. BEGQ N
— Data type conversions [aee]
— Operators EXCEPTI ON
— Conventions and guidelines
END;

2-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
Because PL/SQL isan extension of SQL, the general syntax rulesthat apply to SQL also apply to the
PL/SQL language.
Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.
A block can have any number of nested blocks defined within its executable part. Blocks defined within a
block are called subblocks. Y ou can nest blocks only in the executable part of a block.
Most of the functions availablein SQL are also vaid in PL/SQL expressions. Conversion functions convert
avalue from one data type to another. Generally, the form of the function follows the datatype TO datatype
convention. The first datatype isthe input data type. The second datatype is the output data type.
Comparison operators compare one expression to another. The result is always TRUE, FALSE, or NULL.
Typically, you use comparison operatorsin conditional control statements and in the WHERE clause of SQL
data manipulation statements. The relational operators allow you to compare arbitrarily complex
expressions.
Variables declared iniSQL*Plus are called bind variables. To reference these variablesin PL/SQL
programs, they should be preceded by a colon.

Introduction to Oracle9i: PL/SQL 2-21

Practice 2 Overview

This practice covers the following topics:
®* Reviewing scoping and nesting rules
®* Developing and testing PL/SQL blocks

2-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 2 Overview

This practice reinforces the basics of PL/SQL that were presented in the lesson. The practices use sample
PL/SQL blocks and test the understanding of the rules of scoping. Students also write and test PL/SQL
blocks.

Paper-Based Questions
Questions 1 and 2 are paper-based questions.

Introduction to Oracle9i: PL/SQL 2-22

Practice 2

PL/SQL Block
DECLARE
v_weight NUMBER(3) := 600;
v_nmessage VARCHAR2(255) := 'Product 10012’;
BEG N
DECLARE
v_wei ght NUMBER(3) := 1;
V_nessage VARCHAR2(255) := 'Product 11001’ ;
v_new_ | ocn VARCHAR2(50) := ' Europe’;
BEG N
v_weight := v _weight + 1;
v_new locn := "Western ' || v_new_|ocn;
D
END;
v_weight := v_weight + 1,
v_nmessage := v_nessage || ' is in stock’;
v_new locn := "Western ' || v_new._|ocn;
©, >
END;

1. Evaluate the PL/SQL block above and determine the data type and value of each of the following
variables according to the rules of scoping.

a. Thevaueof V_WEI GHT at position 1is:

b. Thevalueof V_NEW LCCN at position 1is:

(¢

. Thevaue of V_WEI GHT at position 2 is:

o

Thevaueof V_MESSAGE at position 2is:

e. Thevaueof V_NEW LCCN at position 2 is:

Introduction to Oracle9i: PL/SQL 2-23

Practice 2 (continued)

Scope Example

DECLARE
V_cust oner VARCHAR2(50) := 'Wnansport’;
v _credit _rating VARCHAR2(50) := ' EXCELLENT ;
BEG N

DECLARE
v_cust omer NUMBER(7) := 201;

V_nhane VARCHAR2(25) := ’'Unisports’;

BEGN
~7V_custoner "~y .~ V_nane, "V credit rat fﬁé:)
BN - i Tree-mtt eI

(:\;_cust orrer:\) (\’v— name) \::v_credi t _rati nd:)
ENO, O TTTT TTTTTT TTTmmmmmeemmtTo

2. Suppose you embed a subblock within a block, as shown above. Y ou declare two variables,
V_CUSTOVERand V_CREDI T_RATI NG, in the main block. Y ou aso declare two variables,
V_CUSTOMER and V_NAME, in the subblock. Determine the values and data types for each of the
following cases.

a. Thevaueof V_CUSTQOVERinthe subblock is:

b. Thevaueof V_NAME in the subblock is:

c. Thevaueof V_CREDI T_RATI NGin the subblock is:

d. Thevaueof V_CUSTOVER inthemain block is:

e. Thevaueof V_NAME inthe main block is:

f. Thevaueof V_CREDI T_RATI NGinthemain block is:

Introduction to Oracle9i: PL/SQL 2-24

Practice 2 (continued)

3. Create and execute a PL/SQL block that accepts two numbers through i SQL* Plus substitution
variables. Use the DEFI NE command to provide the two values. Pass these two values to the PL/SQL
block through i SQL* Plus substitution variables. The first number should be divided by the second
number and have the second number added to the result. The result should be stored in a PL/SQL
variable and printed on the screen.

Note SET VERI FY OFF inthe PL/SQL block.

1
N

DEFI NE p_nunl
DEFI NE p_nun?

1
n

4.5
PLIEOQL procedure successfully completed.

4. Build aPL/SQL block that computes the total compensation for one year. The annual salary and the
annual bonus percentage values are defined using the DEFI NE command and are passed to the
PL/SQL block through i SQL* Plus substitution variables. The bonus must be converted from awhole
number to adecimal (for example, 15t0 .15). If the sadlary isnul | , set it to zero before computing the
total compensation. Execute the PL/SQL block. Reminder: Use the NVL function to handle nul |
values.

Note: To test the NVL function, set the DEFI NE variable equal to NULL.

DEFI NE p_sal ar y=50000
DEFI NE p_bonus=10

55000
FPLIZOL procedure successhully completed.

Introduction to Oracle9i: PL/SQL 2-25

Introduction to Oracle9i: PL/SQL 2-26

Interacting with
the Oracle Server

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write a successful SELECT statement in PL/SQL
* Write DML statements in PL/SQL
* Control transactions in PL/SQL

* Determine the outcome of SQL Data Manipulation
Language (DML) statements

3-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn to embed standard SQL SELECT, | NSERT, UPDATE, and DELETE statementsin

PL/SQL blocks. Y ou also learn to control transactions and determine the outcome of SQL data manipulation
language (DML) statementsin PL/SQL.

Introduction to Oracle9i: PL/SQL 3-2

SQL Statements in PL/SQL

* Extract arow of data from the database by using
the SELECT command.

* Make changes to rows in the database by using
DML commands.

* Control atransaction with the COVMM T, ROLLBACK,
or SAVEPO NT command.

®* Determine DML outcome with implicit cursor
attributes.

3-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements in PL/SQL

When you extract information from or apply changes to the database, you must use SQL. PL/SQL supports

data manipul ation language and transaction control commands of SQL. Y ou can use SELECT statements to

populate variables with values queried from arow in atable. Y ou can use DML commands to modify the

datain a database table. However, remember the following points about PL/SQL blocks while using DML

statements and transaction control commandsin PL/SQL blocks:

* The keywordEND signals the end of a PL/SQL block, not the end of a transaction. Just as a block can
span multiple transactions, a transaction can span multiple blocks.

e PL/SQL does not directly support data definition language (DDL) statements, SURBAE
TABLE, ALTER TABLE, orDROP TABLE.

« PL/SQL does not support data control language (DCL) statements, S8RANE or REVOKE.

Introduction to Oracle9i: PL/SQL 3-3

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT
statement.

Syntax:

SELECT select _Iist

| NTO {variabl e _nane[, variable_nane]. ..
| record _nane}

FROM tabl e

[WHERE condi tion];

3-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data Using PL/SQL
Use the SELECT statement to retrieve data from the database. In the syntax:

select list isalist of at least one column and can include SQL expressions, row
functions, or group functions.

variable_name isthe scalar variable that holds the retrieved value.

record_name isthe PL/SQL RECORD that holds the retrieved values.

table specifies the database table name.

condition is composed of column names, expressions, constants, and comparison

operators, including PL/SQL variables and constants.
Guidelines for Retrieving Data in PL/SQL
* Terminate each SQL statement with a semicolon (;).
» Thel NTOclause is required for tHeEL ECT statement when it is embedded in PL/SQL.

 TheWHERE clause is optional and can be used to specify input variables, constants, literals, or PL/SQL
expressions.

Introduction to Oracle9i: PL/SQL 3-4

Retrieving Data Using PL/SQL (continued)

e Specify the same number of variablesin the | NTO clause as database columnsin the SELECT
clause. Be sure that they correspond positionally and that their data types are compatible.

» Use group functions, such 88M in a SQL statement, because group functions apply to groups of
rows in a table.

Introduction to Oracle9i: PL/SQL 3-5

SELECT Statements in PL/SQL

* The |l NTOclause is required.
® Queries must return one and only one row.

Example:

DECLARE
v_dept no NUMBER(4) ;
v_location_id NUVBER(4) ;

BEG N
SELECT departnent id, location_id
| NTO v_deptno, v_location_id
FROM departnents
WHERE departnent _nane = ' Sal es’;

END;

/

3-6 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT Statements in PL/SQL
| NTOClause

The | NTOclause is mandatory and occurs between the SELECT and FROMclauses. It is used to specify the
names of variables that hold the values that SQL returns from the SELECT clause. Y ou must specify one
variable for each item selected, and the order of the variables must correspond with the items selected.

Use the | NTOclause to populate either PL/SQL variables or host variables.
QueriesMust Return One and Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL, for which
the following rule applies: queries must return one and only onerow. A query that returns more than one
row Or No row generates an error.

PL/SQL manages with these errors by raising standard exceptions, which you can trap in the exception
section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS exceptions (exception handling is
covered in a subsequent lesson). Code SELECT statements to return a single row.

Introduction to Oracle9i: PL/SQL 3-6

Retrieving Data in PL/SQL

Retrieve the hire date and the salary for the specified

employee.
Example:
DECLARE
v_hire date enpl oyees. hi re_dat e%d YPE;
v_sal ary enpl oyees. sal ar y%I YPE;
BEG N
SELECT hire_date, salary
| NTO v_hire date, v_salary
FROM enpl oyees
VHERE enpl oyee_id = 100;
END;
/

3-7

Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data in PL/SQL

In the example on the dide, the variablesv_hi re_dat e andv_sal ary are declared in the DECLARE
section of the PL/SQL block. In the executable section, the values of the columns Hl RE_DATE and SALARY
for the employee with the EMPLOYEE_| D 100 is retrieved from the EMPLOYEES table and stored in the
v_hire_date andv_sal ary variables, respectively. Observe how the | NTOclause, along with the
SELECT statement, retrieves the database column values into the PL/SQL variables.

Introduction to Oracle9i: PL/SQL 3-7

Retrieving Data in PL/SQL

Return the sum of the salaries for all employees in
the specified department.

Example:

SET SERVEROUTPUT ON
DECLARE
v_sum sal NUMBER(10, 2) ;
v_dept no NUVMBER NOT NULL : = 60;

BEGQ N
SELECT SUM sal ary) -- group function
| NTO v_sum sal
FROM enpl oyees
VWHERE departnment _id = v_dept no;

DBMS QUTPUT. PUT_LINE (’ The sumsalary is ' ||
TO CHAR(v_sum sal));
END;
/

3-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data in PL/SQL

In the example onthe dide, thev_sum sal and v_dept no variables are declared in the DECL ARE section
of the PL/SQL block. In the executable section, the total salary for the department with the

DEPARTMENT | D60 is computed using the SQL aggregate function SUM and assigned to thev_sum sal
variable. Note that group functions cannot be used in PL/SQL syntax. They are used in SQL statements
within a PL/SQL block.

The output of the PL/SQL block in the dideis shown below:

The sum salary 15 28200
FPLISOL procedure successfully completed.

Introduction to Oracle9i: PL/SQL 3-8

Naming Conventions

DECLARE
hire_date enpl oyees. hi re_dat e%d YPE;
sysdate hi re_dat e%l YPE;
enpl oyee_id enpl oyees. enpl oyee i dWYPE : = 176;
BEG N
SELECT hire date, sysdate
| NTO hire date, sysdate
FROM enpl oyees
WHERE enpl oyee id = enpl oyee_id;
END;
/
DECLAEE
ERROE at line 1:

OFA-01422: exact fetch returns more than requested number of rows
OFA-06512: at line &

3-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Conventions

In potentially ambiguous SQL statements, the names of database columns take precedence over the names

of local variables. The example shown on the dide is defined asfollows: Retrieve the hire date and today’s
date from th&EMPLOYEES table for employee ID 176. This example raises an unhandled run-time
exception because in tMERE clause, the PL/SQL variable names are the same as that of the database
column names in thEMPLOYEES table.

The followingDEL ETE statement removes all employees fromEMPLOYEES table where last name is
not null, not just 'King', because the Oracle server assumes thatA®th NAVES in theWHERE clause
refer to the database column:

DECLARE
| ast _name VARCHAR2(25) := "King’;
BEG N
DELETE FROM enpl oyees WHERE | ast _nane = | ast _nane;

Introduction to Oracle9i: PL/SQL 3-9

Manipulating Data Using PL/SQL
* Make changes to database tables by using DML

commands:

— | NSERT

— UPDATE

_ DELETE INSERT

— MERGE
UPDATE
DELETE

3-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Manipulating Data Using PL/SQL

Y ou manipulate datain the database by using the DML commands. Y ou can issue the DML commands
| NSERT, UPDATE, DELETE and MERGE without restriction in PL/SQL. Row locks (and table locks) are
released by including COVM T or ROLLBACK statementsin the PL/SQL code.

 Thel NSERT statement adds new rows of data to the table.
» TheUPDATE statement modifies existing rows in the table.
« TheDELETE statement removes unwanted rows from the table.

» The MERCE statement selects rows from one table to update or insert into another table. The
decision whether to update or insert into the target table is based on a conditicbNrltdngse.

Note: MERGE is a deterministic statement. That is, you cannot update the same row of the target table
multiple times in the samdERGE statement. You must haV&NSERT andUPDATE object privileges on
the target table and tI8LECT privilege on the source table.

Introduction to Oracle9i: PL/SQL 3-10

Inserting Data

Add new employee information to the EMPLOYEES
table.

Example:

BEG N
| NSERT | NTO enpl oyees
(enpl oyee_id, first_nane, |ast_nane, email,
hire date, job_id, salary)
VALUES

sysdate, ' AD ASST’, 4000);
END;
/

(enpl oyees_seq. NEXTVAL, 'Ruth’, 'Cores’, ’'RCORES,

3-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Data

In the example on the dlide, an | NSERT statement is used within a PL/SQL block to insert arecord into the

EMPLOYEES table. While using the | NSERT command in a PL/SQL block, you can:
e Use SQL functions, such &SER andSYSDATE
« Generate primary key values by using database sequences
e Derive values in the PL/SQL block
* Add column default values

Note: There is no possibility for ambiguity with identifiers and column names ihNSERT statement.

Any identifier in thel NSERT clause must be a database column name.

Introduction to Oracle9i: PL/SQL 3-11

Updating Data
Increase the salary of all employees who are stock
clerks.
Example:
DECLARE
v_sal _increase enpl oyees. sal ary%YPE : = 800;
BEGQ N
UPDATE enpl oyees
SET salary = salary + v_sal _increase
WHERE job id = ' ST CLERK ;
END;
/
3-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Data

There may be ambiguity inthe SET clause of the UPDATE statement because athough the identifier on the
left of the assignment operator is aways a database column, the identifier on the right can be either a
database column or a PL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows are modified, no
error occurs, unlike the SELECT statement in PL/SQL.

Note: PL/SQL variable assignments always use : =, and SQL column assignments always use =. Recall that
if column names and identifier names are identical in the WHERE clause, the Oracle server looks to the
database first for the name.

Introduction to Oracle9i: PL/SQL 3-12

Deleting Data

Delete rows that belong to department 10 from the
EMPLOYEES table.

Example:
DECLARE
v_dept no enpl oyees. depart nent _i d%'YPE : = 10;
BEG N
DELETE FROM enpl oyees
VWHERE department _id = v_deptno;
END;
/
3-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Data

The DELETE statement removes unwanted rows from a table. Without the use of a WHERE clause, the
entire contents of atable can be removed, provided there are no integrity constraints.

Introduction to Oracle9i: PL/SQL 3-13

Merging Rows

Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.

DECLARE
v_enpno EMPLOYEES. EMPLOYEE | DX YPE : = 100;
BEGA N
MERGE | NTO copy_enp ¢
USI NG enpl oyees e
ON (c.enployee_id = v_enpno)
VWHEN MATCHED THEN

UPDATE SET
c.first_nane = e.first_nane,
c.last_nane = e.last_nane,
c.enail = e.enunil,

VWHEN NOT MATCHED THEN
I NSERT VALUES(e. enpl oyee_id, e.first_name, e.last_nane,
., e.departnent _id);

END,

3-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows
The MERGE statement inserts or updates rows in one table, using data from another table. Each row is
inserted or updated in the target table, depending upon an equijoin condition.

The example shown matches the employee id in the COPY_EMP tableto theenpl oyee i d inthe
EMPLOYEES table. If amatch isfound, the row is updated to match the row in the EMPLOYEES table. If
the row is not found, it isinserted into the COPY_EMP table.

The complete example for using MERCGE in a PL/SQL block is shown in the next page.

Introduction to Oracle9i: PL/SQL 3-14

Merging Data (continued)

DECLARE
v_enpno EMPLOYEES. EMPLOYEE | DYAI'YPE : = 100;
BEGA N
MERGE | NTO copy_enp c
USI NG enpl oyees e
ON (c. enpl oyee_id = v_enpno)
VWHEN MATCHED THEN

UPDATE SET
c.first_nanme = e.first_nane,
c.last_nane = e. |l ast _nane,
c.emil = e.emil,
c. phone_nunber = e. phone_nunber,
c.hire_date = e. hire_date,
c.job_id = e.job_id,
c.sal ary = e.sal ary,
c.conmi ssion_pct = e.conmm ssion_pct,
c. manager _id = e. nmanager _id,
c.departnment _id = e.departnent_id

VWHEN NOT MATCHED THEN
| NSERT VALUES(e. enpl oyee_id, e.first_nanme, e.last_nane
e.emai |, e.phone_nunmber, e.hire_date, e.job_id,
e.sal ary, e.conmission_pct, e.nanager_id,
e. departnent _id);
END;

Introduction to Oracle9i: PL/SQL 3-15

Naming Conventions

®* Use anaming convention to avoid ambiguity in the
VWHERE clause.

e Database columns and identifiers should have
distinct names.

®* Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

® The names of local variables and formal
parameters take precedence over the names of
database tables.

* The names of columns take precedence over the
names of local variables.

3-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Conventions

Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes database
column names from PL/SQL variable names.

+ Database columns and identifiers should have distinct names.

e Syntax errors can arise because PL/SQL checks the database first for a column in the table.

Introduction to Oracle9i: PL/SQL 3-16

Naming Conventions (continued)

The following table shows a set of prefixes and suffixes that distinguish identifiers from other identifiers,
database objects, and from other named objects.

Identifier Naming Convention Example

Variable V_nane v_sal

Constant Cc_nane c_conpany_nane
Cursor name_cur sor enp_cur sor
Exception e_nhane e _too_many
Tabletype nanme_t abl e_t ype anount _tabl e_type
Table name_t abl e countries

Record type nanme_record_type |enp_record_type
Record nane_r ecord custoner _record
iSQL*Plus substitution variable | p_nane p_sal

(also referred to as substitution

parameter)

iSQL*Plus host or bind variable | g_nane g_year _sal

In such cases, to avoid ambiguity, prefix the names of local variables and formal parameterswithv_,
asfollows:
DECLARE

v_| ast_name VARCHAR2(25);

Note: Thereis no possibility for ambiguity in the SELECT clause because any identifier in the SELECT
clause must be a database column name. There is no possibility for ambiguity in the | NTO clause because
identifiersin the | NTOclause must be PL/SQL variables. There isthe possibility of confusion only in the
WHERE clause.

Introduction to Oracle9i: PL/SQL 3-17

SQL Cursor

® A-cursoris aprivate SQL work area.
® There are two types of cursors:

— Implicit cursors

— Explicit cursors

®* The Oracle server uses implicit cursors to parse
and execute your SQL statements.

* Explicit cursors are explicitly declared by the
programmer.

3-18 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor

Whenever you issue a SQL statement, the Oracle server opens an area of memory in which the command is
parsed and executed. This areaiis called a cursor.

When the executable part of ablock issuesa SQL statement, PL/SQL creates an implicit cursor, which
PL/SQL manages automatically. The programmer explicitly declares and names an explicit cursor. There are
four attributes available in PL/SQL that can be applied to cursors.

Note: More information about explicit cursorsis covered in a subsequent lesson.
For more information, refer to PL/SQL User’s Guide and Referentateraction with Oracle.”

Introduction to Oracle9i: PL/SQL 3-18

SQL Cursor Attributes

Using SQL cursor attributes, you can test the
outcome of your SQL statements.

SQLYROWCOUNT

Number of rows affected by the
most recent SQL statement (an
integer value)

SQLY%OUND

Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQLYINOTFOUND

Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows

SQL% SOPEN

Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed

3-19 Copyright © Oracle Corporation, 2001. All rights reserved.

=

SQL Cursor Attributes

SQL cursor attributes allow you to evaluate what happened when an implicit cursor was last used. Use
these attributesin PL/SQL statements, but not in SQL statements.

Y ou can use the attributes SQLYRONCOUNT, SQL%-OUND, SQLYNOTFOUND, and SQL% SOPENin the
exception section of ablock to gather information about the execution of a DML statement. PL/SQL does
not return an error if a DML statement does not affect any rowsin the underlying table. However, if a

SELECT statement does not retrieve any rows PL/SQL returns an exception.

Introduction to Oracle9i: PL/SQL 3-19

SQL Cursor Attributes

Delete rows that have the specified employee ID from
the EMPLOYEES table. Print the number of rows

deleted.
Example:
VARI ABLE rows_del et ed VARCHAR2(30)
DECLARE
v_enpl oyee_id enpl oyees. enpl oyee_i dWYPE : = 176;
BEGQ N
DELETE FROM enpl oyees
VWHERE enpl oyee_id = v_enpl oyee_i d;

rows_del eted : = (SQLYRONCOUNT | |
" row del eted.’);
END;
/
PRI NT rows_del et ed

3-20 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor Attributes (continued)

The example on the dide deletes the rows from the EMPLOYEES table for EMPLOYEE | D 176. Using the
SQLYRONCOUNT attribute, you can print the number of rows deleted.

Introduction to Oracle9i: PL/SQL 3-20

Transaction Control Statements

* |nitiate a transaction with the first DML command
to follow a COVMM T or ROLLBACK.

* Use COW T and ROLLBACK SQL statements to
terminate a transaction explicitly.

3-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Transaction Control Statements

Y ou control the logic of transactions with COMM T and ROLLBACK SQL statements, rendering some groups of
database changes permanent while discarding others. Aswith Oracle server, DML transactions start at the first
command that follows a COVM T or ROLLBACK, and end on the next successful COMM T or ROLLBACK.
These actions may occur within a PL/SQL block or as aresult of eventsin the host environment (for example,
in most cases, ending a i SQL* Plus session automatically commits the pending transaction). To mark an
intermediate point in the transaction processing, use SAVEPO NT.

Syntax

COWM T [WORK] ;

SAVEPO NT savepoi nt _nane;

ROLLBACK [WORK] ;

ROLLBACK [WORK] TO [SAVEPO NT] savepoi nt _nane;
where: WORK is for compliance with ANSI standards.

Note: The transaction control commands are all valid within PL/SQL, although the host environment may
place some restriction on their use.
Y ou can aso include explicit locking commands (such as LOCK TABLE and SELECT ... FOR UPDATE)

in ablock, which staysin effect until the end of the transaction (a subsequent lesson covers more information
on the FOR UPDATE command). Also, one PL/SQL block does not necessarily imply one transaction.

Introduction to Oracle9i: PL/SQL 3-21

Summary

In this lesson you should have learned the following:

e Embed SQL in the PL/SQL block using SELECT,
| NSERT, UPDATE, DELETE, MERGE

* Embed transaction control statements in a PL/SQL
block COW T, ROLLBACK, SAVEPO NT

3-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

The DML commands | NSERT, UPDATE, DELETE, and MERGE can be used in PL/SQL programs
without any restriction. The COVM T statement ends the current transaction and makes permanent any
changes made during that transaction. The ROLLBACK statement ends the current transaction and cancels
any changes that were made during that transaction. SAVEPO NT names and marks the current point in
the processing of atransaction. With the ROLLBACK TOSAVEPQO NT statement, you can undo parts of
atransaction instead of the whole transaction.

Introduction to Oracle9i: PL/SQL 3-22

Summary

In this lesson you should have learned the following:
®* There are two cursor types: implicit and explicit.

* Implicit cursor attributes are used to verify the
outcome of DML statements:

— SQLYROANCOUNT
— SQLY%OUND
— SQLYINOTFOUND
— SQLY% SOPEN

® Explicit cursors are defined by the programmer.

3-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)
An implicit cursor is declared by PL/SQL for each SQL data manipulation statement. Every implicit cursor
has four attributes: %-OUND, % SOPEN, %NOTFOUND, and %R0OWNCOUNT . When appended to the cursor or
cursor variable, these attributes return useful information about the execution of a DML statement. Y ou can
use cursor attributes in procedura statements but not in SQL statements. Explicit cursors are defined by the
programmer.

Introduction to Oracle9i: PL/SQL 3-23

Practice 3 Overview

This practice covers the following topics:

®* Creating a PL/SQL block to select data from a
table

®* Creating a PL/SQL block to insert data into a table
* Creating a PL/SQL block to update data in a table

® Creating a PL/SQL block to delete arecord from a
table

3-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3 Overview

In this practice you write PL/SQL blocks to select, input, update, and delete information in atable, using
basic SQL query and DML statements within a PL/SQL block.

Introduction to Oracle9i: PL/SQL 3-24

Practice 3

1. CreateaPL/SQL block that selects the maximum department number in the DEPARTMENTS table and

storesit in aniSQL*Plus variable. Print the results to the screen. Save your PL/SQL block in afile named
p3ql. sql . by clickingthe Save Scri pt button. Savethe script witha. sql extension.

| G_MAX_DEPTNO
| 270

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the DEPARTIVENTS
table. Save the PL/SQL block in afile named p3g2. sqgl by clickingthe Save Scri pt button. Save
the script witha. sgl extension.

a. Rather than printing the department number retrieved from exercise 1, add 10 to it and use it as

the department number for the new department.

b. Usethe DEFI NE command to provide the department name. Name the new department Educat i on.
Pass the value to the PL/SQL block through aiSQL* Plus substitution variable.

Leave the location number as null for now.
Execute the PL/SQL block.

Display the new department that you created.

® o o

| DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID | LOCATION_ID
| 280 |Education | |

3. Create aPL/SQL block that updates the location ID for the new department that you added in the previous
practice. Save your PL/SQL block in afile named p3g3. sql by clickingthe Save Scri pt button.
Savethe script witha. sql extension.

a. UseaniSQL*Plus variable for the department ID number that you added in the previous practice.

b. Usethe DEFI NE command to provide the location ID. Name the new location id 1700.
Pass the value to the PL/SQL block through a i SQL* Plus substitution variable.

c. Test the PL/SQL block.
DEFI NE p_deptno = 280
DEFINE p_l oc = 1700

d. Display the department number, department name, and location for the updated department.

| DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID | LOCATION_ID
| 280 |[Education | | 1700

Introduction to Oracle9i: PL/SQL 3-25

Practice 3 (continued)

4. CreateaPL/SQL block that deletes the department that you created in exercise 2. Save the PL/SQL
block inafile named p3g4. sql . by clickingthe Save Scri pt button. Save the script witha. sql

extension.

a Usethe DEFI NE command to provide the department ID. Pass the value to the PL/SQL block
through aiSQL* Plus substitution variable.

b. Print to the screen the number of rows affected.

c. Testthe PL/SQL block.
DEFI NE p_dept no=280

| G_RESULT

|1 row(s) deleted.

d. Confirm that the department has been deleted.

ho rows selected

Introduction to Oracle9i: PL/SQL 3-26

Writing Control Structures

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* |dentify the uses and types of control structures

®* Construct an | F statement

®* Use CASE expressions

®* Construct and identify different loop statements

®* Uselogic tables

* Control block flow using nested loops and labels

4-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn about conditional control within the PL/SQL block by using | F statements and
loops.

Introduction to Oracle9i: PL/SQL 4-2

Controlling PL/SQL Flow of Execution

®* You can change the logical execution of
statements using conditional | F statements and

loop control structures.

* Conditional | F statements:
— | F-THEN-END | F
— | F-THEN- ELSE- END | F
— | F-THEN-ELSI F-END | F

4-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling PL/SQL Flow of Execution

Y ou can change the logical flow of statements within the PL/SQL block with a number of control
structures. This lesson addresses three types of PL/SQL control structures: conditional constructs with the
| F statement, CASE expressions, and LOOP control structures (covered later in this lesson).

Therearethreeforms of | F statements:
 |F-THEN-END I F
e |F-THEN-ELSE-END I F
e |F-THEN-ELSIF-END | F

Introduction to Oracle9i: PL/SQL 4-3

| F Statements

Syntax:

| F condition THEN
St at enent s;

[ELSI F condition THEN
Sstatenents;]

[ELSE
St at enent s; |
END | F;
If the employee name is Gietz, set the Manager ID to
102.
| F UPPER(v_ |l ast_name) = ' G ETZ THEN
v_nmgr := 102,
END | F;
4-4 Copyright © Oracle Corporation, 2001. All rights reserved.

| F Statements
The structure of the PL/SQL | F statement is similar to the structure of | F statements in other procedural
languages. It allows PL/SQL to perform actions selectively based on conditions.
In the syntax:

condition isaBoolean variable or expression (TRUE, FALSE, or NULL). (It
is associated with a sequence of statements, which is executed only
if the expression yields TRUE.)

THEN isaclause that associates the Boolean expression that precedes it
with the sequence of statements that followsiit.

statements can be one or more PL/SQL or SQL statements. (They may include
further | F statements containing severa nested | F, ELSE, and ELSI F
statements.)

ELSI F isakeyword that introduces a Boolean expression. (If the first condition
yields FALSE or NULL then the ELSI F keyword introduces additional
conditions.)

ELSE isakeyword that executes the sequence of statements that follows
it if the control reachesit.

Introduction to Oracle9i: PL/SQL 4-4

Simple | F Statements

If the last name is Vargas:
e Setjob IDto SA REP

®* Set department number to 80

| F v_enane = 'Vargas’ THEN
v_j ob = 'SA REP;
v_dept no = 80;
END | F;
4-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple | F Statements

In the example on the dide, PL/SQL assigns valuesto the following variables, only if the condition is
TRUE:

* Vv_jobandv_deptno

If the condition iSFALSE or NULL, PL/SQL ignores the statements in tHeblock. In either case, control
resumes at the next statement in the program followingiie | F.

Guidelines
* You can perform actions selectively based on conditions that are being met.

* When writing code, remember the spelling of the keywords:
— ELSI Fis one word.

— END | Fis two words.

» If the controlling Boolean condition TBRUE, the associated sequence of statements is executed; if
the controlling Boolean condition BALSE or NULL, the associated sequence of statements is
passed over. Any number BESI F clauses are permitted.

* Indent the conditionally executed statements for clarity.

Introduction to Oracle9i: PL/SQL 4-5

Compound | F Statements

If the last name is Vargas and the salary is more than 6500:
Set department number to 60

| F v_enane = 'Vargas’ AND salary > 6500 THEN
v_dept no = 60;
END I F;
4-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Compound | F Statements

Compound | F statements use logical operators like AND and NOT. In the example on the dide, the | F
statement has two conditionsto evaluate:

e Last name should be Vargas

e Salary should be greater than 6500
Only if both the above conditions are evaluate@RISE, v_dept no is set to 60.
Consider the following example:

| F v_departnment = 60" OR v_hiredate > ’'01-Dec-1999' THEN
v_mgr := 101;
END | F;

In the above example , thé statement has two conditions to evaluate:
* Department ID should be 60
e Hire date should be greater than 01-Dec-1999
If either of the above conditions are evaluatedRIdE, v_ngr is set to 101.

Introduction to Oracle9i: PL/SQL 4-6

| F- THEN- ELSE Statement Execution Flow

TRUE NOT TRUE
| F condition
THEN actions ELSE actions
(including further | F (including further I F
statements) statements)

l l

4-7 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSE Statement Execution Flow

While writing an | F construct, if the conditionis FALSE or NULL, you can use the EL SE clause to carry out
other actions. Aswith the simple | F statement, control resumesin the program from the END | F clause. For
example:
| F conditionl THEN
stat ement 1;
ELSE
st at enent 2;
END | F;

Nested | F Statements

Either set of actions of the result of thefirst | F statement can include further | F statements before specific
actions are performed. The THEN and EL SE clauses can include | F statements. Each nested | F statement must
be terminated with a corresponding END | F clause.

| F conditionl THEN
st at enent 1;
ELSE
| F condition2 THEN
st at enent 2;
END | F;
END | F;

Introduction to Oracle9i: PL/SQL 4-7

| F- THEN- ELSE Statements

Set a Boolean flag to TRUE if the hire date is greater
than five years; otherwise, set the Boolean flag to

FALSE.

DECLARE
v_hire_date DATE := ’12-Dec-1990;
v_five_years BOOLEAN,

BEG N

| F MONTHS BETWEEN(SYSDATE, v_hire_date)/12 > 5 THEN
v_five_ years : = TRUE;

ELSE
v_five years := FALSE;

END | F;

4-8 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSE Statements: Example
In the example on the dlide, the MONTHS_BETWEEN function is used to find out the difference in months
between the current dateand thev_hi r e_dat e variable. Because the result is the difference of the
number of months between the two dates, the resulting value is divided by 12 to convert the result into
years. If the resulting value is greater than 5, the Boolean flag is set to TRUE; otherwise, the Boolean flag
isset to FALSE.
Consider the following example: Check thevalueinthe v_enamne variable. If the valueisKing, set the
v_j ob variableto AD_PRES. Otherwise, setthev_j ob variableto ST_CLERK.

IF v_ename = 'King THEN
v_job = ' AD PRES ;
ELSE
v_job = 'ST_CLERK ;
END | F;

Introduction to Oracle9i: PL/SQL 4-8

| F- THEN- ELSI F
Statement Execution Flow

| F condition

ELSI F

THEN actions condition

TRUE NOT' TRUE
THEN actions EL_SE
actions
\ 4 Y Y
Y
4-9 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSI F Statement Execution Flow

Sometimes you want to select an action from several mutually exclusive aternatives. Thethird formof | F
statement uses the keyword ELSI F (not ELSEI F) to introduce additional conditions, as follows:

| F conditionl THEN
sequence_of statenentsi;
ELSI F conditi on2 THEN
sequence_of _statenents2;
ELSE
sequence_of _statenents3;
END | F;

Introduction to Oracle9i: PL/SQL 4-9

| F- THEN- ELSI F Statement Execution Flow (continued)

If the first condition isfalse or null, the ELSI F clause tests another condition. An | F statement can have any
number of ELSI F clauses; the final EL SE clause is optional. Conditions are evaluated one by one from top to
bottom. If any condition istrue, its associated sequence of statements is executed and control passesto the
next statement. If al conditions are false or null, the sequencein the EL SE clause is executed. Consider the

following example: Determine an employee’s bonus based upon the employee’s department.

| F v_deptno = 10 THEN
v_bonus : = 5000;

ELSI F v_deptno = 80 THEN
v_bonus := 7500;

ELSE
v_bonus := 2000;
END | F;

Note: In case of multiplé F — ELSIF statements only the first true statement is processed.

Introduction to Oracle9i: PL/SQL 4-10

| F- THEN- ELSI F Statements

For a given value, calculate a percentage of that value
based on a condition.

Example:

I F v_start > 100 THEN

v_start := .2 * v_start,;
ELSIF v_start >= 50 THEN
v_start := .5 * v_start,;
ELSE
v_start := .1 * v_start,;
END | F;
4-11 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSI F Statements

When possible, usethe ELSI F clause instead of nesting | F statements. The codeis easier to read and
understand, and thelogic is clearly identified. If the action in the ELSE clause consists purely of another | F
statement, it is more convenient to use the ELSI F clause. This makes the code clearer by removing the need
for nested END | F statements at the end of each further set of conditions and actions.

Example

| F conditionl THEN
st at ement 1;

ELSI F condi ti on2 THEN
st at enent 2;

ELSIF conditi on3 THEN
st at enent 3;

END | F;

Theexample | F- THEN- ELSI F statement above is further defined as follows:

For agiven value, calculate a percentage of the origina value. If the value is more than 100, then the
calculated value is two times the starting value. If the value is between 50 and 100, then the caculated value
is 50% of the starting value. If the entered value is less than 50, then the calculated value is 10% of the
starting value.

Note: Any arithmetic expression containing null values evaluates to null.

Introduction to Oracle9i: PL/SQL 4-11

CASE Expressions

®* A CASE expression selects a result and returns it.

®* To select the result, the CASE expression uses an
expression whose value is used to select one of
several alternatives.

CASE sel ect or
WHEN expressionl THEN resultl
WHEN expression2 THEN result2

VWHEN expr essi onN THEN resul t N
[ELSE resul t N+1;]
END;

4-12 Copyright © Oracle Corporation, 2001. All rights reserved.

CASE Expressions

A CASE expression selects aresult and returnsit. To select the result, the CASE expression uses a selector, an
expression whose value is used to select one of several aternatives. The selector isfollowed by one or more
WHEN clauses, which are checked sequentialy. The value of the selector determines which clauseis
executed. If the value of the selector equals the value of a WHEN-clause expression, that WHEN clause is
executed.

PL/SQL also provides a searched CASE expression, which has the form:
CASE

WHEN search_conditionl THEN resultl

WHEN search_condition2 THEN result2

WHEN search_conditi onN THEN resul tN
[ELSE resul t N+1;]
END;
/

A searched CASE expression has no selector. Also, its WHEN clauses contain search conditions that yield a
Boolean value, not expressions that can yield avalue of any type.

Introduction to Oracle9i: PL/SQL 4-12

CASE Expressions: Example

SET SERVEROUTPUT ON
DEFI NE p_grade = a
DECLARE

v_apprai sal VARCHAR2(20) ;
BEG N
v_appraisal :=
CASE v_grade

VHEN ' C THEN ’ Good’
ELSE ' No such grade’
END;

v_grade CHAR(1l) := UPPER(’ & _grade’);

VWHEN ' A'° THEN ’ Excel | ent”’
VWHEN ' B° THEN ' Very Cood’

DBMS QUTPUT. PUT_LINE (' Grade: '|| v_grade || ’
Appraisal ' || v_appraisal);
END;
/
4-13 Copyright © Oracle Corporation, 2001. All rights reserved.

CASE Expressions: Example

In the example on the dide, the CASE expression usesthe valueinthev_gr ade variable asthe
expression. Thisvaue is accepted from the user using a substitution variable. Based on the val ue entered
by the user, the CASE expression evaluates the value of thev_appr ai sal variable based on the value

of thev_gr ade value. The output of the above example will be asfollows:

old 20 v_grade CHAR(1) = TUPPEE[&p grade”;
new 2:v_grade CHAE(1) =TPFPEEa",

Grade: A Appraisal Excellent

PLAEQL procedure successfully completed.

Introduction to Oracle9i: PL/SQL 4-13

CASE Expressions: Example (continued)
If the example on the dide is written using a searched CASE expression it will look like this:
DEFINE p_grade = a
DECLARE
v_grade CHAR(1) := UPPER(’' & _grade’);
v_appr ai sal VARCHAR2(20);

BEG N
v_appraisal :=
CASE
VWHEN v_grade = 'A" THEN ' Excel |l ent’
WHEN v_grade = 'B" THEN ' Very Good’
WHEN v_grade = 'C THEN ' Good’
ELSE ' No such grade’
END;
DBMS_QUTPUT. PUT_LI NE
("Gade: || v_grade || ' Appraisal ' || v_appraisal);
END;

/

Introduction to Oracle9i: PL/SQL 4-14

Handling Nulls

When working with nulls, you can avoid some
common mistakes by keeping in mind the following

rules:
 Simple comparisons involving nulls always yield
NULL.
* Applying the logical operator NOT to a null yields
NULL.

 In conditional control statements, if the condition
yields NULL, its associated sequence of statements

IS not executed.

4-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Nulls

In the following example, you might expect the sequence of statements to execute because x and y seem
unequal. But, nulls are indeterminate. Whether or not x is equal to y is unknown. Therefore, the | F
condition yields NULL and the sequence of statements is bypassed.

X .= b5;

y = NULL;

IF x '=y THEN -- yields NULL, not TRUE
sequence_of _statenents; -- not executed

END | F;

In the next example, you might expect the sequence of statements to execute because a and b seem
equal. But, again, that is unknown, so the | F condition yields NULL and the sequence of statementsis

bypassed.

a : = NULL;

b := NULL;

IFa=Db THEN -- yields NULL, not TRUE
sequence_of statenents; -- not executed

END | F;

Introduction to Oracle9i: PL/SQL 4-15

Logic Tables

Build a simple Boolean condition with a comparison
operator.

AND TRUE |FALSE | NULL (@ 3¢ TRUE |FALSE | NULL NOT

TRUE | TRUE |FALSE | NULL TRUE |[TRUE |TRUE | TRUE TRUE |FALSE

FALSE |FALSE [FALSE |FALSE| [FALSE | TRUE |[FALSE | NULL FALSE | TRUE

NULL | NULL |FALSE | NULL NULL | TRUE | NULL | NULL NULL | NULL

4-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Boolean Conditions with Logical Operators

Y ou can build a simple Boolean condition by combining number, character, or date expressions with
comparison operators.

Y ou can build a complex Boolean condition by combining simple Boolean conditions with the logica
operators AND, OR, and NOT. In the logic tables shown in the dide:

* FALSE takes precedence in &ND condition andlr'RUE takes precedence in an OR condition.
* ANDreturnsTRUE only if both of its operands aiileRUE.
e ORreturnsFALSE only if both of its operands aFeAL SE.

« NULL AND TRUE always evaluate thULL because it is not known whether the second operand
evaluates td RUE or not.

Note: The negation oNULL (NOT NULL) results in a null value because null values are indeterminate.

Introduction to Oracle9i: PL/SQL 4-16

Boolean Conditions

What is the value of V_FLAGIn each case?

v_flag := v_reorder _flag AND v_avail abl e _fl ag;
V_RECRDER FLAG V_AVAI LABLE FLAG V_FLAG
TRUE TRUE TRUE
TRUE FALSE FALSE
NULL TRUE NULL
NUL L FALSE FALSE
4-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Building Logical Conditions
The AND logic table can help you evaluate the possibilities for the Boolean condition on the dide.

Introduction to Oracle9i: PL/SQL 4-17

lterative Control: LOOP Statements

* Loops repeat a statement or sequence of
statements multiple times.

®* There are three loop types:

— Basic loop
— FORIloop
— VWHI LEloop

4-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Iterative Control: LOOP Statements

PL/SQL provides a number of facilitiesto structure loops to repeat a statement or sequence of statements
multiple times.

L ooping congtructs are the second type of control structure. PL/SQL provides the following types of loops:
» Basic loop that perform repetitive actions without overall conditions
* FORIloops that perform iterative control of actions based on a count
* W\ LEloops that perform iterative control of actions based on a condition
Use theEXI T statement to terminate loops.
For more information, refer BL/SQL User’s Guide and Referent&ontrol Structures.”
Note: Another type oFOR LOOP, cursorFOR LQOCP, is discussed in a subsequent lesson.

Introduction to Oracle9i: PL/SQL 4-18

Basic Loops

Syntax:
LOOP -- delimter

stat enent 1; T AT S

EXI T [WHEN condi tion]; -- EXIT statenent
END LGOOP; -- delimter
condi ti on is a Bool ean vari abl e or

expression (TRUE, FALSE,
or NULL);
4-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops

The ssimplest form of LOOP statement is the basic (or infinite) loop, which encloses a sequence of statements
between the keywords LOOP and END LOOP. Each time the flow of execution reachesthe END LOOP
statement, control is returned to the corresponding LOOP statement above it. A basic loop alows execution of
its statement at least once, even if the condition is aready met upon entering the loop. Without the EXI T
statement, the loop would be infinite.

The EXI T Statement

You can usethe EXI T statement to terminate aloop. Control passes to the next statement after the END
LOOP statement. You canissue EXI T either as an action within an | F statement or as a stand-alone
statement within theloop. The EXI T statement must be placed inside aloop. In the latter case, you can attach
aWHEN clause to alow conditiona termination of the loop. When the EXI T statement is encountered, the
condition in the WHEN clause is evaluated. If the condition yields TRUE, the loop ends and control passes to
the next statement after the loop. A basic loop can contain multiple EXI T statements.

Introduction to Oracle9i: PL/SQL 4-19

Basic Loops

Example:
DECLARE
v_country_id | ocations.country i d%WYPE := " CA;
v_location_id | ocations. | ocation_i dWYPE;
v_counter NUMBER(2) := 1;
V_City | ocations.city%YPE .= 'Montreal ’;
BEGA N

SELECT MAX(| ocation_id) INTO v_|ocation_id FROM | ocati ons
WHERE country_id = v_country_id;
LOoOP
I NSERT | NTO | ocations(location_id, city, country id)
VALUES((v_location_id + v_counter),v_city, v_country_ id);

v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;
END LOOP;
END;
/
4-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops (continued)

The basic loop example shown on the dideis defined as follows: Insert three new locations IDs for the
country code of CA and the city of Montreal.

Note: A basic loop alows execution of its statements at least once, even if the condition has been met upon
entering the loop, provided the condition is placed in the loop so that it is not checked until after these
statements. However, if the exit condition is placed at the top of the loop, before any of the other executable
statements, and that condition is true, the loop will exit and the statements will never execute.

Introduction to Oracle9i: PL/SQL 4-20

VH LE Loops

Syntax:

VWHI LE condition LOOP < Condition is
Sstat enent 1; evaluated at the
st at enent 2, beginning of
S each iteration.

END LOOP;

Use the WHI LE loop to repeat statements while a
condition is TRUE.

4-21 Copyright © Oracle Corporation, 2001. All rights reserved.

WHI LE Loops

Y ou can use the WHI LE loop to repeat a sequence of statements until the controlling condition is no longer
TRUE. The condition is evaluated at the start of each iteration. The loop terminates when the conditionis
FALSE. If the condition is FALSE at the start of the loop, then no further iterations are performed.

In the syntax:

condition isaBoolean variable or expression (TRUE, FALSE, or NULL).
statement can be one or more PL/SQL or SQL statements.

If the variablesinvolved in the conditions do not change during the body of the loop, then the condition
remains TRUE and the loop does not terminate.

Note: If the condition yields NULL, the loop is bypassed and control passes to the next statement.

Introduction to Oracle9i: PL/SQL 4-21

VWHI LE Loops

Example:

DECLARE
v_country_id | ocations.country i dWYPE := ' CA;
v_location_id | ocations. | ocation_i dWYPE;
V_City | ocations.city%YPE := 'Montreal ' ;
v_counter NUMBER : = 1;

BEG N

SELECT MAX(| ocation_id) INTO v_|location_id FROM | ocati ons
VWHERE country_id = v_country_id;
VWH LE v_counter <= 3 LOOP
I NSERT | NTO | ocations(location_id, city, country_id)
VALUES((v_location_id + v_counter), v_city, v_country id);
v_counter := v_counter + 1;
END LOOP;
END,;
/

4-22 Copyright © Oracle Corporation, 2001. All rights reserved.

VWHI LE Loops (continued)
In the example on the dide, three new locations IDs for the country code of CA and the city of Montreal
are being added.
With each iteration through the WHI LE loop, a counter (v_count er) isincremented. If the number of
iterationsisless than or equal to the number 3, the code within the loop is executed and arow isinserted
into the LOCATI ONS table. After the counter exceeds the number of items for this location, the condition
that controls the loop evaluates to FALSE and the loop is terminated.

Introduction to Oracle9i: PL/SQL 4-22

FOR Loops

Syntax:

FOR counter | N [REVERSE]
| ower _bound. . upper _bound LOOP
St at enent 1;
St at enent 2,

END LOOP;

® Use aFORIoop to shortcut the test for the number
of iterations.

* Do not declare the counter: it is declared

implicitly.
* ' ower _bound .. upper_bound’is required
syntax.
4-23 Copyright © Oracle Corporation, 2001. All rights reserved.

FORLoops
FOR loops have the same general structure as the basic loop. In addition, they have a control statement
before the LOOP keyword to determine the number of iterations that PL/SQL performs.
In the syntax:
counter isan implicitly declared integer whose value automatically increases or

decreases (decreases if the REVERSE keyword is used) by 1 on each iteration
of the loop until the upper or lower bound is reached.

REVERSE causes the counter to decrement with each iteration from the upper bound to
the lower bound. (Note that the lower bound is still referenced first.)

lower_bound specifies the lower bound for the range of counter values.

upper_bound specifies the upper bound for the range of counter values.

Do not declare the counter; it is declared implicitly as an integer.

Note: The sequence of statementsis executed each time the counter isincremented, as determined by the
two bounds. The lower bound and upper bound of the loop range can be literals, variables, or expressions,
but must evaluate to integers. The lower bound and upper bound are inclusive in the loop range . If the

lower bound of the loop range evaluates to alarger integer than the upper bound, the sequence of
statements will not be executed, provided REVERSE has not been used.

For example the following, statement is executed only once:
FORi IN 3..3 LOOP statenent1; END LQOOP;

Introduction to Oracle9i: PL/SQL 4-23

FORLoops

Insert three new locations IDs for the country code of CA
and the city of Montreal.

DECLARE

v_country_id | ocations. country_ i dWYPE := ' CA';

v_location_id | ocations. | ocation_i dWYPE;

V_City | ocations.city%YPE := 'Mntreal ’;
BEG N

SELECT MAX(l ocation_id) INTO v_location_id
FROM | ocati ons
VWHERE country_id = v_country_id;
FORi IN1..3 LOOP
I NSERT I NTO | ocations(location_id, city, country_id)

VALUES((v_location_id + i), v_city, v_country id);
END LOOP;
END;
/

4-24 Copyright © Oracle Corporation, 2001. All rights reserved.

FOR Loops (continued)
The example shown on the dide is defined as follows: Insert three new locations for the country code of

CA and the city of Montreal.
Thisisdone using a FOR loop.

Introduction to Oracle9i: PL/SQL 4-24

FOR Loops

Guidelines

* Reference the counter within the loop only; it is
undefined outside the loop.

®* Do notreference the counter as the target of an
assignment.

4-25 Copyright © Oracle Corporation, 2001. All rights reserved.

FOR Loops (continued)
The dide lists the guidelines to follow while writinga FOR Loop.

Note: While writing a FOR loop, the lower and upper bounds of a L OOP statement do not need to be
numeric literals. They can be expressionsthat convert to numeric values.

Example
DECLARE
v_| ower NUMBER : = 1;
v_upper NUMBER : = 100;

BEA N
FORi INv_lower..v_upper LOOP

END LOOP;
END,;

Introduction to Oracle9i: PL/SQL 4-25

Guidelines While Using Loops

®* Usethe basic loop when the statements inside the
loop must execute at least once.

® Usethe WHI LE loop if the condition has to be
evaluated at the start of each iteration.

* Use aFORIloop if the number of iterations is known.

4-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines While Using Loops

A basic loop allows execution of its statement at |east once, even if the condition is aready met upon
entering the loop. Without the EXI T statement, the loop would be infinite.

Y ou can use the VWHI LE loop to repeat a sequence of statements until the controlling conditionis no
longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates when the
condition is FALSE. If the condition isFALSE at the start of the loop, then no further iterations are
performed.

FOR loops have a control statement before the LOOP keyword to determine the number of iterations that
PL/SQL performs. Use a FOR loop if the number of iterations is predetermined.

Introduction to Oracle9i: PL/SQL 4-26

Nested Loops and Labels

®* Nestloops to multiple levels.

®* Use labels to distinguish between blocks and
loops.

® Exit the outer loop with the EXI T statement that
references the label.

4-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels

Y ou can nest loops to multiple levels. You can nest FOR, WHI LE, and basic loops within one another. The
termination of a nested loop does not terminate the enclosing loop unless an exception was raised.
However, you can label loops and exit the outer loop with the EXI T statement.

Label namesfollow the same rules as other identifiers. A label is placed before a statement, either on the
same line or on a separate line. Label 1oops by placing the label before the word LOOP within label
delimiters (<<label>>).

If the loop islabeled, the label name can optionally be included after the END L OOP statement for clarity.

Introduction to Oracle9i: PL/SQL 4-27

Nested Loops and Labels

BEG N

<<Qut er _| oop>>
LOOP
v_counter := v_counter+1;

EXIT WHEN v_count er >10;
<<l nner _| oop>>
LOOP

EXIT Quter | oop WHEN total done ="' YES ;
-- Leave both | oops

EXIT WHEN i nner _done = ' YES ;

-- Leave inner |oop only

ENb'LOOP I nner _| oop

ENDILCCP Qut er _| oop;
END;

4-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels (continued)

In the example on the dide, there are two loops. The outer loop isidentified by the label,
<<Qut er _Loop>> and the inner loop isidentified by thelabel <<l nner _Loop>>. Theidentifiersare
placed before the word LOOP within label delimiters (<<label>>). Theinner loop is nested within the outer

loop. The label names are included after the END LOOP statement for clarity.

Introduction to Oracle9i: PL/SQL 4-28

Summary

In this lesson you should have learned how to do the
following:

Change the logical flow of statements by using
control structures.

» Conditional (I F statement)
» CASE Expressions
* Loops:
— Basic loop
— FORIoop
— WHI LE loop
« EXI T statements

4-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A conditional control construct checks for the validity of acondition and performs a corresponding action
accordingly. You usethel F congtruct to perform a conditional execution of statements.

An iterative control construct executes a sequence of statements repeatedly, aslong as a specified
condition holds TRUE. Y ou use the various |oop constructs to perform iterative operations.

Introduction to Oracle9i: PL/SQL 4-29

Practice 4 Overview

This practice covers the following topics:

* Performing conditional actions using the | F
statement

* Performing iterative steps using the loop structure

4-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4 Overview

In this practice, you create PL/SQL blocks that incorporate loops and conditional control structures. The
practices test the understanding of the student about writing various | F statements and LOOP constructs.

Introduction to Oracle9i: PL/SQL 4-30

Practice 4

1. Executethecommandinthefilel ab04 1. sql to create the MESSAGES table. Write a PL/SQL
block to insert numbersinto the MESSAGES table.

a. Insert the numbers 1 to 10, excluding 6 and 8.
b. Commit before the end of the block.
c. Select from the MESSAGES table to verify that your PL/SQL block worked.

| RESULTS

B rowes selected.

2. Create aPL/SQL block that computes the commission amount for a given employee based
on the employee’s salary.

a. Use théEFI NE command to provide the employee ID. Pass the value to the PL/SQL block
through aiSQL*Plus substitution variable.

DEFI NE p_enpno = 100

b. If the employee’s salary is less than $5,000, display the bonus amount for the employee
as 10% of the salary.

c. If the employee’s salary is between $5,000 and $10,000, display the bonus amount for the
employee as 15% of the salary.

d. If the employee’s salary exceeds $10,000, display the bonus amount for the employee as
20% of the salary.

e. If the employee’s salary MULL, display the bonus amount for the employee as 0.

f. Testthe PL/SQL block for each case using the following test cases, and check each
bonus amount.

Employee Number Salary Resulting Bonus
100 24000 4800
149 10500 2100
178 7000 1050

Note: IncludeSET VERI FY OFF in your solution.

Introduction to Oracle9i: PL/SQL 4-31

Practice 4 (continued)

If you have time, complete the following exercises:

3. Create an EMP table that isareplica of the EMPLOYEES table. Y ou can do this by executing the
script | ab4_3. sql . Add anew column, STARS, of VARCHARZ data type and length of 50 to the
EMP tablefor storing asterisk (*).

Table altered.

4. Create aPL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $1000 of the employee’s salary. Save your PL/SQL block in a filewétjdd sql
by clicking on theéSave Scri pt button. Remember to save the script withsgl extension.

a. Use thddEFI NE command to provide the employee ID. Pass the value to the PL/SQL block
through aiSQL*Plus substitution variable.

b. Initialize av_ast eri sk variable that containsMULL.
c. Append an asterisk to the string for every $1000 of the salary amount. For example, if the employee

has a salary amount of $8000, the string of asterisks should contain eight asterisks. If the employee
has a salary amount of $12500, the string of asterisks should contain 13 asterisks.

d. Update thé&sTARS column for the employee with the string of asterisks.
e. Commit.
f. Test the block for the following values:

DEFI NE p_enpno=104
DEFI NE p_enpno=174
DEFI NE p_enpno=176

g. Display the rows from thelVP table to verify whether your PL/SQL block has executed
successfully.

| EMPLOYEE_ID | SALARY | STARS
| 104 | S

| 174 | 11000 [

| 176 | BEOD o

Note: SET VERI FY OFF in the PL/SQL block

Introduction to Oracle9i: PL/SQL 4-32

Working with Composite
Data Types

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Create user-defined PL/SQL records

®* Create arecord with the YROMYPE attribute
* Create al NDEX BY table

* Create al NDEX BY table of records

* Describe the difference between records, tables,
and tables of records

5-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In this lesson, you learn more about composite data types and their uses.

Introduction to Oracle9i: PL/SQL 5-2

Composite Data Types

* Are of two types:
— PL/SQL RECORDs

— PL/SQL Collections
| NDEX BY Table

Nested Table
VARRAY

®* Contain internal components
* Arereusable

5-3 Copyright © Oracle Corporation, 2001. All rights reserved.

RECCORD and TABLE Data Types
Like scalar variables, composite variables have a data type. Composite data types (also known as
collections) are RECORD, TABLE, NESTED TABLE, and VARRAY. Y ou use the RECORD data type to
treat related but dissimilar data asalogical unit. Y ou use the TABLE data type to reference and
mani pul ate collections of data as a whole abject. The NESTED TABLE and VARRAY data types are
covered in the Advanced PL/SQL course.

A record is agroup of related dataitems stored as fields, each with its own name and data type. A table
contains acolumn and a primary key to give you array-like access to rows. After they are defined,
tables and records can be reused.

For more information, refer to PL/SQL User’s Guide and Referent@&ollections and Records.”

Introduction to Oracle9i: PL/SQL 5-3

PL/SQL Records

®* Must contain one or more components of any scalar,
RECORD, or | NDEX BY table data type, called fields

* Are similar in structure to records in a third
generation language (3GL)

* Are notthe same as rows in a database table
* Treat a collection of fields as a logical unit

* Are convenient for fetching a row of data from a table
for processing

5-4 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Records

A record isagroup of related dataitems stored in fields, each with its own name and data type. For
example, suppose you have different kinds of data about an employee, such as name, salary, hire date, and
so on. Thisdatais dissmilar in type but logically related. A record that contains such fields as the name,
salary, and hire date of an employee allows you to treat the dataas alogical unit. When you declare a
record type for these fields, they can be manipulated as a unit.

Each record defined can have as many fields as necessary.

Records can be assigned initial values and can be defimraslULL .
Fields without initial values are initialized MJLL.

The DEFAULT keyword can also be used when defining fields.

You can defindRECORD types and declare user-defined records in the declarative part of any
block, subprogram, or package.

You can declare and reference nested records. One record can be the component of another
record.

Introduction to Oracle9i: PL/SQL 5-4

Creating a PL/SQL Record

Syntax:

TYPE type nanme | S RECORD
(field_declaration], field_declaration]...);
identifier type_nane;

Where field _declaration is:

field_name {field type | variable%TYPE
| table.column%TYPE | table%ROWTYPE}
[[NOT NULL] {:=| DEFAULT} expr]

5-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining and Declaring a PL/SQL Record
To create arecord, you define a RECORD type and then declare records of that type.
In the syntax:

type_name is the name of the RECORD type. (Thisidentifier is used to declare
records.)

field_name isthe name of afield within the record.

field type isthe data type of the field. (It represents any PL/SQL datatype
except REF CURSOR. Y ou can use the %0 YPE and 9ROM YPE

attributes.)
expr isthefield_type or aninitial value.

The NOT NULL constraint prevents assigning nulls to those fields. Be sureto initialize NOT NULL
fields.

Introduction to Oracle9i: PL/SQL 5-5

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.

Example:

TYPE enp_record_type IS RECORD
(last _name VARCHAR2(25),

job_id VARCHAR?2(10) ,
sal ary NUMBER(8, 2)) ;
enp_record enp_record_type;
5-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a PL/SQL Record

Field declarations are like variable declarations. Each field has a unique name and a specific data type.
There are no predefined data types for PL/SQL records, asthere are for scalar variables. Therefore, you
must create the record type first and then declare an identifier using that type.

In the example on the dide, a EMP_RECORD_TYPE record type is defined to hold the values for the
| ast _nane,j ob_id,andsal ary. Inthe next step, arecord EMP_RECORD, of thetype
EMP_RECORD_TYPE isdeclared.

The following example shows that you can use the % YPE attribute to specify afield datatype:
DECLARE

TYPE enp_record type IS RECORD

(enpl oyee_id NUMBER(6) NOT NULL := 100,
| ast _nane enpl oyees. | ast _nane%l YPE,
job_id enpl oyees. j ob_i dWYPE) ;
enp_record enp_record_type;

Note: You can add the NOT NULL constraint to any field declaration to prevent assigning nullsto that
field. Remember, fields declared as NOT NULL must be initialized.

Introduction to Oracle9i: PL/SQL 5-6

PL/SQL Record Structure

Example

1=

5-7 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Record Structure

Fieldsin arecord are accessed by name. To reference or initialize an individual field, use dot notation and
the following syntax:

record_nane. field nane

For example, you reference thejob _id field in the emp_record record asfollows:
enp_record.job_id ...

Y ou can then assign a value to the record field as follows:
enp_record.job_id :="ST_CLERK ;

In ablock or subprogram, user-defined records are instantiated when you enter the block or subprogram and
cease to exist when you exit the block or subprogram.

Introduction to Oracle9i: PL/SQL 5-7

The Y“ROWM YPE Attribute

* Declare a variable according to a collection of
columns in a database table or view.

* Prefix XROMYPE with the database table.

* Fieldsin therecord take their names and data
types from the columns of the table or view.

5-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Records with the “ROMYPE Attribute

To declare arecord based on a collection of columns in a database table or view, you use the YRONM YPE
attribute. The fields in the record take their names and data types from the columns of the table or view. The
record can also store an entire row of data fetched from a cursor or cursor variable.

In the following example, arecord is declared using %0WI' YPE as a data type specifier.

DECLARE
enp_record enpl oyees¥YROMYPE;

The record, emp_record, will have a structure consisting of the following fields, each representing a column in
the EMPLOYEES table.

Note: Thisis not code, but smply the structure of the composite variable.

(enpl oyee_i d NUMVBER(6) ,
first_nane VARCHAR2(20) ,
| ast _nane VARCHAR2(20) ,
enmai | VARCHAR2(20) ,
phone_nunber VARCHAR2(20) ,
hire date DATE,
sal ary NUMBER(8, 2) ,
comm ssi on_pct NUMBER(2, 2),
manager i d NUVBER(6) ,
departnent _i d NUMBER(4))

Introduction to Oracle9i: PL/SQL 5-8

Declaring Records with the ¥%R0OW'YPE Attribute (continued)

Syntax
DECLARE
identifier r ef er ence%ROM YPE;
where: identifier is the name chosen for the record as a whole.

reference is the name of the table, view, cursor, or cursor variable on which
the record is to be based. The table or view must exist for this
reference to be vaid.

To reference an individua field, you use dot notation and the following syntax:
record_nane.fiel d_nane

For example, you reference the comi ssi on_pct fieldintheenp_r ecor d record asfollows:
enp_record. conmi ssi on_pct

Y ou can then assign a value to the record field as follows:
enp_record. conm ssi on_pct: = . 35;

Assigning Values to Records

You can assign alist of common valuesto arecord by using the SELECT or FETCH statement. Make

sure that the column names appear in the same order asthe fields in your record. Y ou can aso assign one
record to another if they have the same data type. A user-defined record and a “ROWT YPE record never
have the same data type.

Introduction to Oracle9i: PL/SQL 5-9

Advantages of Using YROM YPE

* The number and data types of the underlying
database columns need not be known.

®* The number and data types of the underlying
database column may change at run time.

®* The attribute is useful when retrieving a row with
the SELECT * statement.

5-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using YROM YPE

The advantages of using the ¥60WI'YPE attribute are listed on the dide. Use the Y00\ YPE attribute when
you are not sure about the structure of the underlying database table. Using this attribute also ensures that the
data types of the variables declared using this attribute change dynamically, in case the underlying tableis
atered. This attribute is particularly useful when you want to retrieve an entire row from atable. In the

absence of this attribute, you would be forced to declare a variable for each of the columns retrieved by the
SELECT * statement.

Introduction to Oracle9i: PL/SQL 5-10

The “ROWM YPE Attribute

Examples:

Declare a variable to store the information about a
department from the DEPARTMENTS table.

dept _record depar t ment s¥ROM YPE;

Declare a variable to store the information about an
employee from the EMPLOYEES table.

enp_record enpl oyees¥ROMYPE;

5-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The YROMYPE Attribute

Thefirst declaration on the dide creates a record with the same field names and field data types as arow
in the DEPARTMENTS table. The fields are DEPARTMENT _| D, DEPARTMENT _NAME, MANAGER | D,
and LOCATI ON_I D. The second declaration creates a record with the same field names, field data types,
and order asarow inthe EMPLOYEES table. Thefields are EMPLOYEE | D, FI RST_NAME,
LAST_NAME, EMAI L, PHONE_NUMBER, Hl RE_DATE, JOB_| D, SALARY, COMM SSI ON_PCT,
MANAGER | D, DEPARTMENT _I D.

Introduction to Oracle9i: PL/SQL 5-11

The Y“ROMYPE Attribute (continued)

In the following example, an employeeisretiring. Information about aretired employeeis added to a
table that holds information about retired employees. The user supplies the employee’s number. The
record of the employee specified by the user is retrieved froEMBEOYEES and stored into the
enp_r ec variable, which is declared using t#OM YPE attribute.

DEFI NE enpl oyee_nunber = 124

DECLARE
enp_rec enpl oyees¥ROWTYPE;

BEA N
SELECT * INTO enp_rec FROM enpl oyees
WHERE enpl oyee_id = &enpl oyee_nunber;
I NSERT I NTO retired_enps(enpno, ename, job, ngr, hiredate,

| eavedat e, sal, comm deptno)

VALUES (enp_rec.enpl oyee id, enp_rec.last_nane, enp_rec.job_id,
enp_rec. manager _id, enp_rec.hire_date, SYSDATE, enp_rec.salary,
enp_rec. conm ssion_pct, enp_rec.departnent _id);
COW T,

END;

/

The record that is inserted into tRETI RED_EMPS table is shown below:

SELECT * FROM RETI RED_EMPS;

|EMPNO | ENAME | JOB |MGR | HIREDATE | LEAVEDATE |SAL |COMM | DEPTNO
| 124 |Mourgns |[ST_MAN | 100 [1B-NOV-89 [30-APR-01 | 5800 | | 50

Introduction to Oracle9i: PL/SQL 5-12

| NDEX BY Tables

* Are composed of two components:
— Primary key of data type Bl NARY_| NTEGER

— Column of scalar or record data type

® Canincrease in size dynamically because they are
unconstrained

1=

5-13 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Tables

Objects of the TABLE type are called | NDEX BY tables. They are modeled as (but not the same as)
databasetables. | NDEX BY tables use a primary key to provide you with array-like access to rows.

A | NDEX BY table:
* Is similar to an array
* Must contain two components:
- A primary key of data typBl NARY_| NTEGER that indexes theNDEX BY table
- A column of a scalar or record data type, which storesNIDEX BY table elements
» Can increase dynamically because it is unconstrained

Introduction to Oracle9i: PL/SQL 5-13

Creating an | NDEX BY Table

Syntax:

TYPE type nane | S TABLE OF
{colum_type | variabl e%dYPE
| table.col um%YPE} [NOT NULL]
| tabl e. “%RONMYPE
[NDEX BY BI NARY_I NTEGER] ;

identifier t ype_nane;
Declare a | NDEX BY table to store names.
Example:

TYPE enane_table type IS TABLE OF
enpl oyees. | ast _name%l YPE

| NDEX BY Bl NARY_| NTECER;
enane_t abl e enane_t abl e_type;

1=

5-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a | NDEX BY Table
There are two stepsinvolved in creating al NDEX BY table.
1. Declare a TABLE datatype.
2. Declare avariable of that data type.
In the syntax:

type_name is the name of the TABLE type. (It isatype specifier used in
subsequent declarations of PL/SQL tables.)

column_type isany scalar (scalar and composite) data type such as VARCHARZ,
DATE, NUMBER or %'YPE. (You can use the % YPE attribute to
provide the column datatype.)

identifier is the name of the identifier that represents an entire PL/SQL table.

The NOT NULL constraint prevents nulls from being assigned to the PL/ SQL table of that type. Do not
initialize the | NDEX BY table.

| NDEX- BY tables can have the following element types: Bl NARY_| NTEGER, BOOLEAN, LONG, LONG
RAW NATURAL, NATURALN,PLS_| NTEGER, PCSI Tl VE, PCSI Tl VEN, SI GNTYPE, and STRI NG

| NDEX- BY tables areinitialy sparse. That enables you, for example, to store reference datain an | NDEX- BY
table using a numeric primary key as the index.

Introduction to Oracle9i: PL/SQL 5-14

| NDEX BY Table Structure
Unique identifier Column
1 Jones
Smith
3 Maduro
Bl NARY | NTEGER Scalar
5-15 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table Structure

Like the size of adatabase table, the size of al NDEX BY tableisunconstrained. That is, the number of
rowsinal NDEX BY table can increase dynamically, so that your | NDEX BY table grows as new rows are
added.

| NDEX BY tables can have one column and a unique identifier to that one column, neither of which can be

named. The column can belong to any scalar or record data type, but the primary key must belong to type
Bl NARY | NTEGER. You cannot initialize an | NDEX BY tableinitsdeclaration. An | NDEX BY tableis

not populated at the time of declaration. It contains no keys or no values. An explicit executable statement is
required to initialize (populate) the | NDEX BY table.

Introduction to Oracle9i: PL/SQL 5-15

Creating an | NDEX BY Table

DECLARE
TYPE enanme_table_type IS TABLE OF
enpl oyees. | ast _nanme% YPE
| NDEX BY Bl NARY_| NTECER;
TYPE hiredate table type IS TABLE OF DATE
| NDEX BY Bl NARY_| NTECER;

enane_t abl e enane_t abl e_type;

hiredate_ table hi redate_tabl e _type;
BEG N

enane_t abl e(1) : = ' CAMERON ;

hiredate_tabl e(8) := SYSDATE + 7;
| F enane_t abl e. EXI STS(1) THEN

| NSERT I NTO . ..
END;
/
5-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing an | NDEX BY Table

Syntax:
| NDEX_BY_table name(primary_key value)
where; primary_key value beongsto type Bl NARY | NTEGER.

Reference the third row in an | NDEX BY table ENAVE TABLE:
enane_t abl e(3)

The magnitude range of aBl NARY | NTEGER is-2147483647 ... 2147483647, so the primary key value
can be negative. Indexing does not need to start with 1.

Note: Thet abl e. EXI STS(i) statement returns TRUE if arow withindex i isreturned. Use the
EXI STS statement to prevent an error that is raised in reference to a nonexisting table element.

Introduction to Oracle9i: PL/SQL 5-16

Using | NDEX BY Table Methods

The following methods make INDEX BY tables
easier to use:

— EXI STS - NeXT

— COUNT - TRIM

— FIRST and LAST - DELETE

- PRIOR

1=
5-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using | NDEX BY Table Methods

A INDEX BY table method is a built-in procedure or function that operates on tables and is called using dot
notation.

Syntax: t abl e_name. net hod_nanme[(par anet ers) |

M ethod Description
EXISTS(n) Returns TRUE if the nth element in a PL/SQL table exists
COUNT Returns the number of elements that a PL/SQL table currently
contains
FIRST Returns the first and last (smallest and largest) index numbersin a
LAST PL/SQL table. Returns NULL if the PL/SQL tableis empty.
PRIOR(n) Returns the index number that precedes index nin a PL/SQL table
NEXT(n) Returns the index number that succeeds index nin a PL/SQL table
TRIM TRIM removes one element from the end of a PL/SQL table.
TRIM(n) removes n elements from the end of a PL/SQL table.
DELETE DELETE removes all elements from a PL/SQL table.
DELETE(n) removes the nth element from a PL/SQL table.
DELETE(m, n) removes all elementsin therangem ... n from a
PL/SQL table.

Introduction to Oracle9i: PL/SQL 5-17

| NDEX BY Table of Records

* Define a TABLE variable with a permitted PL/SQL
data type.

®* Declare a PL/SQL variable to hold department
information.

Example:

DECLARE
TYPE dept _table type IS TABLE OF
depar t rent s¥ROM YPE
| NDEX BY BI NARY_| NTEGER;
dept _tabl e dept _tabl e_type;
-- Each el enent of dept table is a record

1=

5-18 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table of Records

At agiven point of time, al NDEX BY table can store only the details of any one of the columns of a
database table. There is aways a necessity to store all the columns retrieved by a query. Thel NDEX BY
table of records offer a solution to this. Because only one table definition is needed to hold information about
all of the fields of a database table, the table of records greatly increases the functionality of | NDEX BY

tables.
Referencing a Table of Records
In the example given on the dide, you can refer to fieldsin the DEPT _TABLE record because each element
of thistableisarecord.
Syntax:
table(index).field
Example:
dept _tabl e(15).location_id := 1700;
LOCATI ON_I Drepresentsafield in DEPT_TABLE.

Note: Y ou can use the YROM YPE attribute to declare arecord that represents arow in adatabase table. The
difference between the %60\ YPE attribute and the composite data type RECORD is that RECORD allows
you to specify the data types of fields in the record or to declare fields of your own.

Introduction to Oracle9i: PL/SQL 5-18

Example of | NDEX BY Table of Records

SET SERVEROUTPUT ON
DECLARE
TYPE enp_table type is table of
enpl oyees%ROMYPE | NDEX BY Bl NARY_| NTEGER;

my_enp_tabl e enp_t abl e_type;
v_count NUMVBER(3) : = 104;
BEG N
FOR i IN 100..v_count
LOOP

SELECT * I NTO ny_enp_table(i) FROM enpl oyees
WHERE enpl oyee id = i;

END LOCP,
FOR i IN nmy_enp_table. FIRST..ny_enp_table. LAST
LOOP
DBVS_OUTPUT. PUT_LI NE(ny_enp_tabl e(i). | ast_nane);
END LOCP,
END;
5-19 Copyright © Oracle Corporation, 2001. All rights reserved.]

Example | NDEX BY Table of Records

The example on the dlide declaresal NDEX BY table of recordsenp_t abl e_t ype to temporarily store
the details of the employees whose EMPLOYEE_| D lies between 100 and 104. Using a loop, the
information of the employees from the EMPLOYEES table isretrieved and stored inthe | NDEX BY table.
Another loop is used to print the information regarding the last names from the | NDEX BY table. Observe
the use of the FI RST and LAST methods in the example.

Introduction to Oracle9i: PL/SQL 5-19

Summary

In this lesson, you should have learned how to do the
following:

* Define and reference PL/SQL variables of
composite data types:

— PL/SQL records
— | NDEX BY tables
— | NDEX BY table of records

* Define a PL/SQL record by using the YROMYPE
attribute

1=

5-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A PL/SQL record isacoallection of individual fields that represent arow in atable. By using records you
can group the datainto one structure and then manipulate this structure as one entity or logical unit. This
hel ps reduce coding, and keeps the code easier to maintain and understand.

Like PL/SQL records, the table is another composite datatype. | NDEX BY tables are objects of a
TABLE type and look similar to database tables but with a dlight difference. | NDEX BY tablesuse a
primary key to give you array-like accessto rows. The size of al NDEX BY table is unconstrained.

| NDEX BY tables can have one column and a primary key, neither of which can be named. The column
can have any data type, but the primary key must be of the Bl NARY | NTEGER type.

A | NDEX BY table of records enhances the functionality of | NDEX BY tables, because only one table
definition is required to hold information about al the fields.

The following collection methods help generalize code, make collections easier to use, and make your
applications easier to maintain:

EXI STS, COUNT, LI M T, FI RST and LAST, PRI CRand NEXT, TRI M, and DELETE

The ¥ROM YPE is used to declare a compound variable whose type is the same as that of arow of a
database table.

Introduction to Oracle9i: PL/SQL 5-20

Practice 5 Overview

This practice covers the following topics:

®* Declaring | NDEX BY tables

®* Processing data by using | NDEX BY tables
® Declaring a PL/SQL record

®* Processing data by using a PL/SQL record

5-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 5 Overview
In this practice, you define, create, and use | NDEX BY tables and a PL/SQL record.

Introduction to Oracle9i: PL/SQL 5-21

Practice 5
1. Writea PL/SQL block to print information about a given country.
a. Declare a PL/SQL record based on the structure of the COUNTRI ES table.
b. Use the DEFI NE command to provide the country I1D. Pass the value to the PL/SQL block
through aiSQL* Plus substitution variable.

c. Use DBMS_OQUTPUT. PUT_LI NE to print selected information about the country. A sample
output is shown below.

Country Id: CA Country Mame: Canada Fegion: 2
PLECL procedure successfully completed.

d. Execute and test the PL/SQL block for the countries with the IDs CA, DE, UK, US.

2. Create a PL/SQL block to retrieve the name of each department from the DEPARTMENTS table and
print each department name on the screen, incorporating an | NDEX BY table. Save the code in afile
called p5_q2. sqgl by clickingtheSave Scri pt button. Savethe script witha. sql
extension.

a Declarean | NDEX BY table, MY_DEPT_TABLE, to temporarily store the name of the
departments.
b. Using aloop, retrieve the name of all departments currently in the DEPARTMVENTS table

and storetheminthel NDEX BY table. Usethe following table to assign the value for
DEPARTNMENT _| D based on the value of the counter used in the loop.

COUNTER DEPARTMENT_I D
10
20
50
60
80
90
110

N O O B W N

c. Using another loop, retrieve the department names from the | NDEX BY table and print them
to the screen, using DBMS_OUTPUT. PUT_LI NE. The output from the program is shown on
the next page.

Introduction to Oracle9i: PL/SQL 5-22

Practice 5 (continued)

A drministration
IMarketing
Shipping
IT

sales
Ezxecutive
Accounting
Accounting
Accounting
Arccounting
Arccounting
Arccounting
Accounting
Accounting
Accounting
Arccounting
Arccounting
Arccounting
Accounting
Accounting
Accounting
Arccounting
Arccounting
Arccounting
Accounting
Accounting
Accounting
Arccounting
PLISQL procedure successfully completed

Introduction to Oracle9i: PL/SQL 5-23

Practice 5 (continued)
If you have time, complete the following exercise.

3. Modify the block you created in practice 2 to retrieve al information about each department from the
DEPARTMENTS table and print the information to the screen, incorporating an | NDEX BY table of
records.

a Declarean | NDEX BY table, MY_DEPT_TABLE, to temporarily store the number, name, and
location of all the departments.

b. Using aloop, retrieve al department information currently in the DEPARTMENTS table and
storeitinthe | NDEX BY table. Use the following table to assign the value for
DEPARTMENT _| D based on the value of the counter used in the loop. Exit the loop when the
counter reaches the value 7.

COUNTER DEPARTMENT_I D
10
20
50
60
80
90
110

N O O A W N

c¢. Using another loop, retrieve the department information from the | NDEX BY table and print it to
the screen, using DBMS_OUTPUT. PUT_LI NE. A sample output is shown.

Department Mumber: 10 Department Marme: Administration Manager Id: 200 Location Id: 1400
Department Humber: 20 Department Wame: Iarketing Manager Id: 201 Location Id: 1800
Department Mumber: 50 Department Mame: Shipping Manager Id: 121 Location Id: 1500
Department Number: 60 Department Name: IT Manager Id: 103 Location Id: 1400
Department Mumber: 80 Department Name: Sales Manager Id: 145 Location Id: 2500
Department Mumber: 90 Department Mame: Executive Manager Id: 100 Location Id: 1700
Department Number: 110 Department Name: Accounting Manager Id: 205 Location Id: 1700
PL/SQL procedure successfully completed.

Introduction to Oracle9i: PL/SQL 5-24

Writing Explicit Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Distinguish between an implicit and an explicit
cursor

®* Discuss when and why to use an explicit cursor
® Use aPL/SQL record variable
* Write acursor FORIoop

6-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn the difference between implicit and explicit cursors. Y ou aso learn when and why
to use an explicit cursor. Y ou may need to use a multiple-row SELECT statement in PL/SQL to process
many rows. To accomplish this, you declare and control explicit cursors.

Introduction to Oracle9i: PL/SQL 6-2

About Cursors

Every SQL statement executed by the Oracle Server
has an individual cursor associated with it:

 Implicit cursors: Declared for all DML and PL/SQL
SELECT statements

 Explicit cursors: Declared and named by the

programmer

6-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit and Explicit Cursors

The Oracle server uses work areas, called private SQL areas, to execute SQL statements and to store
processing information. Y ou can use PL/SQL cursorsto name a private SQL area and accessits stored

information.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly
for all DML and PL/SQL SELECT statements,
including queries that return only onerow.

Explicit For queries that return more than one row, explicit
cursors are declared and named by the programmer
and manipulated through specific statementsin the
block’s executable actions.

The Oracle server implicitly opens a cursor to process each SQL statement not associated with an explicitly

declared cursor. PL/SQL alows you to refer to the most recent implicit cursor as the SQL cursor.

Introduction to Oracle9i: PL/SQL 6-3

Explicit Cursor Functions
Table
100 King AD PRES
. 101 Kochhar AD VP
Active set -
102 De Haan AD VP
Cursor — >
139 Seo ST _CLERK
140 Patel ST _CLERK
6-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors
Use explicit cursorsto individually process each row returned by a multiple-row SELECT statement.

The set of rows returned by a multiple-row query is caled the active set. Its size is the number of rows that
meet your search criteria. The diagram on the dlide shows how an explicit cursor “points” to theurrent row
in the active set. This allows your program to process the rows one at a time.

A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the cursor. The
cursor marks the current position in the active set.

Explicit cursor functions:
e Can process beyond the first row returned by the query, row by row
« Keep track of which row is currently being processed
« Allow the programmer to manually control explicit cursors in the PL/SQL block

Introduction to Oracle9i: PL/SQL 6-4

Controlling Explicit Cursors

e

e T

DECLARE > OPEN > FETCH —>< EMPTY? —> CLOSE
* Createa °* Identify * Load the * Test for * Release
named the active current existing the active
SQL area set row into rows set
variables e Return to
FETCHIf
rows are
found
6-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors (continued)

Now that you have a conceptual understanding of cursors, review the steps to use them. The syntax for each
step can be found on the following pages.

Controlling Explicit Cursors
1. Declarethe cursor by naming it and defining the structure of the query to be performed
within it.
2. Open the cursor. The OPEN statement executes the query and binds any variables that are referenced.
Rows identified by the query are called the active set and are now available for fetching.

3. Fetch datafrom the cursor. In the flow diagram shown on the dide, after each fetch you test the cursor
for any existing row. If there are no more rows to process, then you must close the cursor.

4. Closethe cursor. The CLOSE statement rel eases the active set of rows. It is now possible to reopen the
cursor to establish afresh active set.

Introduction to Oracle9i: PL/SQL 6-5

Controlling Explicit Cursors

Open the cursor.

<
<

Cursor
— pointer
Fetch arow using the cursor.
— < Cursor
— pointer
Continue until empty.
< Cursor
pointer
Close the cursor.

6-6

Copyright © Oracle Corporation, 2001. All rights reserved.
Explicit Cursors (continued)

Y ou use the OPEN, FETCH, and CLOSE statements to control a cursor. The OPEN statement executes the
guery associated with the cursor, identifies the result set, and positions the cursor before the first row.
The FETCH statement retrieves the current row and advances the cursor to the next row. When the last row
has been processed, the CLOSE statement disables the cursor.

Introduction to Oracle9i: PL/SQL 6-6

Declaring the Cursor

Syntax:

CURSOR cursor_nane | S
sel ect _st at enent;

* Do notincludethel NTOclause in the cursor
declaration.

* If processing rows in a specific sequence is required,
use the ORDER BY clause in the query.

6-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring the Cursor

Use the CURSOR statement to declare an explicit cursor. Y ou can reference variables within the query, but
you must declare them before the CURSOR statement.

In the syntax:
cursor_name isaPL/SQL identifier.
select statement isa SELECT statement without an | NTO clause.
Note:
» Do notinclude thé NTOclause in the cursor declaration because it appears laterRETi@H
statement.

* The cursor can be any valkiNSI SELECT statement, to include joins, and so on.

Introduction to Oracle9i: PL/SQL 6-7

Declaring the Cursor

Example:

DECLARE
CURSOR enp_cursor 1S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;

CURSOR dept _cursor IS
SELECT *
FROM departnents
WHERE | ocation_id = 170;
BEG N

6-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring the Cursor (continued)

In the example on the dide, the cursor enp_cur sor isdeclared to retrieve the EMPLOYEE | D and
LAST _NAME columns from the EMPLOYEES table. Similarly, the cursor DEPT _CURSORis declared to
retrieve al the details for the department with the LOCATI ON | D 170.

DECLARE
v_enpno enpl oyees. enpl oyee_i d%YPE;
V_enane enpl oyees. | ast _nane%l YPE;

CURSOR enp_cursor |S
SELECT enpl oyee_i d, |ast_nane
FROM enpl oyees;
BEA N

Fetching the values retrieved by the cursor into the variables declared in the DECLARE section is covered later
in thislesson.

Introduction to Oracle9i: PL/SQL 6-8

Opening the Cursor

Syntax:

OPEN cursor_nane;

®* Open the cursor to execute the query and identify
the active set.

* |If the query returns no rows, no exception is

raised.
® Use cursor attributes to test the outcome after a
fetch.
6-9 Copyright © Oracle Corporation, 2001. All rights reserved.
OPEN Statement

The OPEN statement executes the query associated with the cursor, identifies the result set, and positions the
cursor before thefirst row.

In the syntax:
cursor_name is the name of the previously declared cursor.
OPEN s an executable statement that performs the following operations:

1. Dynamically allocates memory for a context areathat eventually contains crucia processing
information.

Parses the SELECT statement.
Bindsthe input variables—sets the value for the input variables by obtaining their memory addresses.

4. Identifies the active set—the set of rows that satisfy the search criteria. Rows in the active set are not
retrieved into variables when tIPEN statement is executed. Rather, | CH statement retrieves

the rows.
5. Positions the pointer just before the first row in the active set.

For cursors declared using theR UPDATE clause, th€PEN statement also locks those rows. H@R
UPDATE clause is discussed in a later lesson.

Note: If the query returns no rows when the cursor is opened, PL/SQL does not raise an exception.
However, you can test the status of the cursor after a fetch usiBQUEB&RONCOUNT cursor attribute.

Introduction to Oracle9i: PL/SQL 6-9

Fetching Data from the Cursor

Syntax:

FETCH cursor_nane | NTO [vari abl el, variable2, ...]
| record_nane];

* Retrieve the current row values into variables.
* |nclude the same number of variables.

* Match each variable to correspond to the columns
positionally.

* Test to see whether the cursor contains rows.

6-10 Copyright © Oracle Corporation, 2001. All rights reserved.

FETCH Statement

The FETCH statement retrieves the rows in the active set one at atime. After each fetch, the cursor advances
to the next row in the active set.

In the syntax:
cursor_name is the name of the previoudy declared cursor.
variable is an output variable to store the results.
record_name is the name of the record in which the retrieved datais stored. (The record
variable can be declared using the “ROWT YPE attribute.)
Guidelines:

* Include the same number of variables inlthBOclause of thé&<ETCH statement as columns in the
SELECT statement, and be sure that the data types are compatible.

* Match each variable to correspond to the columns positionally.
» Alternatively, define a record for the cursor and reference the recordmETE@H | NTOclause.

» Test to see whether the cursor contains rows. If a fetch acquires no values, there are no rows left to
process in the active set and no error is recorded.

Note: The FETCH statement performs the following operations:
1. Reads the data for the current row into the output PL/SQL variables.
2. Advances the pointer to the next row in the identified set.

Introduction to Oracle9i: PL/SQL 6-10

Fetching Data from the Cursor

Example:

LOOP
FETCH enp_cursor | NTO v_enpno, Vv_enane,
EXIT WHEN . . .;
-- Process the retrieved data

END LOOP;

6-11 Copyright © Oracle Corporation, 2001. All rights reserved.

FETCH Statement (continued)

You usethe FETCH statement to retrieve the current row values into output variables. After the fetch, you
can manipulate the datain the variables. For each column value returned by the query associated with the
cursor, there must be a corresponding variablein thel NTOlist. Also, their data types must be compatible.

Retrieve the first 10 employees one by one.

SET SERVEROUTPUT ON
DECLARE
v_enmpno enpl oyees. enpl oyee_i d%I'YPE;
v_enanme enpl oyees. | ast _nane%l YPE;
CURSOR enp_cursor 1S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
BEG N
OPEN enp_cursor;
FORi IN1..10 LOOP
FETCH enp_cursor | NTO v_enpno, v_enane;
DBMS_QUTPUT. PUT_LI NE (TO CHAR(v_enpno)
|]’ || v_enane);
END LOOP;
END ;

Introduction to Oracle9i: PL/SQL 6-11

Closing the Cursor

Syntax:

CLOSE cursor_nane,

®* Closethe cursor after completing the processing
of the rows.

®* Reopen the cursor, if required.

* Do not attempt to fetch data from a cursor after it
has been closed.

6-12 Copyright © Oracle Corporation, 2001. All rights reserved.

CLCSE Statement

The CLOSE statement disables the cursor, and the active set becomes undefined. Close the cursor after
completing the processing of the SELECT statement. This step allows the cursor to be reopened, if required.
Therefore, you can establish an active set several times.
In the syntax:

cursor_name is the name of the previoudy declared cursor.

Do not attempt to fetch data from a cursor after it has been closed, or thel NVALI D_CURSOR exception
will be raised.

Note: The CLOSE statement rel eases the context area.

Although it is possible to terminate the PL/SQL block without closing cursors, you should make it a
habit to close any cursor that you declare explicitly to free up resources.
There is amaximum limit to the number of open cursors per user, which is determined by the
OPEN_CURSORS parameter in the database parameter file. OPEN_CURSORS = 50 by default.
OPEN enp_cur sor
FORi IN1..10 LOOP
FETCH enp_cursor | NTO v_enpno, v_enane;

END LOOP;
CLOSE enp_cursor;
END;

Introduction to Oracle9i: PL/SQL 6-12

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description
%4 SOPEN Boolean | Evaluates to TRUE if the cursor
IS open

oNOTFOUND Boolean | Evaluates to TRUE if the most
recent fetch does not return a row

94-OUND Boolean | Evaluates to TRUE if the most

recent fetch returns arow;
complement of ¥NOTFOUND

oROWNCOUNT Number Evaluates to the total number of
rows returned so far

6-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursor Attributes

Aswith implicit cursors, there are four attributes for obtaining status information about a cursor. When
appended to the cursor variable name, these attributes return useful information about the execution of a data
manipulation statement.

Note: Y ou cannot reference cursor attributes directly in a SQL statement.

Introduction to Oracle9i: PL/SQL 6-13

The % SOPEN Attribute

* Fetch rows only when the cursor is open.

®* Usethe % SOPEN cursor attribute before
performing a fetch to test whether the cursor is

open.
Example:

I F NOT enp_cursor % SOPEN THEN
OPEN enp_cursor,
END | F;
LOOP
FETCH enp_cursor. ..

6-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The 9% SOPEN Attribute
e You can fetch rows only when the cursor is open. Us@atiSOPEN cursor attribute to determine
whether the cursor is open.
* Fetch rows in a loop. Use cursor attributes to determine when to exit the loop.
e Use theROANCOUNT cursor attribute for the following:
— To retrieve an exact number of rows
— Fetch the rows in a numeR©R loop
— Fetch the rows in a simple loop and determine when to exit the loop.
Note: %4 SOPEN returns the status of the cursdRUE if open and=ALSE if not.

Introduction to Oracle9i: PL/SQL 6-14

Controlling Multiple Fetches

®* Process several rows from an explicit cursor using
aloop.

* Fetch arow with each iteration.

® Use explicit cursor attributes to test the success
of each fetch.

6-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Multiple Fetches from Explicit Cursors

To process severa rows from an explicit cursor, you typically define aloop to perform afetch on each
iteration. Eventually al rows in the active set are processed, and an unsuccessful fetch sets the ¥NOTFOUND
attribute to TRUE. Use the explicit cursor attributes to test the success of each fetch before any further
references are made to the cursor. If you omit an exit criterion, an infinite loop results.

For more information, see PL/SQL User's Guide and Referentateraction With Oracle.”

Introduction to Oracle9i: PL/SQL 6-15

The YNOTFQOUND
and YRONCOUNT Attributes

* Use the Y%RONCOUNT cursor attribute to retrieve an
exact number of rows.

* Use the Y%9NOTFOUND cursor attribute to determine
when to exit the loop.

6-16 Copyright © Oracle Corporation, 2001. All rights reserved.

The YNOTFOUND and %RONCOUNT Attributes
YNOTFOUND

9NOTFOUND is the logical opposite of %4-OUND. YNOTFOUND yields FALSE if the last fetch returned arow,
or TRUE if the last fetch failed to return arow. In the following example, you use ¥MNOTFOUND to exit aloop
when FETCH fails to return arow:

LOOP
FETCH c1 I NTO ny_enane, ny_sal, ny_hiredate;
EXIT WHEN c¢1%N\NOTFOUND;

END LOOP;
Before the first fetch, 0NOTFOUND evaluates to NULL. So, if FETCH never executes successfully, theloop is

never exited. That is becausethe EXI T WHEN statement executes only if its WHEN condition istrue. To be
safe, usethe following EXI T statement instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND |'S NULL;
If acursor is not open, referencing it with YNOTFOUND raises | NVALI D_CURSCR.

Introduction to Oracle9i: PL/SQL 6-16

The ¥YNOTFOUND and %RONCOUNT Attributes (continued)
YBROWCOUNT

When its cursor or cursor variable is opened, “RONCOUNT is zeroed. Before the first fetch, YRONCOUNT
yields 0. Theresfter, it yields the number of rows fetched so far. The number isincremented if the last fetch
returned arow. In the next example, you use “RONCOUNT to take action if more than ten rows have been
fetched:

LOOP
FETCH c1 | NTO ny_enane, ny_deptno;
| F c1%RONCOUNT > 10 THEN
END | F;
END LOOP;
If acursor is not open, referencing it with “RONMCOUNT raises | NVALI D_CURSOR.

Introduction to Oracle9i: PL/SQL 6-17

Example

DECLARE

v_enmpno enpl oyees. enpl oyee_i d%'YPE;

v_enane enpl oyees. | ast nane% YPE;

CURSCOR enp_cursor 1S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;

BEA N

OPEN enp_cursor,

LOOP
FETCH enp_cursor | NTO v_enpno, V_enane,
EXIT WHEN enp_cur sor R0NCOUNT > 10 OR

enp_cur sor “NOTFOUND;

DBVS_QUTPUT. PUT_LI NE (TO CHAR(Vv_enpno)

[']|] v_ename);
END LQOOP;
CLOSE enp_cursor;
END ;
6-18 Copyright © Oracle Corporation, 2001. All rights reserved.
Example

The example on the dide retrieves the first ten employees one by one.

Note: Beforethefirst fetch, ¥NOTFOUND evaluatesto NULL. So if FETCH never executes successfully, the loop
is never exited. That is because the EXI T VWHEN statement executes only if its WHEN condition istrue. To be safe,
usethefollowing EXI T statement:

EXIT WHEN enp_cur sor “INOTFOUND OR enp_cur sor ¥NOTFOUND | S NULL;
If using YRONCOUNT, add atest for no rowsin the cursor by using the ¥NOTFOUND attribute, because the row
count is not incremented if the fetch does not retrieve any rows.

Introduction to Oracle9i: PL/SQL 6-18

Cursors and Records

Process the rows of the active set by fetching values
into a PL/SQL RECORD.

DECLARE
CURSOR enp_cursor |S
SELECT enployee_id, |ast_nane
FROM enpl oyees;
enp_record enp_cursor YROMYPE;
BEG N
OPEN enp_cursor,
LOOP
FETCH enp_cursor | NTO enp_record,

enp_record

enpl oyee id | ast _nane
100 Ki ng
6-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors and Records

Y ou have already seen that you can define records that have the structure of columnsin atable. Y ou can also
define arecord based on the selected list of columnsin an explicit cursor. Thisis convenient for processing
the rows of the active set, because you can simply fetch into the record. Therefore, the values of the row are
loaded directly into the corresponding fields of the record.

Example

Use a cursor to retrieve employee numbers and names and popul ate a database table, TEMP_LI ST, with this
information.
DECLARE
CURSOR enp_cursor | S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
enp_record enp_cur sor YRONYPE;
BEG N
OPEN enp_cursor;
LOOP
FETCH enp_cursor | NTO enp_record;
EXIT WHEN enp_cur sor %NOTFOUND;
I NSERT I NTO tenp_list (enpid, enpnane)
VALUES (enp_record. enpl oyee_id, enp_record.|ast_nane);
END LOOP;
COW T;
CLOSE enp_cursor;
END;
/

Introduction to Oracle9i: PL/SQL 6-19

Cursor FOR Loops

Syntax:

FOR record _nane | N cursor_nane LOOP
st at enent 1;
st at enent 2;

END LOOP;

® The cursor FORIoop is a shortcut to process
explicit cursors.

* Implicit open, fetch, exit, and close occur.
* Therecord is implicitly declared.

6-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FOR Loops

A cursor FOR loop processes rows in an explicit cursor. It isa shortcut because the cursor is opened, rows
are fetched once for each iteration in the loop, the loop exits when the last row is processed, and the cursor is
closed automatically. The loop itself isterminated automatically at the end of the iteration where the last row
isfetched.

In the syntax:
record_name is the name of the implicitly declared record.
cursor_name isaPL/SQL identifier for the previously declared cursor.
Guidelines

» Do not declare the record that controls the loop because it is declared implicitly.
e Test the cursor attributes during the loop, if required.

» Supply the parameters for a cursor, if required, in parentheses following the cursor nankR the
statement. More information on cursor parameters is covered in a subsequent lesson.

* Do not use a curséfOR loop when the cursor operations must be handled explicitly.

Note: You can define a query at the start of the loop itself. The query expression is GHeE@T
substatement, and the cursor is internal td-tbie loop. Because the cursor is not declared with a name, you

cannot test its attributes.

Introduction to Oracle9i: PL/SQL 6-20

Cursor FOR Loops

Print a list of the employees who work for the sales
department.

DECLARE
CURSOR enp_cursor 1S
SELECT | ast _nane, departnent _id
FROM enpl oyees;
BEG N
FOR enmp_record IN enp_cursor LOOP
-- inplicit open and inplicit fetch occur
| F enp_record. department _id = 80 THEN

END LOOP; -- inplicit close occurs
END;
/

6-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Retrieve employees one by one and print out alist of those employees currently working in the sales
department (DEPARTMVENT _| D = 80). The example from the dide is completed below.
SET SERVEROUTPUT ON
DECLARE
CURSOR enp_cursor | S
SELECT | ast_name, departnent _id
FROM enpl oyees;
BEA N
FOR enp_record IN enp_cursor LOCP
--inplicit open and inplicit fetch occur
| F enp_record. departnent _id = 80 THEN
DBVS_QUTPUT. PUT_LINE (' Enpl oyee ’ || enp_record. | ast_nane
|| * works in the Sales Dept. ');
END | F;
END LOOP; --inplicit close and inplicit |loop exit
END ;
/

Introduction to Oracle9i: PL/SQL 6-21

Cursor FORLoops Using Subqueries

No need to declare the cursor.
Example:

BEG N
FOR enp_record IN (SELECT | ast _nane, departnent _id
FROM enpl oyees) LOOP
-- inplicit open and inplicit fetch occur
I F enp_record. departnent _id = 80 THEN

END LOOP; -- inplicit close occurs
END;

6-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FORLoops Using Subqueries

When you use a subquery in a FOR loop, you do not need to declare a cursor. This example does the same
thing as the one on the previous page. The complete code is given below:
SET SERVEROUTPUT ON
BEG N
FOR enp_record I N (SELECT | ast _nane, departnent _id
FROM enpl oyees) LOOP
--inplicit open and inplicit fetch occur
| F enp_record. departnent _id = 80 THEN
DBVS_QUTPUT. PUT_LI NE (' Enpl oyee ™ || enp_record. | ast_nane
|| * works in the Sales Dept. ");
END | F;
END LOOP; --inplicit close occurs
END ;
/

Introduction to Oracle9i: PL/SQL 6-22

Example
Retrieve the first five employees with ajob history.
SET SERVEROUTPUT ON

DECLARE
v_enpl oyee id enpl oyees. enpl oyee_i d%'YPE;
v_job_id enpl oyees. j ob_i d%I'YPE;
v_start _date DATE;
v_end _date DATE;

CURSOR enp_cursor | S
SELECT enpl oyee_id, job_id, start_date, end_date
FROMj ob_hi story
ORDER BY enpl oyee_i d;
BEG N
OPEN enp_cursor;
LOOP
FETCH enp_cur sor
I NTO v_enployee_id, v_job_id, v_start_date, v_end_date;

DBMS _OUTPUT. PUT_LINE (' Enpl oyee #: ' || v_enployee_id ||
" held the job of * || v_job_id || ' FROM’ ||
v_start _date || ' TO' || v_end date);

EXI'T WHEN enp_cur sor “RONCOUNT > 4 OR
enp_cur sor ¥NOTFOUND;
END LOOP;
CLOSE enp_cursor;
END;
/

Introduction to Oracle9i: PL/SQL 6-23

Summary

In this lesson you should have learned to do the
following:
® Distinguish cursor types:

— Implicit cursors: used for all DML statements and
single-row queries

— Explicit cursors: used for queries of zero, one, or
more rows

* Manipulate explicit cursors

* Evaluate the cursor status by using cursor
attributes

®* Use cursor FORIloops

6-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Oracle uses work areas to execute SQL statements and store processing information. A PL/SQL construct
called a cursor allows you to name awork area and access its stored information. There are two kinds of
cursors: implicit and explicit. PL/SQL implicitly declares acursor for al SQL data manipulation
statements, including queriesthat return only one row. For queries that return more than one row, you can
explicitly declare a cursor to process the rows individualy.

Every explicit cursor and cursor variable has four attributes: %6-OUND, %4 SOPEN ¥NOTFOUND, and
9ROWCOUNT. When appended to the cursor or cursor variable, these attributes return useful information
about the execution of a data manipulation statement. Y ou can use cursor attributesin procedural
statements but not in SQL statements.

Introduction to Oracle9i: PL/SQL 6-24

Practice 6 Overview

This practice covers the following topics:

* Declaring and using explicit cursors to query rows
of atable

®* Using acursor FORloop
* Applying cursor attributes to test the cursor status

6-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 6 Overview

This practice applies your knowledge of cursors to process a number of rows from atable and popul ate
another table with the results using a cursor FOR loop.

Introduction to Oracle9i: PL/SQL 6-25

Practice 6
1. Runthecommandinthescript| ab6_1. sql to create anew table for storing the salaries of the
employees.
CREATE TABLE t op_dogs
(salary NUMBER(8, 2));
2. CreateaPL/SQL block that determines the top employees with respect to salaries.

a. Accept anumber n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view the top five earners, enter 5.
Note: Use the DEFI NE command to provide the value for n. Pass the value to the PL/SQL block
through aiSQL* Plus substitution variable.
b. In aloop use theiSQL* Plus substitution parameter created in step 1 and gather the salaries of the
top n people from the EMPLOYEES table. There should be no duplication in the salaries. If two
employees earn the same saary, the salary should be picked up only once.

c. Storethe salariesin the TOP_DOGS table.

d. Test avariety of special cases, such asn =0 or where nis greater than the number
of employeesin the EMPLOYEES table. Empty the TOP_DOGS table after each test. The
output shown represents the five highest salariesin the EMPLOYEES table.

SALARY

|

| 24000
| 17000
| 14000
|
|

13500
13000

3. Create aPL/SQL block that does the following:

a. Usethe DEFI NE command to provide the department ID. Pass the value to the PL/SQL block
through a i SQL* Plus substitution variable.

b. InaPL/SQL block, retrieve the last name, salary, and MANAGER | D of the employees working in
that department.

c. If thesaary of the employee isless than 5000 and if the manager ID is either 101 or 124, display
the message <<l ast _nane>> Due f or ar ai se. Otherwise, display the message
<<l ast _nane>> Not due for araise.

Note SET ECHO OFF to avoid displaying the PL/SQL code every time you execute the script.

Introduction to Oracle9i: PL/SQL 6-26

Practice 6 (continued)

d. Testthe PL/SQL block for the following cases:

Department ID

Message

10

Whal en Due for a raise

20

Hartstein Not Due for a rai se
Fay Not Due for a raise

Vi ss Not Due for a raise
Fripp Due for a raise
Kaufling Due for a raise
Vol | man Due for a raise
Mourgas Due for a raise

Russel Not Due for a raise

Partners Not Due for a raise
Errazuriz Not Due for a raise
Canbrault Not Due for a raise

Introduction to Oracle9i: PL/SQL 6-27

Introduction to Oracle9i: PL/SQL 6-28

Advanced Explicit Cursor
Concepts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write a cursor that uses parameters

* Determine when a FOR UPDATE clause in a cursor
IS required

* Determine when to use the WHERE CURRENT OF
clause

* Write a cursor that uses a subquery

7-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn more about writing explicit cursors, specifically about writing cursors that use
parameters.

Introduction to Oracle9i: PL/SQL 7-2

Cursors with Parameters

Syntax:

CURSOR cursor_nane

[(paranet er _nane datatype, ...)]
IS

sel ect st at enent;

» Pass parameter values to a cursor when the cursor
is opened and the query is executed.

» Open an explicit cursor several times with a
different active set each time.

OPEN cursor_nane(paraneter_val ue,)

7-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Parameters

Y ou can pass parameters to the cursor in a cursor FOR loop. This means that you can open and close an
explicit cursor severa timesin ablock, returning a different active set on each occasion. For each execution,
the previous cursor is closed and re-opened with anew set of parameters.

Each formal parameter in the cursor declaration must have a corresponding actual parameter in the OPEN
statement. Parameter data types are the same as those for scalar variables, but you do not give them sizes. The
parameter names are for referencesin the query expression of the cursor.

In the syntax:
cursor_name isaPL/SQL identifier for the previoudy declared cursor.
parameter _name isthe name of a parameter.

par anet er _nane
datatype isascaar datatype of the parameter.
select statement isa SELECT statement without the | NTO clause.

When the cursor is opened, you pass valuesto each of the parameters by position or by name. Y ou can pass
values from PL/SQL or host variables aswell asfrom literals.

Note: The parameter notation does not offer greater functionality; it smply allows you to specify input values
eadsly and clearly. Thisis particularly useful when the same cursor is referenced repeatedly.

Introduction to Oracle9i: PL/SQL 7-3

Cursors with Parameters

Pass the department number and job title to the WHERE
clause, in the cursor SELECT statement.

DECLARE
CURSCOR enp_cursor
(p_deptno NUMBER, p_job VARCHAR?) IS
SELECT enpl oyee_id, |ast_nanme
FROM enpl oyees
WHERE departnment _id = p_deptno
AND job_id = p_job;
BEA N
OPEN enp_cursor (80, 'SA REFP);

CLOSE enp_cursor;
OPEN enp_cursor (60, "I T _PROG);

END;

7-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Parameter

Parameter data types are the same as those for scalar variables, but you do not give them sizes. The
parameter names are for references in the cursor’s query. In the following example, a cursor is declared and
is defined with two parameters.

DECLARE
CURSOR enp_cursor(p_deptno NUMBER, p_job VARCHAR2) IS
SELECT ...

The following statements open the cursor and returns different active sets:
OPEN enp_cursor (60, v_enp_job);
OPEN enp_cursor (90, 'AD VP);
You can pass parameters to the cursor used in a &@®Bdoop:
DECLARE
CURSOR enp_cursor (p_deptno NUMBER, p_job VARCHAR2) IS
SELECT ...

BEG N
FOR enp_record IN enp_cursor (50, 'ST_CLERK) LOOP ...

Introduction to Oracle9i: PL/SQL 7-4

The FOR UPDATE Clause

Syntax:

SELECT . ..
FROM C
FOR UPDATE [OF col unm_ref erence] [NOMI T] ;

* Explicit locking allows you to deny access for the
duration of a transaction.

* Lock therows beforethe update or delete.

7-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOR UPDATE Clause

Y ou may want to lock rows before you update or delete rows. Add the FOR UPDATE clause in the cursor

guery to lock the affected rows when the cursor is opened. Because the Oracle Server releases locks at the
end of the transaction, you should not commit across fetches from an explicit cursor if FOR UPDATE is
used.

In the syntax:
column_reference isacolumn in the table against which the query is performed. (A
list of columns may also be used.)
NOWMAI T returns an Oracle error if the rows are locked by ancther session

The FOR UPDATE clauseisthelast clause in a select statement, even after the ORDER BY, if one exists.
When querying multiple tables, you can use the FOR UPDATE clause to confine row locking to particul ar
tables. Rowsin atable are locked only if the FOR UPDATE clause refersto acolumn in that table. FOR
UPDATE OF col _nane(s) locksrowsonly intablesthat contain thecol _nane(s) .

The SELECT ... FOR UPDATE statement identifies the rows that will be updated or deleted, then locks
each row in the result set. Thisis useful when you want to base an update on the existing valuesin arow. In
that case, you must make sure the row is not changed by another user before the update.

The optional NOMAI T keyword tells Oracle not to wait if requested rows have been locked by another user.

Control isimmediately returned to your program so that it can do other work before trying again to acquire
thelock. If you omit the NOMAI T keyword , Oracle waits until the rows are available.

Introduction to Oracle9i: PL/SQL 7-5

The FOR UPDATE Clause

Retrieve the employees who work in department 80
and update their salary.

DECLARE
CURSOR enp_cursor 1S
SELECT enpl oyee_id, |ast _nane, departnent_nane
FROM enpl oyees, depart nent s
WHERE enpl oyees. departnent _id =
departnents. departnent _id
AND enpl oyees. department _id = 80
FOR UPDATE OF sal ary NOMIT;

7-6 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOR UPDATE Clause (continued)
Note: If the Oracle server cannot acquire the locks on the rows it needsin a SELECT FOR UPDATE, it
waits indefinitely. You can use the NOMI T clauseinthe SELECT FOR UPDATE statement and test for
the error code that returns because of failure to acquire the locksin aloop. Y ou can retry opening the cursorn
times before terminating the PL/SQL block. If you have alarge table, you can achieve better performance by
using the LOCK TABLE statement to lock all rowsin the table. However, when using LOCK TABLE, you
cannot use the WHERE CURRENT OF clause and must use the notation WHERE col unm =
identifier.
It is not mandatory that the FOR UPDATE OF clause refer to a column, but it is recommended for better
readability and maintenance.

Note The WHERE CURRENT OF clauseis explained later in thislesson.

The FOR UPDATE clause identifies the rows that will be updated or deleted, then locks each row in the
result set. Thisis useful when you want to base an update on the existing valuesin arow. In that case, you
must make sure the row is not changed by another user before the update.

Introduction to Oracle9i: PL/SQL 7-6

The WHERE CURRENT OF Clause

Syntax:

VWHERE CURRENT OF cursor ;

®* Use cursors to update or delete the current row.

* |nclude the FOR UPDATE clause in the cursor
query to lock the rows first.

®* Usethe WHERE CURRENT OF clause to reference
the current row from an explicit cursor.

7-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The WHERE CURRENT OF Clause

When referencing the current row from an explicit cursor, usethe WHERE CURRENT COF clause. This
alows you to apply updates and deletes to the row currently being addressed, without the need to explicitly
reference the ROW D. Y ou must include the FOR UPDATE clause in the cursor query so that the rows are
locked on OPEN.

In the syntax:

cursor isthe name of a declared cursor. (The cursor must have been
declared with the FOR UPDATE clause.)

Introduction to Oracle9i: PL/SQL 7-7

The WHERE CURRENT OF Clause

DECLARE
CURSOR sal cursor 1S
SELECT e. departnent id, enployee id, |ast_nane, salary
FROM enpl oyees e, departnents d
VWHERE d.departnent_id = e.departnent _id
and d. departnent _id = 60
FOR UPDATE OF sal ary NOWMIT;
BEG N
FOR enp_record I N sal cursor
LOOP
| F enp_record. salary < 5000 THEN
UPDATE enpl oyees
SET salary = enp_record.salary * 1.10
WHERE CURRENT OF sal cursor;

END I F;
END LQOOP;
END;
/
7-8 Copyright © Oracle Corporation, 2001. All rights reserved.

The WHERE CURRENT OF Clause (continued)
Example
The dlide exampl e loops through each employee in department 60, and checks whether the salary isless than
5000. If the salary isless than 5000, the salary israised by 10%. The WHERE CURRENT OF clauseinthe

UPDATE statement refers to the currently fetched record. Observe that atable can be updated with the
WHERE CURRENT OF clause, even if thereisajoin in the cursor declaration.

Additionally, you can write a DELETE or UPDATE statement to contain the WHERE CURRENT OF
cursor_name clause to refer to the latest row processed by the FETCH statement. Y ou can update rows based
on criteriafrom a cursor. When you use this clause, the cursor you reference must exist and must contain the
FOR UPDATE clause in the cursor query; otherwise, you will receive an error. This clause alows you to
apply updates and deletes to the currently addressed row without the need to explicitly referencethe ROWN D
pseudo column.

Introduction to Oracle9i: PL/SQL 7-8

Cursors with Subqueries

Example:

DECLARE
CURSOR ny_cursor 1S
SELECT t1.departnent _id, tl.departnent_nane,
t2.staff
FROM departnents t1l, (SELECT departnent id,
COUNT(*) AS STAFF

FROM enpl oyees
GROUP BY departnent _id) t2

WHERE t 1. departnent _id = t2.departnent _id

AND t2.staff >= 3;

7-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Subqueries

A subguery is a query (usually enclosed by parentheses) that appears within another SQL data manipulation
statement. When evaluated, the subquery provides avalue or set of valuesto the outer query. Subqueries are
often used in the WHERE clause of a sdlect statement. They can also be used in the FROMclause, creating a
temporary data source for that query.

In this example, the subquery creates a data source consisting of department numbers and employee head
count in each department (known asthe alias STAFF) . A table dlias, t 2, refersto thistemporary data source
in the FROMclause. When this cursor is opened, the active set will contain the department number,
department name, and total number of employees working for the department, provided there are three or
more employees working for the department.

Introduction to Oracle9i: PL/SQL 7-9

Summary

In this lesson, you should have learned how to do the

following:

* Return different active sets using cursors with
parameters.

* Define cursors with subqueries and correlated
subqueries.

* Manipulate explicit cursors with commands using
the:

— FOR UPDATE clause
— VWHERE CURRENT OF clause

7-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

An explicit cursor can take parameters. In a query, you can specify acursor parameter wherever a constant
appears. An advantage of using parametersisthat you can decide the active set at run time.

PL/SQL provides a method to modify the rows that have been retrieved by the cursor. The method consists of
two parts. The FOR UPDATE clause in the cursor declaration and the WHERE CURRENT OF clausein an
UPDATE or DELETE statement.

Introduction to Oracle9i: PL/SQL 7-10

Practice 7 Overview

This practice covers the following topics:

®* Declaring and using explicit cursors with
parameters

®* Using a FOR UPDATE cursor

7-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 7 Overview

This practice applies your knowledge of cursors with parameters to process a number of rows from multiple
tables.

Introduction to Oracle9i: PL/SQL 7-11

Practice 7

1

In aloop, use acursor to retrieve the department number and the department name from
the DEPARTMENTS tabl e for those departments whose DEPARTMVENT _| Dislessthan
100. Pass the department number to another cursor to retrieve from the EMPLOYEES table
the detail s of employee last name, job, hire date, and salary of those employees whose
EMPLOYEE | Dislessthan 120 and who work in that department.

Department Mumber - 10 Department Mame - Administration

Department Mumber © 20 Department Mame - Barketing

Department Fumber : 20 Department Wame : Purchasmg

Raphaely PTU_IIAT 07-DEC-54 11000
Khoo PU_CLERE 18-MATY-95 3100
Baida PU_CLERE 24-DEC-%7 2300
Tobias PU_CLEREK 24-TJUL-%7 2500
Himure PU_CLERE 15-NOW-35 2600
Colmenares PUU_CLERE 10-ATIG-9% 2500

Department Mumber - 40 Department Mame : Human Eesources

Department Fumber : 50 Department Mame : Shipping

Department Mumber - 60 Department Name : TT

Hunold IT_FROG 03-JAN-50 5000
Ernst ITT_PROG 21-MAT-91 6000
Austin [T_PROG 25-JUM-97 4500
Pataballa IT PREOG 05-FEBE-35 4500
Lorentz IT PROG 07-FEB-9% 4200

Department Mumber - 70 Departtnent Mame : Public Eelations

Department Mumber : 80 Department Mame : Zales

Department Mumber © 90 Department Mame Executive

King AD_PEES 17-JUL-57 24000
Kochhar AD VP 21-5EP-85 17000
De Haan AD_WFP 15-JAN-53 17000

PLIZOQL procedure successfully completed.

Introduction to Oracle9i: PL/SQL 7-12

Practice 7 (continued)

2. Modify thecodeinsol 4_4. sql toincorporate acursor using the FOR UPDATE and
WHERE CURRENT OF functionality in cursor processing.
DEFI NE p_enpno=104
DEFI NE p_enpno=174
DEFI NE p_enpno=176

| EMPLOYEE_ID | SALARY | STARS
| 104 | OO0 [

| 174 | 11000 [

| 176 | 600 [

Introduction to Oracle9i: PL/SQL 7-13

Introduction to Oracle9i: PL/SQL 7-14

Handling Exceptions

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Define PL/SQL exceptions

* Recoghize unhandled exceptions

* List and use different types of PL/SQL exception
handlers

* Trap unanticipated errors

* Describe the effect of exception propagation in
nested blocks

®* Customize PL/SQL exception messages

8-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn what PL/SQL exceptions are and how to dea with them using predefined,
nonpredefined, and user-defined exception handlers.

Introduction to Oracle9i: PL/SQL 8-2

Handling Exceptions with PL/SQL

®* An Exception is an identifier in PL/SQL that is raised
during execution.

®* How isitraised?
— An Oracle error occurs.
— You raise it explicitly.
® How do you handle it?
— Trap it with a handler.
— Propagate it to the calling environment.

8-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview

An exception isanidentifier in PL/SQL that israised during the execution of ablock that terminatesits
main body of actions. A block always terminates when PL/SQL raises an exception, but can you specify an
exception handler to perform final actions.

Two Methods for Raising an Exception

* An Oracle error occurs and the associated exception is raised automatically. For example, if the error
ORA- 01403 occurs when no rows are retrieved from the databas8Hh BCT statement, then
PL/SQL raises the exceptibid®D DATA FOUND.

* You raise an exception explicitly by issuing f&l SE statement within the block. The exception
being raised may be either user-defined or predefined.

Introduction to Oracle9i: PL/SQL 8-3

Handling Exceptions

Trap the exception Propagate the exception
ARE ARE
EG N EG N '
Exception Exception
; : is raised
s raised excEPTI ON i' EXCEPTI ON
Exception) Exception
is trapped 21 200 is not
trapped
Exception

propagates to calling
environment

8-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping an Exception

If the exception israised in the executabl e section of the block, processing branches to the corresponding
exception handler in the exception section of the block. If PL/SQL successfully handles the exception, then
the exception does not propagate to the enclosing block or environment. The PL/SQL block terminates
successfully.

Propagating an Exception

If the exception israised in the executable section of the block and there is no corresponding exception
handler, the PL/SQL block terminates with failure and the exception is propagated to the calling
environment.

Introduction to Oracle9i: PL/SQL 8-4

Exception Types

* Nonpredefined Oracle Server

* Predefined Oracle Server Implicitly
raised

* User-defined Explicitly raised

8-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Exception Types
Y ou can program for exceptions to avoid disruption at run time. There are three types of exceptions.

Exception Description Directionsfor Handling
Predefined Oracle One of approximately 20 Do not declare and allow the
Server error errors that occur most often | Oracle server to raise them
in PL/SQL code implicitly
Nonpredefined Any other standard Oracle Declare within the declarative
Oracle Server error Server error section and allow the Oracle
Server to raise them implicitly
User-defined error A condition that the Declare within the declarative
developer determinesis section, and raise explicitly
abnormal

Note: Some application tools with client-side PL/SQL, such as Oracle Devel oper Forms, have their own
exceptions.

Introduction to Oracle9i: PL/SQL 8-5

Trapping Exceptions

Syntax:

EXCEPTI ON
WHEN exceptionl [OR exception2 . . .] THEN
st at enent 1,
st at enent 2,

[WHEN exception3 [OR exception4d . . .] THEN
st at enent 1,
st at enent 2,
o]
[WHEN OTHERS THEN
st at enent 1,
st at enent 2,

]

8-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Exceptions

Y ou can trap any error by including a corresponding routine within the exception handling section of the
PL/SQL block. Each handler consists of a WHEN clause, which specifies an exception, followed by a
sequence of statements to be executed when that exception is raised.

In the syntax:
exception isthe standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section.
statement isone or more PL/SQL or SQL statements.
OTHERS isan optiona exception-handling clause that traps unspecified
exceptions.

WHEN OTHERS Exception Handler

The exception-handling section traps only those exceptions that are specified; any other exceptions are not
trapped unless you use the OTHERS exception handler. This traps any exception not yet handled. For this
reason, OTHERS isthe last exception handler that is defined.

The OTHERS handler traps all exceptions not already trapped. Some Oracle tools have their own predefined
exceptions that you can raise to cause events in the application. The OTHERS handler also traps these
exceptions.

Introduction to Oracle9i: PL/SQL 8-6

Trapping Exceptions Guidelines

* The EXCEPTI ONkeyword starts exception-handling
section.

* Several exception handlers are allowed.

®* Only one handler is processed before leaving the
block.

* \WHEN OTHERS s the last clause.

8-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines
» Begin the exception-handling section of the block withBRKEEPTI ON keyword.
» Define several exception handlers, each with its own set of actions, for the block.
* When an exception occurs, PL/SQL processbgsone handler before leaving the block.
* Place theOTHERS clause after all other exception-handling clauses.
* You can have only on8THERS clause.
+ Exceptions cannot appear in assignment statements or SQL statements.

Introduction to Oracle9i: PL/SQL 8-7

8-8

Trapping Predefined Oracle Server Errors

* Reference the standard name in the exception-
handling routine.

e Sample predefined exceptions:

NO_DATA_FOUND
TOO MANY ROWS

| NVALI D_CURSOR
ZERO DI VI DE
DUP_VAL_ON_| NDEX

Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Predefined Oracle Server Errors
Trap apredefined Oracle Server error by referencing its standard name within the corresponding exception-

handling routine.

For acompletelist of predefined exceptions, see PL/SQL User’s Guide and Referentierror Handling.”
Note: PL/SQL declares predefined exceptions in$h&NDARD package.
It is a good idea to always handle t@ DATA FOUND andTOO_MANY_ROWS exceptions, which are the

most common.

Introduction to Oracle9i: PL/SQL 8-8

Predefined Exceptions

Exception Name Oracle Description
Server
Error
Number
ACCESS_| NTO_NULL ORA- Attempted to assign val ues to the attributes of
06530 an uninitialized object
CASE_NOT_FOUND ORA- None of the choices in the WHEN clauses of a
06592 CASE statement is selected, and thereisno
EL SE clause.
COLLECTION_I'S_NULL ORA- Attempted to apply collection methods other
06531 than EXI STS to an uninitialized nested table
or varray
CURSCOR_ALREADY_OPEN ORA- Attempted to open an already open cursor
06511
DUP_VAL_ON_I NDEX ORA- Attempted to insert a duplicate value
00001
I'NVALI D_CURSOR ORA- Illegal cursor operation occurred
01001
I'NVALI D_NUMBER ORA- Conversion of character string to number fails
01722
LOA N_DENI ED ORA- Logging on to Oracle with aninvalid
01017 username or password
NO_DATA FOUND ORA- Single row SELECT returned no data
01403
NOT_LOGGED_ON ORA- PL/SQL program issues a database call
01012 without being connected to Oracle
PROGRAM_ERRCR ORA- PL/SQL has an internal problem
06501
ROMYPE_M SVATCH ORA- Host cursor variable and PL/SQL cursor
06504 variable involved in an assignment have
incompatible return types

Introduction to Oracle9i: PL/SQL 8-9

Predefined Exceptions (continued)

Exception Name Oracle Description
Server
Error
Number
STORAGE_ERROR ORA- PL/SQL ran out of memory or memory is
06500 corrupted.
SUBSCRI PT_BEYOND_COUNT ORA- Referenced a nested table or varray element
06533 using an index number larger than the number
of elementsin the collection.
SUBSCRI PT_QUTSIDE_LIM T | ORA- Referenced a nested table or varray element
06532 using an index number that is outside the legal
range (—1 for example)
SYS_I NVALI D_ROA' D ORA- The conversion of a character string into a
01410 universal ROW Dfails because the character
string does not represent avalid RON D.
TI MEQUT_ON_RESQURCE ORA- Time-out occurred while Oracle is waiting for
00051 aresource.
TOO_MANY_RONE ORA- Single-row SELECT returned more than one
01422 rOW.
VALUE_ERROR ORA- Arithmetic, conversion, truncation, or size-
06502 constraint error occurred.
ZERO DI VI DE ORA- Attempted to divide by zero
01476

Introduction to Oracle9i: PL/SQL 8-10

Predefined Exceptions

Syntax:
BEG N

EXCEPTI ON
WHEN NO DATA FOUND THEN
statenent 1;
st at enent 2;

WHEN TOO MANY ROAS THEN
st at enent 1;
VWHEN OTHERS THEN
Statenent 1;
St at enent 2;
St at enent 3;
END;

8-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Predefined Oracle Server Exceptions

When an exception is raised, normal execution of your PL/SQL block or subprogram stops and control
transfersto its exception-handling part, which is formatted as shown on the dide.

To catch raised exceptions, you write exception handlers. Each handler consists of aVWHEN clause, which
specifies an exception, followed by a sequence of statements to be executed when that exception is raised.
These statements complete execution of the block or subprogram; control does not return to where the
exception was raised. In other words, you cannot resume processing where you left off.

The optional OTHERS exception handler, which, if present, is awaysthelast handler in ablock or
subprogram, acts as the handler for al exceptions that are not named specifically. Thus, ablock or
subprogram can have only one OTHERS handler. Asthe following example shows, use of the OTHERS
handler guarantees that no exception will go unhandled:

EXCEPTI ON
VWHEN ... THEN
-- handl e the error
VWHEN ... THEN

-- handl e the error
WHEN OTHERS THEN
-- handle all other errors
END;

Introduction to Oracle9i: PL/SQL 8-11

Trapping Nonpredefined Oracle
Server Errors

Declare > Associate » Reference
Declarative section Exception-handling
section
Name the Code the PRAGVA Handle the raised
exception EXCEPTION_INIT exception
8-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Nonpredefined Oracle Server Errors

Y ou trap a nonpredefined Oracle server error by declaring it first, or by using the OTHERS handler. The
declared exception israised implicitly. In PL/SQL, the PRAGVA EXCEPTI ON_I NI T tellsthe compiler to
associate an exception name with an Oracle error number. That allows you to refer to any internal exception
by name and to write a specific handler for it.

Note: PRAGVA (aso called pseudoinstructions) is the keyword that signifies that the statement isa
compiler directive, which is not processed when the PL/SQL block is executed. Rather, it directs the

PL/SQL compiler to interpret al occurrences of the exception name within the block as the associated
Oracle server error number.

Introduction to Oracle9i: PL/SQL 8-12

Nonpredefined Error

Trap for Oracle server error number —2292, an
integrity constraint violation.

DEFI NE p_deptno = 10
DECLARE
e_enps_renmai ni ng EXCEPTI ON;
PRAGVA EXCEPTION_INT
(e_enps_remaini ng, -2292);
BEG N
DELETE FROM depart nents
WHERE departnent_id = &p_deptno;
COW T,
EXCEPTI ON
WHEN e_enps_remai ni ng THEN @
DBMS_QUTPUT. PUT_LI NE (' Cannot renove dept ' ||
TO CHAR(&p_deptno) || '. Enployees exist. ');
END;

® ®

8-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping a Nonpredefined Oracle Server Exception
1. Declarethe name for the exception within the declarative section.
Syntax
exception EXCEPTI ON,
where: exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number using the PRAGVA
EXCEPTI ON_I NI T statement.

Syntax
PRAGVA EXCEPTI ON_I NI T(exception, error_nunber);
where: exception isthe previoudy declared exception.

error_number isastandard Oracle Server error number.
3. Reference the declared exception within the corresponding exception-handling routine.
Example
If there are employeesin a department, print a message to the user that the department cannot be removed.

Introduction to Oracle9i: PL/SQL 8-13

code

8-14

Functions for Trapping Exceptions

 SQLCODE: Returns the numeric value for the error

« SQLERRM Returns the message associated with the
error number

Copyright © Oracle Corporation, 2001. All rights reserved.

Error-Trapping Functions

When an exception occurs, you can identify the associated error code or error message by using two

functions. Based on the values of the code or message, you can decide which subsequent action to take

based on the error.

SQLCODE returns the number of the Oracle error for internal exceptions. Y ou can pass an error number to

SQLERRM which then returns the message associated with the error number.

Function Description

SQLCODE Returns the numeric value for the error code (Y ou can assign it to a NUVBER
variable)

SQLERRM Returns character data contai ning the message associated with the error
number

Example SQLCCODE Values

SQLCODE Value | Description

0 No exception encountered

1 User-defined exception

+100 NO_DATA _FOUND exception
negative number Another Oracle server error number

Introduction to Oracle9i: PL/SQL 8-14

Functions for Trapping Exceptions

Example:

DECLARE

v_error_code NUMBER;
vV_error_mnessage VARCHARZ2(255) ;
BEG N

EXCEPTI ON

WHEN OTHERS THEN
ROLLBACK;
v_error_code := SQ.CODE ;
v_error_nessage : = SQLERRM ;
| NSERT | NTO errors

VALUES(v_error_code, v_error_mnessage);
END;

A

A

8-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Error-Trapping Functions (continued)

When an exception istrapped in the WHEN OTHERS exception handler, you can use a set of generic
functions to identify those errors. The example on the dlideillustrates the values of SQLCODE and
SQLERRM being assigned to variables and then those variables being used in a SQL statement.

Y ou cannot use SQLCODE or SQLERRM directly in a SQL statement. Instead, you must assign their
valuesto local variables, then use the variablesin the SQL statement, as shown in the following example:
DECLARE

err_num NUMBER,

err_nmsg VARCHAR2(100);
BEG N

EXCEPTI ON
WHEN OTHERS THEN
err_num : = SQLCODE;
err_msg := SUBSTR(SQLERRM 1, 100);

| NSERT I NTO errors VALUES (err_num err_nsg);
END,

Introduction to Oracle9i: PL/SQL 8-15

Trapping User-Defined Exceptions

Declare > Raise > Reference
Declarative Executable Exception-handling
section section section
Name the Explicitly raise the Handle the raised
exception. exception by using the exception.
RAI SE statement.
8-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping User-Defined Exceptions
PL/SQL allows you to define your own exceptions. User-defined PL/SQL exceptions must be:

Declared in the declare section of a PL/SQL block
Raised explicitly withRAI SE statements

Introduction to Oracle9i: PL/SQL 8-16

User-Defined Exceptions
Example:
DEFI NE p_departnent _desc = "Informati on Technol ogy ’
DEFI NE P_depart nent _nunber = 300
DECLARE
e_invalid_departnment EXCEPTI ON, @
BEG N
UPDATE departnments
SET department _nanme = ’ &p_depart nment _desc’
VWHERE department _id = &p_depart nent _nunber;
| F SQLYNOTFOUND THEN
RAI SE e _invalid_departnent; @
END | F;
COW T;
EXCEPTI ON
VWHEN e_inval i d_departnment THEN @
DBVS _OUTPUT. PUT_LI NE(’ No such departnent id.’);
END;
8-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping User-Defined Exceptions (continued)
Y ou trap a user-defined exception by declaring it and raising it explicitly.
1. Declarethe name for the user-defined exception within the declarative section.

Syntax:
excepti on EXCEPTI ON,

where: exception is the name of the exception
2. Usethe RAISE statement to raise the exception explicitly within the executable section.

Syntax:
RAI SE excepti on;

where: exception isthe previoudy declared exception
3. Reference the declared exception within the corresponding exception-handling routine.
Example

This block updates the description of a department. The user supplies the department number and the new
name. If the user enters a department number that does not exist, no rows will be updated in the
DEPARTMENTS table. Raise an exception and print a message for the user that an invalid department
number was entered.

Note: Use the RAI SE statement by itself within an exception handler to rai se the same exception back to
the calling environment.

Introduction to Oracle9i: PL/SQL 8-17

Calling Environments

ISQL*Plus Displays error number and message
to screen

Procedure Builder | Displays error number and message
to screen

Oracle Developer |Accesses error number and message

Forms in atrigger by means of the

ERROR_CODE and ERROR_TEXT
packaged functions

Precompiler Accesses exception number through

application the SQLCA data structure

An enclosing Traps exception in exception-

PL/SQL block handling routine of enclosing block
8-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Propagating Exceptions

Instead of trapping an exception within the PL/SQL block, propagate the exception to allow the calling
environment to handleit. Each calling environment has its own way of displaying and accessing errors.

Introduction to Oracle9i: PL/SQL 8-18

Propagating Exceptions

DECLARE
é_ho._r ows exception;
e_integrity exception;
PRAGVA EXCEPTION_INIT (e_integrity, -2292);
BEG N
FOR c_record IN enp_cursor LOOP
BEG N
SELECT ...
Subblocks can handle UPDATE .. .
. | F SQLYNOTFOUND THEN
an exception or pass RAI SE e_no_r ows;
; END I F;
the exception to the END:
enclosing block. END LOOP;
EXCEPTI ON
WHEN e_integrity THEN ...
WHEN e_no_rows THEN ...
END;
8-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Propagating an Exception in a Subblock

When a subblock handles an exception, it terminates normally, and control resumes in the enclosing block
immediately after the subblock END statement.

However, if PL/SQL raises an exception and the current block does not have a handler for that exception,
the exception propagates in successive enclosing blocks until it finds a handler. If none of these blocks
handle the exception, an unhandled exception in the host environment results.

When the exception propagates to an enclosing block, the remaining executable actionsin that block are
bypassed.

One advantage of this behavior isthat you can enclose statements that require their own exclusive error
handling in their own block, while leaving more general exception handling to the enclosing block.

Observein the example that theexcepti ons,e_no_rows ande_i ntegrity, aredeclaredinthe
outer block. Intheinner block, whenthee no_r ows exception israised, PL/SQL looks for the exception
in the sub block. Because the exception is not declared in the subblock, the exception propagates to the
outer block, where PL/SQL finds the declaration.

Introduction to Oracle9i: PL/SQL 8-19

The RAI SE_ APPLI CATI ON_ERRCOR
Procedure

Syntax:

rai se_application_error (error_nunber,
nessage[, {TRUE | FALSE}]);

®* You can use this procedure to issue user-defined
error messages from stored subprograms.

®* You can report errors to your application and
avoid returning unhandled exceptions.

8-20 Copyright © Oracle Corporation, 2001. All rights reserved.

The RAI SE_APPLI CATI ON_ERROR Procedure

Usethe RAI SE_APPLI CATI ON_ERROR procedure to communicate a predefined exception interactively
by returning a nonstandard error code and error message. With RAI SE_APPLI CATI ON_ERROR, you can
report errorsto your application and avoid returning unhandled exceptions.

In the syntax:
error_number is a user-specified number for the exception between —20000 and
—20999.
message is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.
TRUE | FALSE is an optional Boolean parameterTRUE, the error is placed on

the stack of previous errors.HRALSE, the default, the error
replaces all previous errors.)

Introduction to Oracle9i: PL/SQL 8-20

The RAI SE_APPLI CATI ON_ERROR
Procedure

®* Used in two different places:
— Executable section
— Exception section

* Returns error conditions to the user in a manner
consistent with other Oracle server errors

8-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The RAI SE_APPLI CATI ON_ERROR Procedure (continued)

RAI SE_APPLI CATI ON_ERROR can be used in either (or both) the executable section and the exception
section of a PL/SQL program. The returned error is consistent with how the Oracle server produces a
predefined, nonpredefined, or user-defined error. The error number and message is displayed to the user.

Introduction to Oracle9i: PL/SQL 8-21

RAI SE_APPLI CATI ON_ERROR

Executable section:
BEG N

DELETE FROM enpl oyees
WHERE nmanager _id = v_nyr;
| F SQLYNOTFOUND THEN
RAI SE_APPL| CATI ON_ERROR(- 20202,
"This is not a valid manager’);
END | F;

Exception section:

EXCEPTI ON
VWHEN NO_DATA_FOUND THEN
RAI SE_APPLI CATI ON_ERROR (- 20201,
"Manager is not a valid enployee.’);

END;

8-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
The dide shows that the RAI SE_APPLI CATI ON_ERROR procedure can be used in both the executable and

exception sections of a PL/SQL program.
Here is another example of RAI SE_APPLI CATI ON_ERRCR procedure that can be used in both the
executable and exception sections of a PL/SQL program:

DECLARE

e_nanme EXCEPTI QON,;

PRAGVA EXCEPTION_INIT (e_name, -20999);
BEG N

DELETE FROM enpl oyees

WHERE | ast_nane = ' Higgins’;
| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERRCR(-20999, ' This is not a valid | ast nanme’);
END I F;

EXCEPTI ON
VWHEN e_nane THEN
-- handl e the error

END;
/

Introduction to Oracle9i: PL/SQL 8-22

Summary

* Exception types:
— Predefined Oracle server error
— Nonpredefined Oracle server error
— User-defined error
* Exception trapping
®* Exception handling:
— Trap the exception within the PL/SQL block.
— Propagate the exception.

8-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In PL/SQL, awarning or error condition is called an exception. Predefined exceptions are error conditions
that are defined by the Oracle server. Nonpredefined exceptions are any other standard Oracle Server Error.
User-defined exceptions are exceptions specific to your application. Examples of predefined exceptions
include division by zero (ZERO_DI VI DE) and out of memory (STORAGE _ERROR). Exceptions without
defined names can be assigned names, using the PRAGVA EXCEPTI ON_I NI T statement.

Y ou can define exceptions of your own in the declarative part of any PL/SQL block, subprogram, or
package. For example, you can define an exception named | NSUFFI CI ENT_FUNDS to flag overdrawn
bank accounts. User-defined exceptions must be given names.

When an error occurs, an exception israised. That is, normal execution stops and control transfersto the
exception-handling part of your PL/SQL block or subprogram. Internal exceptions are raised implicitly
(automatically) by the run-time system. User-defined exceptions must be raised explicitly by RAI SE
statements, which can also raise predefined exceptions.

To handle raised exceptions, you write separate routines called exception handlers. After an exception
handler runs, the current block stops executing and the enclosing block resumes with the next statement. If
thereis no enclosing block, control returns to the host environment.

Introduction to Oracle9i: PL/SQL 8-23

Practice 8 Overview

* Handling named exceptions
* Creating and invoking user-defined exceptions

8-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 8 Overview
In this practice, you create exception handlers for specific situations.

Introduction to Oracle9i: PL/SQL 8-24

Practice 8
1. WriteaPL/SQL block to select the name of the employee with a given salary value.
a. Usethe DEFI NE command to provide the salary. Passthe value to the PL/SQL block through a

iSQL*Plus substitution variable. If the salary entered returns more than one row, handle the
exception with an appropriate exception handler and insert into the MESSAGES table the message

“More than one employee with a salary shlary>."

b. If the salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into MESSACES table the message “No employee with

a salary of salary>.”

c. If the salary entered returns only one row, insert intd/E®SAGES table the
employee’s name and the salary amount.

d. Handle any other exception with an appropriate exception handler and insert into the
MESSAGES table the message “Some other error occurred.”

e. Test the block for a variety of test cases. Display the rows froVEB®AGES table to check
whether the PL/SQL block has executed successfully. Some sample output is shown below.

|N|:| employee with a salary of 5000

|Mure than ane emplaoyee with a salary of G000
|Mure than one employee with a salary of 7000
|N|:| employes with a salary of 2000

2. Modify the code ip3q3. sql to add an exception handler.
a. Use thédEFI NE command to provide the department ID and department location. Pass the values
to the PL/SQL block through e5sQL*Plus substitution variables.

b. Write an exception handler for the error to pass a message to the user that the specified
department does not exist. Use a bind variable to pass the message to the user.

c. Execute the PL/SQL block by entering a department that does not exist.

| G_MESSAGE
|Department 200 is an invalid department

Introduction to Oracle9i: PL/SQL 8-25

Practice 8 (continued)

3. WriteaPL/SQL block that prints the number of employees who earn plus or minus $100
of the salary value set for an iSQL* Plus substitution variable. Use the DEFI NE command to provide
the salary value. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable.

a. If thereis no employee within that salary range, print a message to the user indicating
that is the case. Use an exception for this case.

b. If there are one or more employees within that range, the message should indicate
how many employees are in that salary range.

¢. Handle any other exception with an appropriate exception handler. The message should
Indicate that some other error occurred.

DEFI NE p_sal = 7000
DEFI NE p_sal = 2500
DEFI NE p_sal = 6500

| G_MESSAGE
|There isfare 4 employee(s) with a salary between B300 and 7100

| G_MESSAGE
|There isfare 12 employee(s) with a salary between 2400 and 2600

| G_MESSAGE
|There izfare 3 employee(s) with a salary between 6400 and 6500

Introduction to Oracle9i: PL/SQL 8-26

Creating Procedures

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

® Distinguish anonymous PL/SQL blocks from named
PL/SQL blocks (subprograms)

® List the benefits of using subprograms

* Listthe different environments from which
subprograms can be invoked

9-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn the difference between anonymous PL/SQL blocks and subprograms. Y ou aso
learn to create, execute, and remove procedures.

Introduction to Oracle9i: PL/SQL 9-2

Objectives

After completing this lesson, you should be able to
do the following:
®* Describe PL/SQL blocks and subprograms

®* Describe the uses of procedures

* Create procedures

e Differentiate between formal and actual parameters
® List the features of different parameter modes

®* Create procedures with parameters

®* Invoke a procedure

* Handle exceptions in procedures

* Remove a procedure

9-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn the difference between anonymous PL/SQL blocks and subprograms. Y ou aso
learn to create, execute, and remove procedures.

Introduction to Oracle9i: PL/SQL 9-3

PL/SQL Program Constructs

<header> | S| AS
o DECLARE
‘ O O O ‘
BEG N
‘ o o O
EXCEPTI ON
Tools Condrudt oo | Database Server
ools Lonstructs END, constructs
Anonymous blocks '
— Anonymous blocks
Application procedures or Stored od
functions Ored procedures or
Application packages functions
— _ Stored packages
Appllcz-mon triggers Database trigger s
Object types Object types
9-4 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Program Constructs

The diagram above displays a variety of different PL/SQL program constructs using the basic PL/SQL
block. In general, ablock is either an anonymous block or a named block (known as a subprogram or
program unit).

PL/SQL Block Structure

Every PL/SQL construct is composed of one or more blocks. These blocks can be entirely separate or
nested within one another. Therefore, one block can represent a small part of another block, which in
turn can be part of the whole unit of code.

Note: In the dide, the word "or" prior to the keyword DECLARE is not part of the syntax. Itisusedin
the diagram to differentiate between starting of subprograms and anonymous blocks.

The PL/SQL blocks can be constructed on and use the Oracle server (stored PL/SQL program units).
They can a so be constructed using the Oracle Developer tools such as Oracle Forms Devel oper, Oracle
Report Devel oper, and so on (application or client-side PL/SQL program units).

Object types are user-defined composite data types that encapsulates a data structure along with the
functions and procedures needed to manipulate the data. Y ou can create object types either on the
Oracle server or using the Oracle Developer tools

In this course, you learn to write and manage stored procedures and functions, database triggers, and
packages. Creating object typesis not covered in this course.

Introduction to Oracle9i: PL/SQL 9-4

Overview of Subprograms

A subprogram:

* |sanamed PL/SQL block that can accept parameters
and be invoked from a calling environment

* |s of two types:
— A procedure that performs an action
— A function that computes a value
* |s based on standard PL/SQL block structure

* Provides modularity, reusability, extensibility,
and maintainability

®* Provides easy maintenance, improved data security
and integrity, improved performance, and improved
code clarity

9-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Subprogram

A subprogram is based on standard PL/SQL structure that contains a declarative section, an executable
section, and an optiona exception-handling section

A subprogram can be compiled and stored in the database. It provides modularity, extensibility,
reusability, and maintainability.

Modularization is the process of breaking up large blocks of code into smaller groups of code called
modules. After code is modularized, the modules can be reused by the same program or shared by other
programs. It is easier to maintain and debug code of smaller modules than a single large program. Also,
the modules can be easily extended for customization by incorporating more functionality, if required,
without affecting the remaining modules of the program.

Subprograms provide easy maintenance because the code is located in one place and hence any
modifications required to the subprogram can be performed in this single location. Subprograms
provide improved data integrity and security. The data objects are accessed through the subprogram and
auser can invoke the subprogram only if appropriate access privilege is granted to the user.

Introduction to Oracle9i: PL/SQL 9-5

Block Structure for Anonymous
PL/SQL Blocks

DECLARE (optional)

Declares PL/SQL objects to be used
within this block

BEGQ N (mandatory)
Defines the executable statements

EXCEPTI ON (optional)

Defines the actions that take place if
an error or exception arises

END; (mandatory)

9-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Anonymous Blocks

Anonymous blocks do not have hames. Y ou declare them at the point in an application where they are
to be run, and they are passed to the PL/SQL engine for execution at run time.
» The section between the keywodiSCLARE andBEG Nis referred to as the declaration
section. In the declaration section, you define the PL/SQL objects such as variables, constants,
cursors, and user-defined exceptions that you want to reference within the bloEEQHRE
keyword is optional if you do not declare any PL/SQL objects.
 TheBEG NandEND keywords are mandatory and enclose the body of actions to be performed.
This section is referred to as the executable section of the block.
» The section betwedBXCEPTI ON andEND s referred to as the exception section. The exception
section traps error conditions. In it, you define actions to take if the specified condition arises.
The exception section is optional.
The keywordDECLARE, BEG N, andEXCEPTI ON are not followed by semicolons, H&ND and all
other PL/SQL statements do require semicolons.

Introduction to Oracle9i: PL/SQL 9-6

Block Structure for PL/SQL Subprograms

<header> —]
|S|AS —
Declaration section
BEG N
Executable section
EXCEPTION (optional) [Subprogram body
Exception section
END; —

> Subprogram specification

9-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Subprograms
Subprograms are named PL/SQL blocks that can accept parameters and be invoked from a calling
environment. PL/SQL has two types of subprograms, procedures and functions.
Subprogram Specification
e The header is relevant for named blocks only and determines the way that the program unit is called
or invoked.
The header determines:
— The PL/SQL subprogram type, that is, either a procedure or a function
— The name of the subprogram
— The parameter list, if one exists
— TheRETURN clause, which applies only to functions
* Thel SorASkeyword is mandatory.

Subprogram Body
* The declaration section of the block betwé&h AS andBEQ N. The keywordDECLARE that is
used to indicate the start of the declaration section in anonymous blocks is not used here.

» The executable section between Big&sl N andEND keywords is mandatory, enclosing the body of
actions to be performed. There must be at least one statement existing in this section. There should
be at least onBULL; statement, which is considered an executable statement.

» The exception section betweEKCEPTI ONandEND is optional. This section traps predefined
error conditions. In this section, you define actions to take if the specified error condition arises.

Introduction to Oracle9i: PL/SQL 9-7

PL/SQL Subprograms

TTTXXX XXX XXX j_ --------------
OOXxxx -.JI1 | ==——-- F-’ ------
XXX XXX XXX XXX XXX XXX | e ::::: ::: ::: :::
XXX XXX XXX :'__) XXX XXX XXX P

R subprogram p, | 77T
§§§ §§§ §§§ :l— which contains the P

______________ repeated code

.............. PL/SQL program invoking

Code repeated more than the subprogram at multiple
once in a PL/SQL program locations
9-8 Copyright © Oracle Corporation, 2001. All rights reserved.
Subprograms

The diagram in the dlide explains how you can replace a sequence of PL/SQL statements repeated in a
PL/SQL block with a subprogram.

When a sequence of statementsis repeated more than once in a PL/SQL subprogram, you can create a
subprogram with the repeated code. Y ou can invoke the subprogram at multiple locationsin a PL/SQL
block. After the subprogram is created and stored in the database, it can be invoked any number of times
and from multiple applications.

Introduction to Oracle9i: PL/SQL 9-8

Developing Subprograms by Using
ISQL*Plus

a logexec_sql - Hotepad =] S
File Edit Search Help
CREATE OR REPLACE PROCEDURE log_execution -

I3
BEGIHN @
IHSERT IHTOD log table {user_id, log_date)

UALUES {user, sysdate);
END log_execution; T
I' 1 s 4 Hrowse... II Lo Serapt I

-REATE DF FEFLACE FHOCEDLHEE leg_eiecelian

-l_l_-l'\‘

IRSERT T bag_tsbie fuss_id, lp_rate]

SALUES (uner, myedala)

KD sy i w@eE i o <
@——*l Execuin | rtpst |E|‘=.|.- @ '| Cleas Srraen | Sawve Sengl I
9-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Subprograms by Using iSQL*Plus
iSQL*Plusis an Internet-enabled interface to SQL*Plus. Y ou can use a Web browser to connect to
an Oracle database and perform the same actions as you would through other SQL* Plus interfaces.

1. Use atext editor to create a SQL script file to define your subprogram. The examplein the
dide creates the stored procedure LOG_EXECUTI ON without any parameters. The procedure
records the username and current date in a database table called LOG_TABLE.

From iSQL* Plus browser window:
2. Use the Browse button to locate the SQL script file.
3. Usethe Load Script button to load the script into the i SQL* Plus buffer.

4. Use the Execute button to run the code. By default, the output from the codeis displayed on
the screen.

PL/SQL subprograms can also be created by using the Oracle development tools such as Oracle
Forms Devel oper.

Introduction to Oracle9i: PL/SQL 9-9

What Is a Procedure?

® A procedureis atype of subprogram that performs
an action.

®* A procedure can be stored in the database, as a
schema object, for repeated execution.

9-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Definition of a Procedure

A procedureisanamed PL/SQL block that can accept parameters (sometimes referred to as
arguments), and be invoked. Generally speaking, you use a procedure to perform an action. A
procedure has a header, a declaration section, an executabl e section, and an optional exception-handling
section.

A procedure can be compiled and stored in the database as a schema object.

Procedures promote reusability and maintainability. When validated, they can be used in any number of
applications. If the requirements change, only the procedure needs to be updated.

Introduction to Oracle9i: PL/SQL 9-10

Syntax for Creating Procedures

CREATE [OR REPLACE] PROCEDURE procedure_nane
[(paraneterl [nodel] datatypel,
paranet er2 [nodeZ2] datatypeZ,

)]
I S| AS
PL/ SQL Bl ock;

* The REPLACE option indicates that if the procedure
exists, it will be dropped and replaced with the
new version created by the statement.

* PL/SQL block starts with either BEGA Nor the

declaration of local variables and ends with either
END or END procedure_name.

9-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating Procedures
Syntax Definitions

Parameter Description
procedur e_name Name of the procedure
par anet er Name of a PL/SQL variable whose value is passed to or populated by
the calling environment, or both, depending on the mode being used
node Type of argument:
| N (default)
out
IN OQUT
Data type Data type of the argument—can be any SQL / PLSQL data type. Can pe
of %' YPE, Y“RON YPE, or any scalar or composite data type.
PL/ SQL bl ock Procedural body that defines the action performed by the procedute

Y ou create new procedures with the CREATE PROCEDURE statement, which may declare alist of
parameters and must define the actions to be performed by the standard PL/SQL block. The CREATE
clause enables you to create stand-alone procedures, which are stored in an Oracle database.
» PL/SQL blocks start with eith@EG N or the declaration of local variables and end with either
END or END pr ocedur e_nane. You cannot reference host or bind variables in the PL/SQL
block of a stored procedure.

» TheREPLACE option indicates that if the procedure exists, it will be dropped and replaced with
the new version created by the statement.

* You can not restrict the size of the data type in the parameters.

Introduction to Oracle9i: PL/SQL 9-11

Developing Procedures

Editor

ode to creat file. sql
procedure

ISQL*Plus
[Load and execute fi/ e. sqIJ

s N
Oracle (Source code J (Use SHOW ERRCR

to view

[oroced .compilation error
F) COde] rocedure

created Y,
Execute

9-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures

Following are the main steps for developing a stored procedure. The next two pages provide more detail
about creating procedures.

1

2.

Write the syntax: Enter the code to create a procedure (CREATE PROCEDURE statement) in a system
editor or word processor and save it asa SQL script file (. sgl extension).

Compilethe code: Using iSQL* Plus, load and run the SQL script file. The source code is compiled
into P code and the procedure is created.

A script file with the CREATE PROCEDURE (or CREATE OR REPLACE PROCEDURE) statement
enables you to change the statement if there are any compilation or run-time errors, or to make
subsequent changes to the statement. Y ou cannot successfully invoke a procedure that contains any
compilation or run-time errors. In iSQL* Plus, use SHONVERRORS to see any compilation errors.
Running the CREATE PROCEDURE statement stores the source code in the data dictionary even if the
procedure contains compilation errors.

Fix the errorsin the code using the editor and recompile the code.

Execute the procedure to perform the desired action. After the source code is compiled and the
procedure is successfully created, the procedure can be executed any number of times using the
EXECUTE command from iSQL*Plus. The PL/SQL compiler generates the pseudocode or P code,
based on the parsed code. The PL/SQL engine executes this when the procedure isinvoked.

Note: If there are any compilation errors, and you make subsequent changes to the CREATE PROCEDURE
statement, you must either DROP the procedure first, or use the OR REPLACE syntax.

Y ou can create client side procedures that are used with client side applications using tools such as the Forms
and Reports of Oracle IDE. Refer to Appendix C to see how the client side subprograms can be created using
the Oracle Procedure Builder tool.

Introduction to Oracle9i: PL/SQL 9-12

Formal Versus Actual Parameters

* Formal parameters: variables declared in the
parameter list of a subprogram specification

Example:
CREATE PROCEDURE rai se_sal (p_i d NUMBER, p_anmount NUVBER)

END rai se_sal ;

* Actual parameters: variables or expressions
referenced in the parameter list of a subprogram call

Example:
rai se_sal (v_id, 2000)

9-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Formal Versus Actual Parameters

Formal parameters are variables declared in the parameter list of a subprogram specification. For
example, in the procedure RAI SE_SAL, the variables P_I Dand P_AMOUNT are formal parameters.

Actua parameters are variables or expressions referenced in the parameter list of a subprogram call.
For example, inthecall r ai se_sal (v_i d, 2000) to the procedure RAlI SE_SAL, the variable
V_| Dand 2000 are actua parameters.

» Actual parameters are evaluated and results are assigned to formal parameters during the
subprogram call.

» Actual parameters can also be expressions such as in the following:
rai se_sal (v_id,rai se+100);

» ltis good practice to use different names for formal and actual parameters. Formal parameters
have the prefiyp_in this course.

» The formal and actual parameters should be of compatible data types. If necessary, before
assigning the value, PL/SQL converts the data type of the actual parameter value to that of the
formal parameter.

Introduction to Oracle9i: PL/SQL 9-13

Calling
environment || ouT parameter

9-14

Procedural Parameter Modes

Procedure
> [| | Nparameter

> | | I N oUT parameter

(DECLARE)

BEG N

[]

EXCEPTI ON

[]

END,

Copyright © Oracle Corporation, 2001. All rights reserved.

Procedural Parameter Modes
Y ou can transfer values to and from the calling environment through parameters. Select one of the three
modes for each parameter: | N, OUT, or | N OUT.
Attempts to change the value of an IN parameter will result in an error.
Note: DATATYPE can be only the %' YPE definition, the “ROM YPE definition, or an explicit data
type with no size specification.

Type of Parameter

Description

| N (default) Passes a constant value from the calling environment into the procedure
auT Passes a value from the procedure to the calling environment
IN OQUT Passes a value from the calling environment into the procedure and a

possibly different value from the procedure back to the calling
environment using the same parameter

Introduction to Oracle9i: PL/SQL 9-14

Creating Procedures with Parameters

I N ouT IN QUT

Default mode Must be specified| Must be specified
Value is passed into Returned to Passed into
subprogram calling subprogram;

environment returned to calling

environment

Formal parameter acts as | Uninitialized Initialized variable
a constant variable

Actual parameter can be a
literal, expression,
constant, or initialized

Must be a variablel Must be a variable

variable
Can be assigned a default | Cannot be Cannot be
value assigned assigned

a default value a default value
9-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Procedures with Parameters
When you create the procedure, the formal parameter defines the value used in the executabl e section of
the PL/SQL block, whereas the actual parameter is referenced when invoking the procedure.

The parameter mode | Nis the default parameter mode. That is, no mode is specified with a parameter,
the parameter is considered an | N parameter. The parameter modes OUT and | N OQUT must be
explicitly specified in front of such parameters.

A formal parameter of | N mode cannot be assigned avalue. That is, an | N parameter cannot be
modified in the body of the procedure.

An QUT or | NQUT parameter must be assigned a value before returning to the calling environment.

I N parameters can be assigned a default value in the parameter list. OUT and | N OUT parameters
cannot be assigned default values.

By default, the | N parameter is passed by reference and the QUT and | N OUT parameters are passed by
value. To improve performance with OUT and | N OUT parameters, the compiler hint NOCOPY can be
used to request to pass by reference. Using NOCOPY is discussed in detail in the Advanced PL/SQL
course.

Introduction to Oracle9i: PL/SQL 9-15

| NParameters: Example

176 > | p_id

CREATE OR REPLACE PROCEDURE rai se_sal ary
(p_id I N enpl oyees. enpl oyee_i d%'YPE)
IS
BEG N
UPDATE enpl oyees
SET salary = salary * 1.10
WHERE enployee id = p_id;
END rai se_sal ary;
/

Frocedure created.

9-16 Copyright © Oracle Corporation, 2001. All rights reserved.

| N Parameters: Example

The example in the dide shows a procedure with one | N parameter. Running this statement in
iSQL*Plus creates the RAI SE_SALARY procedure. When invoked, RAI SE_SALARY accepts the
parameter for the employee ID and updates the employee’s record with a salary increase of 10 percent.

To invoke a procedure iSQL*Plus, use th&XECUTE command.
EXECUTE rai se_salary (176)

To invoke a procedure from another procedure, use a direct call. At the location of calling the new
procedure, enter the procedure name and actual parameters.

rai se_salary (176);

I N parameters are passed as constants from the calling environment into the procedure. Attempts to
change the value of drN parameter result in an error.

Introduction to Oracle9i: PL/SQL 9-16

QUT Parameters: Example

Calling environment

QUERY_EMP procedure

171 >
SMITH
7400
0.15
9-17 Copyright © Oracle Corporation, 2001. All rights reserved.

p.id
p_namne
p_sal ary

p_conm

OUT Parameters: Example

In this example, you create a procedure with OUT parameters to retrieve information about an

employee. The procedure accepts avalue 171 for employee ID and retrieves the name, salary, and
commission percentage of the employee with ID 171 into the three output parameters. The code to

create the QUERY _EMP procedure is shown in the next slide.

Introduction to Oracle9i: PL/SQL 9-17

QUT Parameters: Example

enp_query. sql
CREATE OR REPLACE PROCEDURE query_enp
(p_id IN enpl oyees. enpl oyee_i d%'YPE,

p_name QUT enpl oyees. | ast _nane%l YPE,
p_salary OUT enployees. sal ary%dYPE,
p_comm QUT enpl oyees. comm ssi on_pct % YPE)

IS
BEG N
SELECT | ast_nane, salary, conm ssion_pct
| NTO p_name, p_salary, p_comm
FROM enpl oyees

VWHERE enpl oyee id = p_id;
END query_enp;
/

9-18 Copyright © Oracle Corporation, 2001. All rights reserved.

QUT Parameters: Example (continued)

Run the script file shown in the dide to create the QUERY_EMP procedure. This procedure has four
formal parameters. Three of them are QUT parameters that return values to the calling environment.

The procedure accepts an EMPLOYEE | D value for the parameter P_I D. The name, sadary, and
commission percentage values corresponding to the employee ID are retrieved into the three QUT
parameters whose values are returned to the calling environment.

Notice that the name of the script file need not be the same as the procedure name. (The script fileison
the client side and the procedure is being stored on the database schema.)

Introduction to Oracle9i: PL/SQL 9-18

Viewing QUT Parameters

® Load and run the enp_query. sqgl scriptfileto
create the QUERY_EMP procedure.

®* Declare host variables, execute the QUERY _EMP
procedure, and print the value of the global variable

G_NAME.

VARI ABLE g_nane VARCHAR?(25)
VARI ABLE g_sall NUVBER

VARI ABLE g_conm NUVBER

EXECUTE query_enp(171, :g _nane, :g_sal, :g_comm

PRI NT g_nane

PLIZGL pros edure macc ety compleied

G RARE

Sreth

9-19 Copyright © Oracle Corporation, 2001. All rights reserved.

How to View the Value of QUT Parameters with iSQL*Plus
1. Runthe SQL script file to generate and compile the source code.
2. Create host variablesin iSQL*Plus, using the VARI ABLE command.

3. Invoke the QUERY_EMP procedure, supplying these host variables as the OUT parameters. Note the
use of the colon (:) to reference the host variables in the EXECUTE command.

4. To view the values passed from the procedure to the calling environment, use the PRI NT command.

The examplein the dide shows the value of the G_NAME variable passed back to the the calling
environment. The other variables can be viewed, either individually, as above, or with asingle PRI NT
command.

PRI NT g nane g_sal g_comm
Do not specify asize for ahost variable of data type NUVMBER when using the VARI ABLE command. A
host variable of datatype CHAR or VARCHARZ defaultsto alength of one, unlessavalueissuppliedin
parentheses.
PRI NT and VARI ABLE are iSQL* Plus commands.

Note: Passing a constant or expression as an actual parameter to the OQUT variable causes compilation
errors. For Example:

EXECUTE query_enp(171, :g nane, raise+100, :g conm
causes a compilation error.

Introduction to Oracle9i: PL/SQL 9-19

| NOUT Parameters

Calling environment FORVAT _PHONE procedure

-
'8006330575' | _ '(800)633-0575' | p_phone_no

CREATE OR REPLACE PROCEDURE f or mat _phone
(p_phone_no I N QUT VARCHARZ2)

IS
BEG N
p_phone_no := " (" || SUBSTR(p_phone_no,1,3) ||

") || SUBSTR(p_phone_no, 4, 3) ||
-7 || SUBSTR(p_phone_no, 7);

END f or mat _phone;

/

9-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using | NQUT Parameters

Withan | N OUT parameter, you can pass valuesinto a procedure and return avalue to the calling

environment. The value that isreturned is either the original, an unchanged value, or a new value set
within the procedure.

An| NOUT parameter acts as an initialized variable.
Example

Create a procedure with an | N OUT parameter to accept a character string containing 10 digits and
return a phone number formatted as (800) 633-0575.

Run the statement to create the FORMAT _PHONE procedure.

Introduction to Oracle9i: PL/SQL 9-20

9-21

Viewing | N OUT Parameters

VARI ABLE g_phone_no VARCHAR2(15)
BEA N

: g_phone_no : = '8006330575";
END;
/
PRI NT g_phone_no
EXECUTE f or mat _phone (:g_phone_no)
PRI NT g_phone_no

PLIZQL procedure successfully completed.

| G_PHONE_NO

BONG330575

PL/SQL procedure successfully completed.

| G_PHONE_NO

|rB00)Ba3-0575

Copyright © Oracle Corporation, 2001. All rights reserved.

How to View | NOUT Parameters with iSQL*Plus

1
2.
3.

Create ahost variable, using the VARI ABLE command.
Populate the host variable with avalue, using an anonymous PL/SQL block.

Invoke the FORMAT _PHONE procedure, supplying the host variable asthe | N QUT parameter.
Note the use of the colon (:) to reference the host variable in the EXECUTE command.

To view the value passed back to the calling environment, use the PRI NT command.

Introduction to Oracle9i: PL/SQL 9-21

Methods for Passing Parameters

* Positional: List actual parameters in the same
order as formal parameters.

* Named: List actual parameters in arbitrary order
by associating each with its corresponding formal
parameter.

®* Combination: List some of the actual parameters
as positional and some as named.

9-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Parameter Passing Methods

For a procedure that contains multiple parameters, you can use a number of methods to specify the
values of the parameters.

M ethod Description
Positional Lists values in the order in which the parameters are declared

Named association |[Listsvaluesin arbitrary order by associating each one with its
parameter name, using special syntax (=>)

Combination Lists the first values positionally, and the remainder using the
special syntax of the named method

Introduction to Oracle9i: PL/SQL 9-22

DEFAULT Option for Parameters

CREATE OR REPLACE PROCEDURE add_dept
(p_nane | N departnents. departnent _nane% YPE
DEFAULT * unknown’],
p_| oc I N departnments. | ocation_i dWYPE
| DEFAULT 1700) \

IS
BEG N
| NSERT | NTO depart nment s(departnent _id,
departnment _name, |ocation_id)
VALUES (departnments_seq. NEXTVAL, p_nane, p_loc);
END add_dept ;
/

Frocedure created.

9-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Default Values for Parameters

You caninitidize IN parameters to default values. That way, you can pass different numbers of actual
parameters to a subprogram, accepting or overriding the default values as you please. Moreover, you
can add new formal parameters without having to change every call to the subprogram.

Execute the statement in the dide to create the ADD_DEPT procedure. Note the use of the DEFAULT
clause in the declaration of the formal parameter.

Y ou can assign default values only to parameters of thel Nmode. OUT and | N OQUT parameters are not
permitted to have default values. If default values are passed to these types of parameters, you get the
following compilation error:

PLS-00230: OUT and IN QUT formal paranmeters may not have defaul t
expr essi ons

If an actual parameter is not passed, the default vaue of its corresponding formal parameter is used.
Consider the callsto the above procedure that are depicted in the next page.

Introduction to Oracle9i: PL/SQL 9-23

Examples of Passing Parameters

BEA N
add_dept ;
add_dept (" TRAINING , 2500);
add_dept (p_loc => 2400, p_nane =>" EDUCATION);
add_dept (p_loc => 1200) ;
END;
/
SELECT departnent id, departnment _nane, |ocation_id
FROM depart nent s;

PLAEGL procedurs successfully complet=d
| DEPARTMENT_ID | DEPARTMENT_NAME LOCATION_ID
10 Lagminkstration 1700
20 |Mizrketing 1300
a0 |Furchasing 1700
40 [Human REsnunes 2400

ERR - T

9-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Default Values for Parameters (continued)

The anonymous block above shows the different ways the ADD_DEPT procedure can be invoked, and
the output of each way the procedure isinvoked.

Usually, you can use positional notation to override the default values of formal parameters. However,
you cannot skip aformal parameter by leaving out its actual parameter.

Note: All the positional parameters should precede the named parameters in a subprogram call.
Otherwise, you will receive an error message, as shown in the following example:

EXECUTE add_dept (p_nanme=>" new dept’, 'new | ocation’)

BEG N add_dept (p_nanme=>" new dept’, ;new | ocation’); END

ERROR at line 1:

ORA- 06550: line 1, colum 31:

PLS-00312: a positional paraneter association may not foll ow a named
associ ation

ORA- 06550: line 1, colum 7:

PL/ SQL: Statenent ignored

Introduction to Oracle9i: PL/SQL 9-24

Declaring Subprograms

| eave_enp2. sql

CREATE OR REPLACE PROCEDURE | eave_enp2
(p_id IN enployees. enpl oyee i d%d'YPE)
I'S

PROCEDURE | og_exec
IS
BEA N
I NSERT I NTO | og_table (user_id, |og date)
VALUES (USER, SYSDATE)
END | og_exec;
BEG N
DELETE FROM enpl oyees
VWHERE enpl oyee_id = p_id;
| og_exec; |
END | eave_enp2;
/

9-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Subprograms

Y ou can declare subprograms in any PL/SQL block. Thisis an aternative to creating the stand-alone
procedure LOG_EXEC. Subprograms declared in this manner are called local subprograms (or local
modules). Because they are defined within a declaration section of another program, the scope of local
subprogramsis limited to the parent (enclosing) block in which they are defined. This means that local
subprograms cannot be called from outside the block in which they are declared. Declaring local
subprograms enhances the clarity of the code by assigning appropriate business-rule identifiersto
blocks of code.

Note: Y ou must declare the subprogram in the declaration section of the block, and it must be the last
item, after al the other program items. For example, a variable declared after the end of the
subprogram, before the BEG N of the procedure, will cause a compilation error.

If the code must be accessed by multiple applications, place the subprogram in a package or create a
stand-alone subprogram with the code. Packages are discussed later in this course.

Introduction to Oracle9i: PL/SQL 9-25

Invoking a Procedure from an Anonymous
PL/SQL Block

DECLARE
v_id NUMBER : = 163;
BEG N
raise_salary(v_id); --invoke procedure
COW T,
END;
9-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a Procedure from an Anonymous PL/SQL Block
Invoke the RAI SE_SAL ARY procedure from an anonymous PL/SQL block, as shown in the dide.
Procedures are callable from any tool or language that supports PL/SQL.
Y ou have aready seen how to invoke an independent procedure fromiSQL*Plus.

Introduction to Oracle9i: PL/SQL 9-26

Invoking a Procedure from Another
Procedure

process_enps. sql

CREATE OR REPLACE PROCEDURE process_enps
IS
CURSCOR enp_cursor 1S
SELECT enpl oyee i d
FROM enpl oyees;
BEA N
FOR enp_rec I N enp_cursor
LOOP
\rai se_sal ary(enp_rec. enpl oyee_id);
END LOOP;
COW T,;
END process_enps;
/
9-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a Procedure from Another Procedure

This example shows you how to invoke a procedure from another stored procedure. The

PROCESS EMPS stored procedure uses a cursor to process al the recordsin the EMPLOYEES table
and passes each employee’s ID number t&RIeSE SALARY procedure, which results in a 10
percent salary increase across the company.

Introduction to Oracle9i: PL/SQL 9-27

Handled Exceptions

Called procedure

Calling procedure > PROCEDURE
PROC2
PROCEDURE 1S
PRCC1 ... e
IS BEG N _ _
- - -<«—— Exception raised
BEG N EXCEPTI ON)
o L -<«<—— Exception handled
\ PROC2(argl); — END PROC2;
EXCEPTI ON Control returns to
END PROCL: calling procedure
9-28 Copyright © Oracle Corporation, 2001. All rights reserved.

How Handled Exceptions Affect the Calling Procedure

When you develop procedures that are called from other procedures, you should be aware of the effects
that handled and unhandled exceptions have on the transaction and the calling procedure.

When an exceptionisraised in acalled procedure, control immediately goes to the exception section of
that block. If the exception is handled, the block terminates, and control goes to the calling program.
Any data manipulation language (DML) statements issued before the exception was raised remain as
part of the transaction.

Introduction to Oracle9i: PL/SQL 9-28

Handled Exceptions

—»CREATE PROCEDURE p2_i ns_dept (p_l ocid NUMBER) IS
v_di d NUMBER(4);
BEG N
DBVS_CQUTPUT. PUT_LI NE(’ Procedure p2_ins_dept started');
I NSERT | NTO departnments VALUES (5, 'Dept 5, 145, p_locid);
SELECT department _id I NTO v_di d FROM enpl oyees
WHERE enpl oyee_id = 999;

END;
CREATE PROCEDURE pl_ins_loc(p_lid NUMBER, p_city VARCHAR2)
IS
v_city VARCHAR2(30); v_dnanme VARCHAR2(30);
BEG N

DBVS_OQUTPUT. PUT_LI NE(' Mai n Procedure pl_ins_loc’);

I NSERT | NTO | ocations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTOv_city FROM | ocati ons WHERE | ocation_id = p_lid;
DBVS_OQUTPUT. PUT_LINE(' I nserted city '||v_city);

DBVS_CQUTPUT. PUT_LI NE(' I nvoki ng the procedure p2_ins_dept ...");
- p2_ins_dept(p_lid);
EXCEPTI ON

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT. PUT_LI NE(’ No such dept/loc for any enpl oyee’);
END;

9-29 Copyright © Oracle Corporation, 2001. All rights reserved.

How Handled Exceptions Affect the Calling Procedure (continued)

The example in the dide shows two procedures. Procedure P1_| NS _LOCinserts anew location
(supplied through the parameters) into the LOCATI ONS table. Procedure P2_1 NS_DEPT inserts a new
department (with department 1D 5) at the new location inserted through the P1_| NS_LOC procedure.
TheP1 I NS _LOC procedureinvokesthe P2_| NS DEPT procedure.

The P2_I NS_DEPT procedure has a SELECT statement that selects DEPARTMMENT _| Dfor a
nonexisting employee and raisesaNO_DATA FOUND exception. Because this exception is not handled
inthe P2_| NS_DEPT procedure, the control returnsto the calling procedure P1_| NS _LOC where the
exception is handled. Asthe exception is handled, the DML inthe P2_1 NS_DEPT procedureis not
rolled back and is part of the transaction of the P1_| NS_L OC procedure.

The following code shows that the | NSERT statements from both the procedures are successful:
EXECUTE pl_ins_loc(1l, ' Redwood Shores’)
SELECT location_id, city FROM | ocati ons
WHERE | ocation_id = 1;
SELECT * FROM departnments WHERE departnent _id = 5;

FPLIZQL procedure successfully completed.

| LOCATION_ID | CITY
| 1 |Redwnnd Shares
|
|

DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID | LOCATION_ID
5 |Dept 5 | 145 | 1

Introduction to Oracle9i: PL/SQL 9-29

Unhandled Exceptions

Called procedure

Calling procedure 5/ PROCEDURE
PROCEDURE PROC2
PROC1 'S
'S BEGI N -
BEG N C. -«—— Exception raised
EXCEPTI ON .
" PROCZ(argl) ;| — o (—)Q Exception unhandled
— ’ END PROCZ;
EXCEPTI ON
END PRCCI; Control returned to
exception section of
calling procedure
9-30 Copyright © Oracle Corporation, 2001. All rights reserved.

How Unhandled Exceptions Affect the Calling Procedure (continued)

When an exception is raised in acaled procedure, control immediately goes to the exception section of
that block. If the exception is unhandled, the block terminates, and control goesto the exception section

of the calling procedure. PL/SQL does not roll back database work that is done by the subprogram.

If the exception is handled in the calling procedure, all DML statements in the calling procedure and in

the called procedure remain as part of the transaction.
If the exception is unhandled in the calling procedure, the calling procedure terminates and the

exception propagates to the calling environment. All the DML statements in the calling procedure and

the called procedure are rolled back along with any changesto any host variables. The host
environment determines the outcome for the unhandled exception.

Introduction to Oracle9i: PL/SQL 9-30

Unhandled Exceptions

—>»CREATE PROCEDURE p2_noexcep(p_l ocid NUMBER) IS
v_di d NUMBER(4);
BEG N
DBVS_CQUTPUT. PUT_LI NE(’ Procedure p2_noexcep started’);
I NSERT | NTO departnments VALUES (6, 'Dept 6, 145, p_locid);
SELECT department _id I NTO v_di d FROM enpl oyees
WHERE enpl oyee_id = 999;
END;

CREATE PROCEDURE pl_noexcep(p_lid NUMBER, p_city VARCHAR?)

IS
v_city VARCHAR2(30); v_dname VARCHAR2(30);

BEA N
DBVS_CQUTPUT. PUT_LI NE(® Main Procedure pl_noexcep’);
I NSERT I NTO | ocations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTO v_city FROM | ocati ons WHERE | ocation_id = p_lid;
DBVS_CQUTPUT. PUT_LINE(’ I nserted new city "||v_city);

DBVS_CQUTPUT. PUT_LI NE(’ I nvoki ng the procedure p2_noexcep ...'");
— p2_noexcep(p_lid);
END;
9-31 Copyright © Oracle Corporation, 2001. All rights reserved.

How Unhandled Exceptions Affect the Calling Procedure (continued)

The example in the dide shows two procedures. Procedure P1_NOEXCEP inserts a new location
(supplied through the parameters) into the LOCATI ONS table. Procedure P2_ NOEXCEP inserts a new
department (with department 1D 5) at the new location inserted through the P1_ NOEXCEP procedure.
Procedure P1_NOEXCEP invokes the P2_ NOEXCEP procedure.

The P2_NOEXCEP procedure has a SELECT statement that selects DEPARTMENT _I Dfor a
nonexisting employee and raisesaNO_DATA FOUND exception. Because this exception is not handled
in the P2_ NOEXCEP procedure, the contral returns to the calling procedure P1_ NOEXCEP. The
exception is not handled. Because the exception is not handled, the DML in the P2_ NOEXCEP
procedureisrolled back along with the transaction of the P1_ NOEXCEP procedure.

The following code shows that the DML statements from both the procedures are unsuccessful.
EXECUTE pl_noexcep(3, 'New Del hi’)
SELECT location_id, city FROM | ocati ons
WHERE | ocation_id = 3;
SELECT * FROM departnments WHERE departnent _id = 6;

Introduction to Oracle9i: PL/SQL 9-31

Removing Procedures

Drop a procedure stored in the database.

Syntax:
' DROP PROCEDURE pr ocedur e_nane |

Example:
DROP PROCEDURE r ai se_sal ary;

Frocadide deapped

9-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Procedures
When a stored procedure is no longer required, you can use a SQL statement to drop it.

To remove a server-side procedure by using i SQL* Plus, execute the SQL command DROP
PROCEDURE.

Issuing rollback does not have an effect after executing a data definition language (DDL) command
such as DROP PROCEDURE, which commits any pending transactions.

Introduction to Oracle9i: PL/SQL 9-32

Benefits of Subprograms

* Easy maintenance

* Improved data security and integrity
* Improved performance

* Improved code clarity

9-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Subprograms
Procedures and functions have many benefitsin addition to modularizing application devel opment:
» Easy maintenance: Subprograms are located in one location and hence it is easy to:
— Modify routines online without interfering with other users
— Modify one routine to affect multiple applications
— Modify one routine to eliminate duplicate testing
» Improved data security and integrity

— Controls indirect access to database objects from nonprivileged users with security
privileges. As a subprogram is executed with its definer’s right by default, it is easy to
restrict the access privilege by granting a privilege only to execute the subprogram to a user.
— Ensures that related actions are performed together, or not at all, by funneling activity for
related tables through a single path

* Improved performance

— After a subprogram is compiled, the parsed code is available in the shared SQL area of the
server and subsequent calls to the subprogram use this parsed code. This avoids reparsing for
multiple users.

— Avoids PL/SQL parsing at run time by parsing at compile time

— Reduces the number of calls to the database and decreases network traffic by bundling
commands

* Improves code clarity: Using appropriate identifier names to describe the action of the routines
reduces the need for comments and enhances the clarity of the code.
Introduction to Oracle9i: PL/SQL 9-33

Summary

In this lesson, you should have learned that:
®* A subprogram is a named PL/SQL block that can
accept parameters and be invoked.

® A procedureis asubprogram that performs an
action.

®* You create procedures by using the CREATE
PROCEDURE command.

®* You can compile and save a procedurein the
database.

®* Parameters are used to pass data from the calling
environment to the procedure.

®* There are three parameter modes: | N, QUT, and | N
QUT.

9-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A subprogram is a named PL/SQL block that can accept parameters and be invoked from acalling
environment.

A procedureis a subprogram that performs a specified action. Y ou can compile and save a procedure as
stored procedure in the database. A procedure can return zero or more values through its parametersto
its calling environment. There are three parameter modes | N, QUT, and | N QUT.

Introduction to Oracle9i: PL/SQL 9-34

Summary

® Local subprograms are programs that are defined
within the declaration section of another program.

®* Procedures can be invoked from any tool or
language that supports PL/SQL.

®* You should be aware of the effect of handled and
unhandled exceptions on transactions and calling
procedures.

®* You can remove procedures from the database by
using the DROP PROCEDURE command.

®* Procedures can serve as building blocks for an
application.

9-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Subprograms that are defined within the declaration section of another program are called local
subprograms. The scope of the loca subprogramsisthe program unit within which it is defined.

Y ou should be aware of the effect of handled and unhandled exceptions on transactions and calling
procedures. The exceptions are handled in the exception section of a subprogram.

Y ou can modify and remove procedures. Y ou can aso create client-side procedures that can be used by
client-side applications.

Introduction to Oracle9i: PL/SQL 9-35

Practice 9 Overview

This practice covers the following topics:

®* Creating stored procedures to:

— Insert new rows into a table, using the supplied
parameter values

— Update data in a table for rows matching with the
supplied parameter values

— Delete rows from atable that match the supplied
parameter values

— Query atable and retrieve data based on supplied
parameter values

* Handling exceptions in procedures
®* Compiling and invoking procedures

9-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 9 Overview
In this practice you create procedures that issue DML and query commands.

If you encounter compilation errors when you are using i SQL* Plus, use the SHONV ERRORS
command. Using the SHONMERRORS command is discussed in detail in the Managing Subprograms
lesson.

If you correct any compilation errorsiniSQL*Plus, do so in the origina script file, not in the buffer,
and then rerun the new version of thefile. Thiswill save anew version of the procedure to the data
dictionary.

Introduction to Oracle9i: PL/SQL 9-36

Practice 9
Note: Y ou can find table descriptions and sample datain Appendix D "Table Descriptions and Data."
Save your subprogramsas. sql files, usingthe Save Scri pt button.
Remember to set the SERVEROUTPUT on if you set it off previoudly.
1. Create and invoke the ADD J OB procedure and consider the results.

a. Create aprocedure called ADD_J OB to insert anew job into the JOBS table. Provide the
ID and title of the job, using two parameters.

b. Compilethe code, and invoke the procedure with | T_DBA asjob ID and Dat abase
Admi ni st rat or asjobtitle. Query the JOBS table to view the results.

WOB_ID | JOB_TITLE IMIN_SALARY [MAX_SALARY
|IT_DEEA |Data|:|ase Administrator | |

c. Invoke your procedure again, passing ajob ID of ST _MANand ajob title of St ock
Manager . What happens and why?

2. Create aprocedure called UPD_JOB to modify ajob in the JOBS table.

a. Create aprocedure called UPD_J OB to update the job title. Provide the job ID and a new
title, using two parameters. Include the necessary exception handling if no update occurs.

b. Compilethe code; invoke the procedure to change thejob title of thejob ID | T_DBA to
Dat a Admi ni st rat or . Query the JOBS tableto view the results.

|[JOB_ID | JOB_TITLE |MIN_SALARY | MAX_SALARY
IT_DBA |Data Administrator | |

Also check the exception handling by trying to update ajob that does not exist (you can use
jobID I T_VEBandjobtitteV\eb Mast er).

3. Create aprocedure called DEL_J OB to delete ajob from the JOBS table.

a. Create aprocedure called DEL_J OB to delete ajob. Include the necessary exception
handling if nojob is deleted.
b. Compilethe code; invoke the procedure usingjob ID | T_DBA. Query the JOBS table to
view the results.
ho rows selected

Also, check the exception handling by trying to delete ajob that does not exist (usejob ID
| T_WVEB). Y ou should get the message you used in the exception-handling section of the

procedure as output.

Introduction to Oracle9i: PL/SQL 9-37

Practice 9 (continued)

4. Create aprocedure called QUERY_EMP to query the EMPLOYEES table, retrieving the salary and
job ID for an employee when provided with the employee ID.
a. Create a procedure that returns a value from the SALARY and JOB_I D columnsfor a
specified employee ID.
Use host variables for the two OUT parameters salary and job ID.

b. Compilethe code, invoke the procedure to display the salary and job ID for employee ID
120.

| G_SAL
| 000

| G_JOB
ST_MAN

c. Invoke the procedure again, passing an EMPLOYEE | D of 300. What happens and why?

Introduction to Oracle9i: PL/SQL 9-38

Creating Functions

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Describe the uses of functions

® Create stored functions

* Invoke afunction

* Remove a function

* Differentiate between a procedure and a function

10-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In thislesson, you will learn how to create and invoke functions.

Introduction to Oracle9i: PL/SQL 10-2

Overview of Stored Functions

e A functionis anamed PL/SQL block that returns
a value.

* A function can be stored in the database as a
schema object for repeated execution.

* A function is called as part of an expression.

10-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Stored Functions

A functionisanamed PL/SQL block that can accept parameters and be invoked. Generally speaking,
you use afunction to compute a value. Functions and procedures are structured alike. A function must
return a value to the calling environment, whereas a procedure returns zero or more valuesto its calling
environment. Like a procedure, afunction has a header, a declarative part, an executable part, and an
optiona exception-handling part. A function must have a RETURN clause in the header and at |east one
RETURN statement in the executabl e section.

Functions can be stored in the database as a schema object for repeated execution. A function stored in
the database is referred to as a stored function. Functions can also be created at client side applications.
Thislesson discusses creating stored functions. Refer to appendix “Using Procedure Builder” for
creating client-side applications.

Functions promote reusability and maintainability. When validated they can be used in any number of
applications. If the processing requirements change, only the function needs to be updated.

Function is called as part of a SQL expression or as part of a PL/SQL expression. In a SQL expression, a
function must obey specific rules to control side effects. In a PL/SQL expression, the function identifier
acts like a variable whose value depends on the parameters passed to it.

Introduction to Oracle9i: PL/SQL 10-3

Syntax for Creating Functions

CREATE [OR REPLACE] FUNCTI ON functi on_nane
[(paraneter1 [nodel] datatypel,
paranet er 2 [nodeZ2] dat atypeZ2,
)]
RETURN dat at ype
| S| AS
PL/ SQL Bl ock;

The PL/SQL block must have at least one RETURN
statement.

10-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Functions Syntax

A functionisaPL/SQL block that returns a value. Y ou create new functions with the CREATE
FUNCTI ON statement, which may declare alist of parameters, must return one value, and must define
the actions to be performed by the standard PL/SQL block.

» TheREPLACE option indicates that if the function exists, it will be dropped and replaced with the
new version created by the statement.

 TheRETURNdata type must not include a size specification.

» PL/SQL blocks start with eithd8EGA N or the declaration of local variables and end with either
ENDor END f unct i on_name. There must be at least oRETURN (expr essi on)
statement. You cannot reference host or bind variables in the PL/SQL block of a stored function.

Syntax Definitions

Par ameter Description

function_nane Name of the function

par amnet er Name of a PL/SQL variable whose value is passed into the function
mode The type of the parameter; only | N parameters should be declared
dat at ype Datatype of the parameter

RETURN dat at ype | Datatype of the RETURN value that must be output by the function
PL/ SQL bl ock Procedural body that defines the action performed by the function

Introduction to Oracle9i: PL/SQL 10-4

Creating a Function

Editor
Code to create
function

ISOL*Plus
[Load and execute fi [e. sqlJ

file.sql

4 N
Oracle‘ Source code ’

[P code]Function

created)
Invoke

10-5 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop Stored Functions

The following are the basic steps you use to develop a stored function. The next two pages provide
further details about creating functions.

1

3.

Write the syntax: Enter the code to create afunction in atext editor and save it asa SQL script
file.

Compilethe code: Using iSQL*Plus, upload and run the SQL script file. The source codeis
compiled into P code. The function is created.

Invoke the function from a PL/SQL block.

Returning a Value

Add aRETURN clause with the data type in the header of the function.
Include oneRETURN statement in the executable section.

Although multipleRETURN statements are allowed in a function (usually within Brstatement), only
oneRETURN statement is executed, because after the value is returned, processing of the block ceases.

Note: The PL/SQL compiler generates theeudocode or P code, based on the parsed code. The
PL/SQL engine executes this when the procedure is invoked.

Introduction to Oracle9i: PL/SQL 10-5

Creating a Stored Function
by Using iSQL*Plus

1. Enter the text of the CREATE FUNCTI ON statement
in an editor and save it as a SQL script file.

2. Run the script file to store the source code and
compile the function.

3. Use SHOW ERRORS to see compilation errors.
4. When successfully compiled, invoke the function.

10-6 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Stored Function

1. Enter thetext of the CREATE FUNCTI ON statement in a system editor or word processor and
saveit asascript file (. sql extension).

2. FromiSQL*Plus, load and run the script file to store the source code and compile the source code
into P-code.

3. Use SHOWERRORS to see any compilation errors.

4. When the code is successfully compiled, the function is ready for execution. Invoke the function
from an Oracle server environment.

A script file with the CREATE FUNCTI ON statement enables you to change the statement if
compilation or run-time errors occur, or to make subsequent changes to the statement. Y ou cannot
successfully invoke afunction that contains any compilation or run-time errors. In iSQL* Plus, use
SHOW ERRORS to see any compilation errors.

Running the CREATE FUNCTI ON statement stores the source code in the data dictionary even if the
function contains compilation errors.

Note: If there are any compilation errors and you make subsequent changes to the CREATE
FUNCTI ON statement, you either have to drop the function first or use the OR REPLACE syntax.

Introduction to Oracle9i: PL/SQL 10-6

Creating a Stored Function by Using
ISQL*Plus: Example

get sal ary. sql]

CREATE OR REPLACE FUNCTI ON get _sal
(p_id I N enpl oyees. enpl oyee_i d%'YPE)
RETURN NUMBER
IS
v_sal ary enpl oyees. sal ary%d YPE : =0;
BEG N
SELECT sal ary
INTO v_salary
FROM enpl oyees
WHERE enployee id = p_id;
RETURN v_sal ary;
END get _sal ;
/

10-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Create afunction with one | N parameter to return a number.
Run the script file to create the GET_SAL function. Invoke afunction as part of a PL/SQL expression,
because the function will return avalue to the calling environment.

It isagood programming practice to assign areturning value to a variable and use asingle RETURN
statement in the executabl e section of the code. There can be a RETURN statement in the exception
section of the program also.

Introduction to Oracle9i: PL/SQL 10-7

Executing Functions

* Invoke a function as part of a PL/SQL expression.
* C(Create avariable to hold the returned value.

* Execute the function. The variable will be
populated by the value returned through a RETURN

statement.

10-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Function Execution

A function may accept one or many parameters, but must return asingle value. Y ou invoke functions as
part of PL/SQL expressions, using variablesto hold the returned vaue.

Although the three parameter modes, | N (the default), OUT, and | N OUT, can be used with any
subprogram, avoid using the OUT and | N OQUT modes with functions. The purpose of afunctionisto
accept zero or more arguments (actual parameters) and return a single value. To have a function return
multiple values is poor programming practice. Also, functions should be free from side effects, which
change the values of variablesthat are not local to the subprogram. Side effects are discussed later in this
lesson.

Introduction to Oracle9i: PL/SQL 10-8

Executing Functions: Example

Calling environment GET_SAL function

117 > p_id

< RETURNvV_sal ary

1. Load and run the get _sal ary. sql file to create the function

(@ —| VAR ABLE g_sal ary NUVBER

@—) EXECUTE :g_salary := get_sal (117)

@—) PRI NT g_sal ary

FLAS QL picesedire quccazabully complatad

O_RaL&R"Y

Fan B

10-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Execute the GET_SAL function from iSQL*Plus:
1. Load andrunthescriptfileget _sal ary. sql to createthe stored function GET_SAL.
2. Create ahost variable that will be populated by the RETURN (var i abl e) statement within the
function.

3. Using the EXECUTE command in iSQL*Plus, invoke the GET_SAL function by creating a

PL/SQL expression. Supply avalue for the parameter (employee ID in this example). The value
returned from the function will be held by the host variable, G_ SALARY. Note the use of the
colon (:) to reference the host variable.

4. View theresult of the function call by using the PRI NT command. Employee Tobias, with
employee ID 117, earns amonthly salary of 2800.

In afunction, there must be at least one execution path that leads to a RETURN statement. Otherwise,
yougetaFunction returned without val ue erroratruntime.

Introduction to Oracle9i: PL/SQL 10-9

Advantages of User-Defined Functions
in SQL Expressions

e Extend SQL where activities are too complex, too
awkward, or unavailable with SQL

® Canincrease efficiency when used in the WHERE
clause to filter data, as opposed to filtering the
data in the application

* Can manipulate character strings

10-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking User-Defined Functions from SQL Expressions

SQL expressions can reference PL/SQL user-defined functions. Anywhere a built-in SQL function can
be placed, a user-defined function can be placed as well.

Advantages

Permits calculations that are too complex, awkward, or unavailable with SQL

Increases data independence by processing complex data analysis within the Oracle server, rather
than by retrieving the data into an application

Increases efficiency of queries by performing functions in the query rather than in the application

Manipulates new types of data (for example, latitude and longitude) by encoding character strings
and using functions to operate on the strings

Introduction to Oracle9i: PL/SQL 10-10

Invoking Functions in SQL Expressions:
Example

CREATE OR REPLACE FUNCTI ON t ax(p_val ue I N NUVBER)
RETURN NUMBER | S
BEGA N
RETURN (p_value * 0.08);
END t ax;
/
SELECT enpl oyee_id, |ast_name, salary, tax(salary)
FROM enpl oyees
WHERE departnent_id = 100;

Function created

EMIPLOYEE_ID LAET HAME SALARY TAXBALARY]
LU L= 12000 Hol
103 |Faviet anon Ti0o
110 jChen B200 BB
111 (5033 i} b1k
112 irmar il [P
113 Papy 6800 a52

B row= 3elecied

10-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The dide shows how to create afunction t ax that isinvoked from a SELECT statement. The function
accepts a NUMBER parameter and returns the tax after multiplying the parameter value with 0.08.

In iSQL* Plus, invoke the TAX function inside a query displaying employee ID, name, salary, and tax.

Introduction to Oracle9i: PL/SQL 10-11

Locations to Call User-Defined Functions

* Select list of a SELECT command
* (Condition of the WHERE and HAVI NG clauses

e CONNECT BY, START W TH, ORDER BY, and GROUP
BY clauses

* VALUES clause of the | NSERT command
® SET clause of the UPDATE command

10-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Usage of User-Defined Functions

PL/SQL user-defined functions can be called from any SQL expression where a built-in function can be
caled.

Example:

SELECT enpl oyee_id, tax(salary)
FROM enpl oyees
WHERE t ax(sal ary)>(SELECT MAX(tax(sal ary))
FROM enpl oyees WHERE departnent _id = 30)
ORDER BY tax(sal ary) DESC;

| EMPLOYEE_ID | TAX(SALARY)

| 100 | 1820
| 101 | 1360
| 102 | 1360
| 145 | 1120
| 146 | 1080
| 201 | 1040
| 108 | 360
| 147 | 960
| 205 | 960
| 168 | 520

10 rowws selected.
Introduction to Oracle9i: PL/SQL 10-12

Restrictions on Calling Functions from
SQL Expressions

To be callable from SQL expressions, a user-defined
function must:

®* Be astored function
®* Accept only | Nparameters

* Accept only valid SQL data types, not PL/SQL
specific types, as parameters

* Return datatypes that are valid SQL data types,
not PL/SQL specific types

10-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions When Calling Functions from SQL Expressions
To be callable from SQL expressions, a user-defined PL/SQL function must meet certain requirements.

» Parameters to a PL/SQL function called from a SQL statement must use positional notation. Named
notation is not supported.

e Stored PL/SQL functions cannot be called from@HECK constraint clause of @GREATE or
ALTER TABLE command or be used to specify a default value for a column.

* You must own or have tHeXECUTE privilege on the function to call it from a SQL statement.

» The functions must return data types that are valid SQL data types. They cannot be PL/SQL-specific
data types such &OC0LEAN, RECORD, or TABLE. The same restriction applies to parameters of the
function.

Note: Only stored functions are callable from SQL statements. Stored procedures cannot be called.

The ability to use a user-defined PL/SQL function in a SQL expression is available with PL/SQL 2.1 and
later. Tools using earlier versions of PL/SQL do not support this functionality. Prior to Qraske9

defined functions can be only single-row functions. Starting with Oriacle®r-defined functions can also

be defined as aggregate functions.

Note: Functions that are callable from SQL expressions cannot cditdiandl N OUT parameters.

Other functions can contain parameters with these modes, but it is not recommended.

Introduction to Oracle9i: PL/SQL 10-13

10-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling Functions from
SQL Expressions

Functions called from SQL expressions cannot
contain DML statements.
Functions called from UPDATE/DELETE statements

on atable T cannot contain DML on the same table
T.

Functions called from a DML statement on a table
T cannot query the same table.

Functions called from SQL statements cannot
contain statements that end the transactions.

Calls to subprograms that break the previous
restriction are not allowed in the function.

Controlling Side Effects

To execute a SQL statement that calls a stored function, the Oracle server must know whether the
function is free of side effects. Side effects are unacceptable changes to database tables. Therefore,

restrictions apply to stored functions that are called from SQL expressions.

Restrictions

When called from &ELECT statement or a paralleliz&dPDATE or DELETE statement, the
function cannot modify any database tables
When called from aPDATE, or DELETE statement, the function cannot query or modify any
database tables modified by that statement.
When called from &ELECT, | NSERT, UPDATE, or DELETE statement, the function cannot

execute SQL transaction control statements (su€lOs®1 T), session control statements (such as

SET ROLE), or system control statements (suclha$ER SYSTEM). Also, it cannot execute
DDL statements (such &REATE) because they are followed by an automatic commit.

The function cannot call another subprogram that breaks one of the above restrictions.

Introduction to Oracle9i: PL/SQL 10-14

Restrictions on Calling from SQL

CREATE OR REPLACE FUNCTION dm _call _sql (p_sal NUVBER)
RETURN NUMBER | S
BEG N
| NSERT | NTO enpl oyees(enpl oyee_id, |ast_name, email,
hire date, job id, salary)
VALUES(1, ’"enployee 1', ’'enpl@onpany.comn,
SYSDATE, ' SA MAN , 1000);
RETURN (p_sal + 100);
FND

Function created.

UPDATE enpl oyees SET salary = dnl _cal | _sql (2000)
WHERE enpl oyee _id = 170;

UPDATE employees SET salary = dml_call sglf2000)
#*

EREOR at line 1:

OFA-04001: table HE EMPLOVEES iz mutating, triggerfunction may not see it
ORAN6512: at "HR DML, _CALL 201", line 4

OR&-06512: at line 1

10-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling Functions from SQL: Example

The code exampl e in the dide shows an example of having aDML statement in a function. The function
DML_CALL_SQL containsa DML statement that inserts a new record into the EMPLOYEES table. This
function isinvoked in the UPDATE statement that modifies the salary of employee 170 to the amount
returned from the function. The UPDATE statement returns an error saying that the table is mutating.

Consider the following example where the function QUERY_ _CALL_SQL queriesthe SALARY column

of the EMPLOYEE table:
CREATE OR REPLACE FUNCTI ON query_call _sql (a NUMBER)
RETURN NUMBER | S
s NUMBER,;
BEG N
SELECT salary I NTO s FROM enpl oyees
WHERE enpl oyee id = 170;
RETURN (s + a);
END;
/

The above function, when invoked from the following UPDATE statement, returns the error message as

shown in the dide.
UPDATE enpl oyees SET salary = query_call _sql (100)
WHERE enpl oyee_id = 170;

Introduction to Oracle9i: PL/SQL 10-15

Removing Functions

Drop a stored function.
Syntax:
DROP FUNCTI ON functi on_nane

Example:

DROP FUNCTI ON get _sal ;

Fuskcticm &aprpad

* All the privileges granted on a function are revoked
when the function is dropped.

* The CREATE OR REPLACE syntax is equivalent to
dropping a function and recreating it. Privileges
granted on the function remain the same when this
syntax is used.

10-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Functions

When a stored function is no longer required, you can use a SQL statement in iSQL* Plusto drop it.

To remove a stored function by using iSQL* Plus, execute the SQL command DROP FUNCTI ON.
CREATE OR REPLACE Versus DROP and CREATE:

The REPLACE clauseinthe CREATE OR REPLACE syntax isequivalent to dropping a function and
re-creating it. When you use the CREATE OR REPLACE syntax, the privileges granted on this object

to other users remain the same. When you DROP afunction and then create it again, al the privileges
granted on this function are automatically revoked.

Introduction to Oracle9i: PL/SQL 10-16

Procedure or Function?

Procedure Function
11 Nparameter Calling] I Nparameter
[] QUT parameter K environment
11 NOUT parametef

(DECLARE) (DECLARE)

—1

BEG N BEG N

—1 I—
EXCEPTI ON EXCEPTI ON
—1 I—
END; END;
10-17 Copyright © Oracle Corporation, 2001. All rights reserved.

How Procedures and Functions Differ

Y ou create a procedure to store a series of actions for later execution. A procedure can contain zero or
more parameters that can be transferred to and from the calling environment, but a procedure does not
haveto return avalue.

Y ou create a function when you want to compute a value, which must be returned to the calling
environment. A function can contain zero or more parameters that are transferred from the calling
environment. Functions should return only asingle value, and the value is returned through a RETURN
statement. Functions used in SQL statements cannot have OUT or | N OUT mode parameters.

Introduction to Oracle9i: PL/SQL 10-17

Comparing Procedures
and Functions

Procedure Function

Execute as a PL/SQL Invoke as part of an
statement expression

No RETURN clause in Must contain a RETURN
the header clause in the header

Can return none, one, Must return a single value

or many values

Can contain a RETURN Must contain at least one
statement RETURN statement

10-18 Copyright © Oracle Corporation, 2001. All rights reserved.

How Procedures and Functions Differ (continued)

A procedure containing one OUT parameter can be rewritten as a function containing a RETURN
Statement.

Introduction to Oracle9i: PL/SQL 10-18

Benefits of Stored
Procedures and Functions

* Improved performance

* Easy maintenance

* Improved data security and integrity
* Improved code clarity

10-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits

In addition to modul arizing application development, stored procedures and functions have the
following benefits:

* Improved performance
— Avoid reparsing for multiple users by exploiting the shared SQL area
— Avoid PL/SQL parsing at run time by parsing at compile time

— Reduce the number of calls to the database and decrease network traffic by bundling
commands

e Easy maintenance
— Modify routines online without interfering with other users
— Modify one routine to affect multiple applications
— Modify one routine to eliminate duplicate testing

» Improved data security and integrity

— Control indirect access to database objects from nonprivileged users with security
privileges

— Ensure that related actions are performed together, or not at all, by funneling activity for
related tables through a single path

* Improved code clarity: By using appropriate identifier names to describe the actions of the routine,
you reduce the need for comments and enhance clarity.

Introduction to Oracle9i: PL/SQL 10-19

Summary

In this lesson, you should have learned that:

e A function is anamed PL/SQL block that must
return a value.

* A function is created by using the CREATE
FUNCTI ON syntax.

* A functionis invoked as part of an expression.

* A function stored in the database can be called in
SQL statements.

* A function can be removed from the database by
using the DROP FUNCTI ON syntax.

* Generally, you use a procedure to perform an
action and a function to compute a value.

10-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A function isanamed PL/SQL block that must return avalue. Generaly, you create afunction to
compute and return avalue, and a procedure to perform an action.

A function can be created or dropped.
A function isinvoked as a part of an expression.

Introduction to Oracle9i: PL/SQL 10-20

Practice 10 Overview

This practice covers the following topics:

® Creating stored functions

— To query a database table and return specific
values

— To beused in a SQL statement

— To insert a new row, with specified parameter
values, into a database table

— Using default parameter values
* Invoking a stored function from a SQL statement

* Invoking a stored function from a stored
procedure

10-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 10 Overview
If you encounter compilation errors when using i SQL* Plus, use the SHOW ERRORS command.
If you correct any compilation errorsin iSQL*Plus, do so in the origina script file, not in the buffer,
and then rerun the new version of thefile. Thiswill save anew version of the program unit to the data
dictionary.

Introduction to Oracle9i: PL/SQL 10-21

Practice 10
1. Create and invoke the Q_JOB function to return ajob title.
a Createafunction caled Q JOBtoreturn ajob titleto ahost variable.

b. Compilethe code; create a host variable G_TI TLE and invoke the function with job ID
SA REP. Query the host variable to view the result.

| G_TITLE

|Ea|es Feprazsantative

2. Create afunction called ANNUAL _COWVP to return the annua salary by accepting two parameters:
an employee’s monthly salary and commission. The function should adiitelss/alues.

a. Create and invoke the functi8hiNUAL_COMP, passing in values for monthly salary
and commission. Either or both values passed c&itbk, but the function should still
return an annual salary, which is iilLL. The annual salary is defined by the basic
formula:

(salary*12) + (comm ssion_pct*sal ary*12)
b. Use the function in 8ELECT statement against tHeVPL OYEES table for department 80.

| EMPLOYEE_ID | LAST_NAME | Annual Compensation

| 145 |Russell | 235200
| 146 |Partners | 210600
| 147 |Errazuriz | 187200
| 148 - ! n

I
| 177 |Livingston 0 | 20960
|

| 179 |Johnson 1540

34 rows selected.

3. Create a procedursEW EMP, to insert a new employee into tBVPLOYEES table. The
procedure should contain a call to &I D_DEPTI D function to check whether the department
ID specified for the new employee exists in BEPARTMENTS table.
a. Create the functioALI D_DEPTI Dto validate a specified department ID. The
function should return BOOLEAN value.
b. Create the proceduNEW EMP to add an employee to tE&/PLOYEES table. A new
row should be added to ti/PLOYEES table if the function returnERUE. If the function
returnsFALSE, the procedure should alert the user with an appropriate message.
Define default values for most parameters. The default commission is 0, the default
salary is 1000, the default department number is 30, the default$db REP, and the
default manager number is 145. For the employee’s ID number, use the sequence
EMPLOYEES_SEQ Provide the last name, first name, and e-mail address for the employee.
c. Test youlNEW EMP procedure by adding a new employee named Jane Harris to
department 15. Allow all other parameters to default. What was the result?
d. Test youlNEW EMP procedure by adding a new employee named Joe Harris to department
80. Allow all other parameters to default. What was the result?

Introduction to Oracle9i: PL/SQL 10-22

Managing Subprograms

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Contrast system privileges with object privileges
® Contrast invokers rights with definers rights

* |dentify views in the data dictionary to manage
stored objects

®* Describe how to debug subprograms by using the
DBMS _QUTPUT package

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson introduces you to system and object privilege requirements. Y ou learn how to use the
data dictionary to gain information about stored objects. Y ou also learn how to debug subprograms.

Introduction to Oracle9i: PL/SQL 11-2

Required Privileges

System privileges

CREATE (ANY) PROCEDURE
o/ ALTER ANY PROCEDURE
DROP ANY PROCEDURE
EXECUTE ANY PROCEDURE

DBA grants

Object privileges

Owner grants
{ EXECUTE]

To be able to refer and access objects from a different
schemain a subprogram, you must be granted access to
the referred objects explicitly, not through a role.

11-3 Copyright © Oracle Corporation, 2001. All rights reserved.

System and Object Privileges

There are more than 80 system privileges. Privileges that use the word CREATE or ANY are system
privileges, for example, GRANT ALTER ANY TABLE TO gr een; . System privileges are
assigned by user SYSTEMor SYS.

Object privileges are rights assigned to a specific object within a schema and always include the
name of the object. For example, Scott can assign privilegesto Green to alter his EMPLOYEES table
asfollows:

GRANT ALTER ON enpl oyees TO green;

To create a PL/SQL subprogram, you must have the system privilege CREATE PROCEDURE. Y ou
can alter, drop, or execute PL/SQL subprogram without any further privileges being required.

If aPL/SQL subprogram refers to any objects that are not in the same schema, you must be granted
access to these explicitly, not through arole.

If the ANY keyword is used, you can create, ater, drop, or execute your own subprograms and those
in another schema. Note that the ANY keyword is optional only for the CREATE PROCEDURE

privilege.
Y ou must have the EXECUTE object privilege to invoke the PL/SQL subprogram if you are not the
owner and do not have the EXECUTE ANY system privilege.

By default the PL/SQL subprogram executes under the security domain of the owner.
Note: The keyword PROCEDURE is used for stored procedures, functions, and packages.

Introduction to Oracle9i: PL/SQL 11-3

Granting Access to Data

Direct access:

GRANT SELECT Scott EVPLOYEES
ON enpl oyees .
TO scott; ‘\g,:/-’
G ant Succeeded. el —
— SELECT
Indirect access:
GRANT EXECUTE Green
ON query enp ® R SCOTT. QUERY_EMP
TO green; .
Grant Succeeded. ue\?‘_)
-V

The procedure executes with the privileges of the
owner (default).

11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Providing Indirect Access to Data

Suppose the EMPLOYEES tableislocated within the PERSONNEL schema, and there is a devel oper
named Scott and an end user named Green. Ensure that Green can access the EMPLOYEES table only
by way of the QUERY_EMP procedure that Scott created, which queries employee records.

Direct Access
* From thePERSONNEL schema, provide object privileges on EiPLOYEES table to Scott.
» Scott creates thQUERY_EMP procedure that queries tePLOYEES table.
Indirect Access
Scott provides th&XECUTE object privilege to Green on tli@JERY EMP procedure.

By default the PL/SQL subprogram executes under the security domain of the owner. This is referred
to as definer's-rights. Because Scott has direct priviledelsRbOYEES and has created a procedure
calledQUERY_EMP, Green can retrieve information from tBRPL OYEES table by using the

QUERY_EMP procedure.

Introduction to Oracle9i: PL/SQL 11-4

Using Invoker’s-Rights

The procedure executes with the privileges of the user.
Scott EMPLOYEES

CREATE PROCEDURE query_enpl oyee
(p_id I N enpl oyees. enpl oyee_i d% YPE,
p_name OQUT enpl oyees. | ast _nane%l YPE,

p_sal ary OUT enpl oyees. sal ar y%d'YPE, — T
p_comm OUT ‘

enpl oyees. conm ssi on_pct %dYPE)

-

AUTHI D CURRENT_USER | SCOTT.
S QUERY_EMPLOYEE
BEG N
SELECT | ast _nane, sal ary, .
comi ssi on_pct 1 N/
INTO p_nane, p_salary, p_conmm ; =
FROM enpl oyees ~
WHERE enpl oyee i d=p_i d; ae/n
END query_enpl oyee;
- ’ EMPLOYEES
11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoker’'s-Rights

To ensure that the procedure executes using the security of the executing user, and not the owner, use
AUTHI D CURRENT _USER. This ensures that the procedure executes with the privileges and schema
context of its current user.

Default behavior, as shown on the previous page, is when the procedure executes under the security

domain of the owner; but if you wanted to explicitly state that the procedure should execute using the
owner’s privileges, then use AUTHI D DEFI NER.

Introduction to Oracle9i: PL/SQL 11-5

Managing Stored PL/SQL Objects

Data dictionary

{

information

General
Source code

ﬂ

Editor

N
Parameters |~ L > -
L = _
o ~—=

[DESCRIBE...]

Compile Debug

.

errors information/

11-6

DBMS_OUTPUﬂ

Copyright © Oracle Corporation, 2001. All rights reserved.

Stored

Information Description Access M ethod

General Object information The USER_OBJECTS data dictionary view

Source code Text of the procedure The USER_SOURCE data dictionary view

Parameters Mode: | N/ OUT/ | NOUT, |iSQL*Plus: DESCRI BE command
datatype

P-code Compiled object code Not accessible

Compile errors PL/SQL syntax errors The USER_ERRORS data dictionary view

iSQL*Plus: SHOW ERRORS command
Run-time debug User-specified debug The DBMS_OUTPUT Oracle-supplied package
information variables and messages

Introduction to Oracle9i: PL/SQL 11-6

USER OBJECTS

Column Column Description

OBJECT_NAME Name of the object

OBJECT_ID Internal identifier for the object
OBJECT_TYPE Type of object, for example, TABLE,

PROCEDURE, FUNCTI ON, PACKACE, PACKAGE
BODY, TRI GGER

CREATED Date when the object was created

LAST_DDL_TI ME | Date when the object was last modified

TI MESTAMP Date and time when the object was last
recompiled

STATUS VALI Dor | NVALI D

*Abridged column list

11-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using USER_OBJECTS

To obtain the names of all PL/SQL stored objects within a schema, query the USER_ OBJECTS
datadictionary view.

You can aso examinethe ALL_ OBJECTS and DBA OBJECTS views, each of which contains the
additional OWNER column, for the owner of the object.

Introduction to Oracle9i: PL/SQL 11-7

List All Procedures and Functions

SELECT obj ect _nanme, object_type
FROM wuser _objects

WHERE obj ect _type in (' PROCEDURE ,
" FUNCTI ON') ORDER BY obj ect _nane;

ORIECT_HAME BHIECT _TYPE

ADD DEPT PROCEDLRE

ADD 408 PROCEDURE

ADD 0 _HETORY PROCEDURE

ANNLIAL CORME FUNCTION

DEL_J08 PROCEDURE

FOSKAT FHOME PROCEDURE
LEAWVE_EwP PROCEDURE

LEAVE _EwF2 PROCEDIRE

L™ T T U mION PROCEDLIRE

M v il il

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The examplein the dide displays the names of all the procedures and functions that you
have created.

Introduction to Oracle9i: PL/SQL 11-8

USER SOURCE Data Dictionary View

Column Column Description
NAME Name of the object
TYPE Type of object, for example, PROCEDURE,
FUNCTI ON, PACKAGE, PACKAGE BODY
LI NE Line number of the source code
TEXT Text of the source code line
11-9 Copyright © Oracle Corporation, 2001. Al rights reserved.

Using USER_SOURCE
To obtain the text of a stored procedure or function, use the USER _ SOURCE data dictionary view.

Also examine the ALL_ SOURCE and DBA SOURCE views, each of which contains the additional
OWNER column, for the owner of the object.

If the source file is unavailable, you can use SQL* Plus to regenerate it from USER_SOURCE.

Introduction to Oracle9i: PL/SQL 11-9

List the Code of Procedures
and Functions

SELECT text

FROM user _source

WHERE nane = ' QUERY_EMPLOYEE
ORDER BY i ne;

TEXT
PROCEDURE quary emplayin
ip_Hd M empleyess empleyes_d%TYPE, p_name OUT emplopees last_rams®TFPE,
p_salary CUIT pmplopess salany®BTYPE . p_comm OUT smployees commieson_got 17 PE)
AUTHID CLURRENT_LIEER
15
BEGH
SELECT lusl sarmie, 5 elary, £ om il Sas gol
IMTO p_neme_p_salary p_camm
FROM pmipleysss
WHERE smplopes_id=p_if
END quany_emakiyae;
11 eowri i b cla s
‘ 11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

Use the USER SOURCE data dictionary view to display the complete text for the
QUERY_EMPLOYEE procedure.

Introduction to Oracle9i: PL/SQL 11-10

USER ERRORS

Column Column Description

NAVE Name of the object

TYPE Type of object, for example, PROCEDURE,
FUNCTI ON, PACKAGE, PACKAGE BODY, TRI GGER

SEQUENCE Sequence number, for ordering

LI NE Line number of the source code at which the

error occurs

PCSI TI ON Position in the line at which the error occurs

TEXT Text of the error message

‘ 11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Obtaining Compile Errors

To obtain the text for compile errors, use the USER ERRORS data dictionary view or the SHOWV
ERRCORS i SQL * Plus command.

Also examinethe ALL_ ERRORS and DBA _ ERRCRS views, each of which contains the additional
OWNER column, for the owner of the object.

Introduction to Oracle9i: PL/SQL 11-11

Detecting Compilation Errors: Example

CREATE OR REPLACE PROCEDURE | og_executi on

IS

BEG N

I NPUT INTO | og table (user _id, |og _date)
-- wrong

VALUES (USER, SYSDATE);

END;

/

Warmeng: Frocedure crests d wiih compishon smors

‘ 11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Given the above code for LOG_EXECUTI ON, there will be acompile error when you run the script
for compilation.

Introduction to Oracle9i: PL/SQL 11-12

List Compilation Errors by Using
USER ERRORS

SELECT line || '/’ || position POS, text
FROM user _errors

WHERE nane = ' LOG_EXECUTI ON

ORDER BY i ne;

OIS TEAT
47 PLSO0ME Encauntaned tha symbel "ITO0" whan dapecing ose ol the feliwing = (3 %

FLS.000: Encaurmiened iha symbel “WALUES" whon edpectiag are of th follrsing: |, % ; limil The
symibal “WALLESE" was igrered

A PLE00ME: Encountersd 1ha epmbsl “ERNDC

2l

‘ 11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Compilation Errors, Using USER_ERRORS

The SQL statement above is a SELECT statement from the USER _ERRCRS data dictionary view,
which you use to see compilation errors.

Introduction to Oracle9i: PL/SQL 11-13

List Compilation Errors by Using
SHOW ERRCRS

SHOW ERRORS PROCEDURE | og_executi on

Emroez for FEQCEDTTRE LG _EXECTITION

LIHELAN FEHLIE

4T FLEOE: Entoentinsd 1 ipmbal "NTO" whin dxpecing ose alth e felwsg = (B %
PLEDMO3: Encoentaied ik spmbal “WEBLIES" sMon oo paciiog ora of Tha follesdneg: . [, % i
Thia syl ™ALLIES wae ignpre 4

£ FLEMOA; Encowntansd (ks gpembal "B

‘ 11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

SHOWERRCRS
Use SHOWERRORS without any arguments at the SQL prompt to obtain compilation errors for the
last object you compiled.
Y ou can aso use the command with a specific program unit. The syntax is as follows:

SHOW ERRORS [{ FUNCTI ON| PROCEDURE| PACKAGE| PACKAGE

BODY| TRI GGER| VI EW [schena.] nane]
Using the SHOWERRORS command, you can view only the compilation errors that are generated
by the latest statement that is used to create a subprogram. The USER _ERRORS data dictionary
view stores al the compilation errors generated previoudy while creating subprograms.

Introduction to Oracle9i: PL/SQL 11-14

DESCRI BE in iISQL*Plus

DESCRI BE query_enpl oyee
DESCRI BE add_dept

DESCRI BE t ax
FEOCEDTEE query_employee
Fugumani Hama Typu It [atanir?
P_ID HNUKBERE] M
F_HAKE W ERCHARDZAS) DT
P =EALARY MUKBERE 5 nly
P_COrM MUKBERZ oUT

FHOUEDLUHE add_dept

Furguarriainl F 2 Typw NN 1 Dalauh?
P_HAKE VARCHAR2 =] H DEFALLT
P_LOC MUMEERTE)] DEFALLT

FLURHCTION tax RETURME NLFMEER
Fugumanl Rama Typu I Dot Mipdauit?

P_wallE HIIEER H

‘ 11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Describing Procedures and Functions
To display a procedure or function and its parameter list, use the i SQL* Plus DESCRI BE command.

Example

The code in the dide displays the parameter list for the QUERY _EMPLOYEE and ADD_DEPT
procedures and the TAX function.

Consider the displayed parameter list for the ADD_DEPT procedure, which has defaults. The
DEFAULT column indicates only that thereis a default value; it does not give the actual valueitself.

Introduction to Oracle9i: PL/SQL 11-15

Debugging PL/SQL Program Units

* The DBMs_OUTPUT package:
— Accumulates information into a buffer
— Allows retrieval of the information from the buffer

e Autonomous procedure calls (for example, writing
the output to alog table)

* Software that uses DBMS DEBUG
— Procedure Builder
— Third-party debugging software

‘ 11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging PL/SQL Program Units
Different packages that can be used for debugging PL/SQL program units are shown in the slide.
Y ou can use DBMS_OQUTPUT packaged procedures to output values and messages from a PL/SQL
block. Thisis done by accumulating information into a buffer and then allowing the retrieval of the
information from the buffer. DBMS_OUTPUT is an Oracle-supplied package. Y ou qualify every
reference to these procedures with the DBMS_OQUTPUT prefix.
Benefits of Using DBM5_OQUTPUT Package

This package enables devel opersto follow closaly the execution of afunction or procedure by sending
messages and values to the output buffer. Within iSQL* Plus use SET SERVEROUTPUT ON or OFF
instead of using the ENABLE or DI SABL E procedure.

Suggested Diagnostic I nfor mation
* Message upon entering, leaving a procedure, or indicating that an operation has occurred
e Counter for a loop
* Value for a variable before and after an assignment
Note: The buffer is not emptied until the block terminates.
You can debug subprograms by specifying autonomous procedure calls and store the output as values
of columns into a log table.

Debugging using Oracle Procedure Builder is discussed in Appendix C. Procedure Builder uses a
Oracle-specified debugging package cabdi/s DEBUG.

Introduction to Oracle9i: PL/SQL 11-16

Summary

a ~Scott \ USER_SOURCE
pllt
g\/ Source \ >
code
J > | .
Compile
b-code Compile USER ERRORS
| errors >
Privijeges @
S 4
Green

‘ 11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A user must be granted the necessary privileges to access database objects through a subprogram.

Take advantage of various data dictionary views, SQL commands, i SQL* Plus commands, and
Oracle-supplied procedures to manage a stored procedure or function during its development cycle.

Data Dictionary View

Name or Command Description

USER_OBJECTS |Datadictionary view Provides general information about the object

USER SOURCE Data dictionary view Provides the text of the object, (that is, the PL/SQL
block)

DESCRI BE i SQL*Plus command Provides the declaration of the object

USER_ERRORS Datadictionary view Shows compilation errors

SHOW ERRORS i SQL*Plus command Shows compilation errors, per procedure or function

DBMS_QUTPUT Oracle-supplied package | Provides user-specified debugging, giving variable
values and messages

GRANT iSQL command Provides the security privileges for the owner who
creates the procedure and the user who runsiit,
enabling them to perform their respective operations

Introduction to Oracle9i: PL/SQL 11-17

Summary

Execute
- I

- —/ Debug

“___/ | information | =

_ /

‘ 11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)
* Query the data dictionary.
— List all your procedures and functions, usingWS&R OBJECTS view.

— List the text of certain procedures or functions, usingJBER SOURCE view.
» Prepare a procedure: Recreate a procedure and display any compile errors automatically.

e Test a procedure: Test a procedure by supplying input values; test a procedure or function by
displaying output or return values.

Introduction to Oracle9i: PL/SQL 11-18

Practice 11 Overview

This practice covers the following topics:
®* Recreating the source file for a procedure
®* Recreating the source file for a function

‘ 11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

In this practice you will recreate the source code for a procedure and a function.

Introduction to Oracle9i: PL/SQL 11-19

Practice 11

Suppose you have lost the code for the NEW EMP procedure and the VALI D_DEPTNO function
that you created in lesson 10. (If you did not complete the practicesin lesson 10, you can run the
solution scripts to create the procedure and function.)

Create ai SQL* Plus spool file to query the appropriate data dictionary view to regenerate the code.

Hint:

SET -- options ON CFF

SELECT -- statenment(s) to extract the code
SET -- reset options O\ OFF

To spoal the output of thefiletoa. sql filefromiSQL*Plus, select the Save option for the
CQut put and execute the code.

SET ECHD DFF HEAD'NG DFE FEERBD AT OEE V/EDIEY MIEE

COLUMM LINE MOPRIMNT Unknown File Type |
=SET PAGESIZE D 3 B
mewpr Tou have started to download a file of type
SELECT 'CREATE OR REFLA {\ s applicationvnd. oracle-isglplus. output
FROM DUAL ©OF Cick "Mare Info” ta leam how to extend Mavigator'
LRI capabilities.
SELECT text, line !
FROM USER_SOURCE taore [nfo | Pick &pp... Save File... | Cancel |
WHERE name IN ['NEW _EMI|
<
‘_) Execute | Cutput Save j (—‘ Clear Screen | Save Script |
Save Az . K Ed I
Save in: I £3) Managing_Subprogrars j gl I: E '
= NEWpd_1.5q]
§ Recreate zql
§ zold_1.zql

File narne: IHecreate.sqI e' Save |

Save az type: If-'«ll Filez [*.7] ﬂ Cancel |

Introduction to Oracle9i: PL/SQL 11-20

